函数的周期性(基础复习习题练习)
- 格式:doc
- 大小:860.00 KB
- 文档页数:4
函数的周期性--经典例题函数的周期性周期函数的定义:对于函数()x f ,存在非0常数T ,使得对于其定义域内总有()()x f T x f =+,则称的常数T 为函数的周期。
周期函数的性质:1、()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;2、若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a 是它的一个周期。
3、若函数()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数4、y=f(x)满足f(x+a)=()x f 1(a>0),则f(x)为周期函数且2a 是它的一个周期。
5、若函数y=f(x)满足f(x+a)=()x f 1-(a>0),则f(x)为周期函数且2a是它的一个周期。
6、1()()1()f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数.7、1()()1()f x f x a f x ++=--,则()x f 是以4T a =为周期的周期函数.8、若函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,则f(x)为周期函数且2(b-a )是它的一个周期。
9、函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;10、函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数;11、若偶函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且2a 是它的一个周期。
12、若奇函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且4a 是它的一个周期。
13、若函数y=f(x)满足f(x)=f(x-a)+f(x+a)(a>0),则f(x)为周期函数,6a 是它的一个周期。
专题08 函数的周期性专项突破一 周期函数的定义与求解1.有下面两个命题:①若()y f x =是周期函数,则(())y f f x =是周期函数;②若(())y f f x =是周期函数,则()y f x =是周期函数,则下列说法中正确的是( ).A .①②都正确B .①正确②错误C .①错误②正确D .①②都错误2.若函数()f x 满足(2)()f x f x +=,则()f x 可以是( )A .2()(1)f x x =-B .()|2|f x x =-C .()sin 2f x x π⎫⎛= ⎪⎝⎭D .()tan 2f x x π⎛⎫= ⎪⎝⎭3.已知定义在R 上的非常数函数()f x 满足:对于每一个实数x ,都有122f x π⎛⎫+=+ ⎪⎝⎭则()f x 的周期为( ) A .4π B .2π C .π D .32π 4.若定义在R 上的偶函数f (x )满足(2)()f x f x +=且[0,1]x ∈时,()f x x =,则方程3()log ||f x x =的解有( ) A .2个B .3个C .4个D .多于4个5.设()f x 是定义在实数集R 上的函数,且满足()()11f x f x +=-,()()22f x f x +=--,则()f x 是( ) A .偶函数,又是周期函数B .偶函数,但不是周期函数C .奇函数,又是周期函数D .奇函数,但不是周期函数6.已知函数()21f x +的最小正周期为3,则函数()f x 的最小正周期为______.7.函数()f x 为定义在R 上的奇函数,且满足()(2)f x f x =-,则()f x 的周期为__________. 8.若定义在R 上的非零函数()f x ,对任意实数x ,存在常数λ,使得()()f x f x λλ+=恒成立,则称()y f x =是一个“f λ。
函数”,试写出一个“ l f 。
函数的周期性练习题函数是数学中的重要概念之一,它描述了输入和输出之间的对应关系。
在数学中,周期性函数是一类特殊的函数,它们具有周期性的特征。
本文将为大家介绍一些与函数周期性相关的练习题,以帮助大家更好地理解和应用函数的周期性。
练习题1:正弦函数的周期性考虑函数y = sin(x)。
我们知道正弦函数是一个周期为2π的函数,即在区间[0, 2π]内完整地重复自身。
请回答以下问题:1. 在区间[0, π]内,sin(x)的取值范围是多少?2. 在区间[π, 2π]内,sin(x)的取值范围是多少?3. 在区间[0, 4π]内,sin(x)的取值范围是多少?4. 在区间[0, 8π]内,sin(x)的取值范围是多少?练习题2:余弦函数的周期性考虑函数y = cos(x)。
余弦函数也是一个周期为2π的函数,它与正弦函数在图像上有类似的特点。
请回答以下问题:1. 在区间[0, π]内,cos(x)的取值范围是多少?2. 在区间[π, 2π]内,cos(x)的取值范围是多少?3. 在区间[0, 4π]内,cos(x)的取值范围是多少?4. 在区间[0, 8π]内,cos(x)的取值范围是多少?练习题3:周期性函数的图像变换现在考虑函数y = sin(x) + 1。
这个函数是对正弦函数进行了图像上的平移。
请回答以下问题:1. 在区间[0, 2π]内,sin(x) + 1的取值范围是多少?2. 在区间[0, 4π]内,sin(x) + 1的取值范围是多少?3. 在区间[0, 8π]内,sin(x) + 1的取值范围是多少?练习题4:周期性函数的复合考虑函数y = sin(2x)。
这个函数是对正弦函数进行了图像上的压缩。
请回答以下问题:1. 在区间[0, π]内,sin(2x)的取值范围是多少?2. 在区间[0, 2π]内,sin(2x)的取值范围是多少?3. 在区间[0, 4π]内,sin(2x)的取值范围是多少?练习题5:周期性函数的复合和平移考虑函数y = cos(2x - π)。
函数的周期性与常考题【知识点分析】:函数的周期性设函数y=f(x),x∈D,如果存在非零常数T,使得对任意x∈D,都有f(x+T)=f(x),则称函数f(x)为周期函数,T为函数f(x)的一个周期.(D为定义域)1. 型的周期为T。
定义:对x取定义域内的每一个值时,都有,则为周期函数,T叫函数的周期。
【相似题练习】1.定义在R上的函数f(x)满足:f(x+6)=f(x),当﹣3≤x<﹣1时,f(x)=﹣(x+2)2;当﹣1≤x<3时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2019)=()A.336B.337C.338D.3391.已知定义在R上的函数y=f(x)对于任意的x都满足f(x+2)=f(x).当﹣1≤x<1时,f(x)=x3.若函数g(x)=f(x)﹣log a|x|至少有6个零点,则a的取值范围是.1.已知f(x)是定义在R上的函数,且对任意实数x有f(x+4)=﹣f(x)+2,若函数y=f(x﹣1)的图象关于直线x=1对称,则f(2014)=()A.﹣2+2B.2+2C.2D.【知识点分析】:2. 型的周期为。
证明:。
特别得:f(x-a)=f(x+a)型,的周期为2a。
【相似题练习】2.已知偶函数y=f(x)满足条件f(x+1)=f(x﹣1),且当x∈[﹣1,0]时,f(x)=3x+,则f(5)的值等于.1.已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当时,,则f(2019)=()A.﹣2B.﹣1C.0D.2【知识点分析】:3. 型的周期为2a。
证明:【相似题练习】1.已知定义在R上的函数f(x﹣1)的对称中心为(1,0),且f(x+2)=﹣f(x),当x∈(0,1]时,f(x)=2x﹣1,则f(x)在闭区间[﹣2014,2014]上的零点个数为.1.设函数f(x)是定义在R上的奇函数,满足f(x+1)=﹣f(x﹣1),若f(﹣1)>1,f(5)=a2﹣2a﹣4,则实数a的取值范围是()A.(﹣1,3)B.(﹣∞,﹣1)∪(3,+∞)C.(﹣3,1)D.(﹣∞,﹣3)∪(1,+∞)1.已知函数f(x)对任意x∈R都有f(x+6)+f(x)=2f(3),y=f(x﹣1)的图象关于点(1,0)对称,且f (4)=4,则f(2012)=()A.0B.﹣4C.﹣8D.﹣161.已知定义在R上的函数f(x)的图象关于点(﹣,0)成中心对称图形,且满足,f(﹣1)=1,f(0)=﹣2,则f(1)+f(2)+…+f(2015)的值为()A.1B.2C.﹣1D.﹣2【知识点分析】:4. 型的周期为2a。
函数的周期性练习 班级 姓名1、函数2cos()35y x π=-的最小正周期是 ( )A5π B 52π C 2π D 5π 2、下列四个函数中,既是(0,)2π上的增函数,又是以π为周期的偶函数的是 ( ) A sin y x = B |sin |y x = C cos y x = D |cos |y x =3、函数2sin x y =的最小正周期是 ( ) (A) 2π (B) π (C)π2 (D)π4 4、在函数|sin ||,|sin x y x y ==,)32sin(π+=x y ,)322cos(π+=x y 中,最小正周期为π的函数的个数有 ( ) A .1个 B .2个 C .3个 D .4个5、由函数⎩⎨⎧++∈+∈=)22,12[1)12,2[0)(n n x n n x x f ()Z n ∈的图象,可知此函数的周期为( ) A .2k B .23k C .k D .2k (以上k 0,≠∈k Z ) 6、定义在R 上的函数()x f 满足()()2+=x f x f ,当[]5,3∈x 时,()42--=x x f ,则( ).A sin cos 66f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭; .B ()()sin1cos1f f >; .C 22cos sin 33f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭ .D ()()cos2sin2f f > 7、设()f x 是定义在R 上以6为周期的函数,()f x 在(0,3)内单调递减,且()y f x =的图像关于直线3x =对称,则下面正确的结论是 ( ) .A (1.5)(3.5)(6.5)f f f << .B (3.5)(1.5)(6.5)f f f << .C (6.5)(3.5)(1.5)f f f << .D (3.5)(6.5)(1.5)f f f << 8、设函数()f x (x R ∈)是以3为周期的奇函数,且()()11,2f f a >=,则( ) .A 2a > .B 2a <- .C 1a > .D 1a <-9、函数()f x 既是定义域为R 的偶函数,又是以2为周期的周期函数,若()f x 在[]1,0-上 是减函数,那么()f x 在[]2,3上是 ( ) .A 增函数 .B 减函数 .C 先增后减函数 .D 先减后增函数10、已知函数()f x 是以2为周期的周期函数,且当()0,1x ∈时,()21x f x =-,则 2(log 10)f 的值为 ( ).A 35 .B 85 .C 38- .D 53 11、定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值为 ( ) .A 21- .B 21 .C 23- .D 23 12、已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,则(6)f 的值为 ( ) .A 1- .B 0 .C 1 .D 213、若函数()f x 满足(1)()f x f x -=,则函数()y f x =的一个周期是______________.14、若函数cos()(0)6y x πωω=->最小正周期为5π,则ω= . 15、已知函数)34sin()(π+=x k x f 的周期不大于2,则正整数k 的最小值是_______. 16、若存在常数0p >,使得函数()f x 满足()()2p f px f px =-()x R ∈, ()f x 的一个正周期为17、已知)(x f 是奇函数,)(1)(1)1(x f x f x f -+=+,,1)1(=-f 则)3(f =____________. 18、函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15f =-, 则()()5f f =19、设()f x 的最小正周期2T =且()f x 为偶函数,它在区间[]0,1上的图象如右图所示的线段AB ,则在区间[]1,2上, ()f x =。
函数的周期性一.知识点:1.周期函数的定义:对于函数f(x),如果存在一个非零常数T,使得定义域内任何值f(x+T)=f(x),那么就称f(x)为周期函数,T为f(x)的周期。
2.周期函数的性质:(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。
(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。
(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。
(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。
(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。
(6)周期函数f(x)的定义域M必定是至少一方无界的集合3.判定定理:定理1. 若f(x)是在数集M上以T*为最小正周期的周期函数,则K f(x)+C(K≠0)和1/ f(x)分别是集M和集{X/ f(x)≠0,X ∈M}上的以T*为最小正周期的周期函数。
定理2. 若f(x)是集M上以T*为最小正周期的周期函数,则f(ax+b)是集{x|ax+b∈M}上的以T/ a为最小正周期的周期函数,(其中a、b为常数)。
定理3. 设f(u)是定义在集M上的函数,u=g(x)是集M1上的周期函数,且当X∈M1时,g(x)∈M,则复合函数f(g(x))是M1上的周期函数。
定理4. 设f1(x)、f2(x)都是集合M上的周期函数,T1、T2分别是它们的周期,若T1/T2∈Q则它们的和差与积也是M上的周期函数,T1与T2的公倍数为它们的周期。
4.几个常见常考周期函数的关系式:(其中a≠0)(1)f(x+a)= -f(x) =>f(x+2a)=f(x)(2)f(x+a)=1/f(x) =>f(x+2a)=f(x)(3)f(x+a)= -1/f(x) =>f(x+2a)=f(x)(4)若奇函数f(x)的图像关于直线x=a对称,则f(x+4a)=f(x)(5)若偶函数f(x)的图像关于直线x=a对称,则f(x+2a)=f(x)二.典型例题(难):例题1:已知定义在R上的奇函数f(x)的图像关于直线x=1对称,则f(1)+f(2)+…+f(2019)=_______例题2:已知定义在R上的函数f(x)满足f(x+2)=12f(x)且当x∈[0,2]时,f(x)= -2sinπ2x①若当x∈[ -4,-2]时,f(x)≥t➖9t恒成立,则t的取值范围为________②函数g(x)=f(x) ➖12log16X 零点的个数为________例题答案:例题一:0 例题二:t≤9或0<t≤1 ; 5三.基础例题1.若函数f(x)=x2+bx+c对一切实数都有f(x+2)=f(2 -x)则有()A.f(2)<f(1)<f(4)B.f(1)<f(2)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)2.已知定义在R上的函数f(x)满足f(-x)= - f(x),f(3-x)=f(x),则f(2019)=()A.- 3 B.0 C.1 D.33.已知定义在R上的函数f(x)满足:y=f(x - 1)的图像关于点(1,0)对称,且当0≥0时恒有f(x)=f(x+2),当x∈[0,1]时,f(x)=ex – 1,则f(2016)+f(-2015)=()A.1 – e B. e – 1 C. – 1 – e D.e+14.定义在R上奇函数f(x)满足f(x+2)= -f(x),且在[0,2)上单调递减,则下列结论正确的是()A.0<f(1)<f(3) B. f(3)<0<f(1)C.f(1)<0<f(3) D. f(3)<f(1)<05.已知函数f(x)的图像关于点(- 3 ,2 )对称,则函数h(x)=f(x+1)- 3的图像的对称中心是_______6.设f(x)是定义在R上的奇函数,且在( -∞,0 )上是减函数,f(-2)=0,则xf(x)<0的解集为________7.已知f(x),g(x)都是定义在R上的函数,且f(x)为奇函数,g(x)的图像关于直线x=1对称,则下列四个结论中错误的是()A.y=g[f(x)+1]为偶函数 B.y=g[f(x)]为奇函数C.函数y=f[g(x)]的图像关于直线x=1对称D.y=f[g(x+1)]为偶函数8.定义在R上得函数f(x)满足f( - x)=f(x),且当x≥0时,f(x)={−x2+1,0≤x≤12−2x,x≥1若对任意得x∈[m,m+1],不等式f(1-x)≤f(x+m)恒成立,则实数m的最大值是()A.- 1 B.12C. - 13D.13答案:1. A由已知得:对称轴为x=2,由于抛物线开口向上,所以越靠近对称轴值越小2.B∵f(- x)= - f(x),∴f(3 - x)= - f(x - 3),且f(0)=0.又∵f(3 - x)=f(x),∴f(x)= - f(x - 3),∵f(x - 3)= - f(x - 6),∴f(x)=f(x - 6),∴f(x)是周期为6的函数,∴f(2019)=f(6×336+3)=f(3)=(0)=03.A∵y=f(x - 1)的图像关于点(1,0)对称,∴f(x)的图像关于远点对称,∵当x≥0时恒有f(x)=f(x+2),∴函数f(x)的周期为2∴f(2016)+f(- 2015)=f(0)- f(1)=1 – e4.C由函数f(x)时定义在R上的奇函数,得f(0)=0,由f(x+2)= - f(x),得f(x+4)= - f (x+2)=f(x),故函数f(x)是以4为周期的周期函数∴f(3)=f(- 1)又∵f(x)在[0,2)上单调递减,∴函数f(x)在(- 2,2 )上单调递减∴f(-1)>f(0)>f(1)5.(- 4,- 1)函数h(x)=f(x+1)- 3的图象是由函数f(x)的图像向左平移1个单位,再向下平移1个单位,再向下平移3个单位得到的,又f(x)的图像关于点(- 3,2)对称,所以函数h(x)的图像的对称中心为(-4,-1)6.(-∞,-2]∪[0,2](1)x=0时,xf(x)=0,满足要求;(2)x<0时xf(x)≤0,所以,f(x)≥0f(x)在(-∞,0)上是减函数,f(-2)=0所以,x≤-2(3)x>0时,xf(x)≤0,所以,f(x)≤0f(x)为R上的奇函数,且在(-∞,0)上是减函数,所以在(0,+∞)上是减函数,f(2)=0f(x)≤0,解得,0<x≤2所以,不等式 xf(x)≤0 的解集为(-∞,-2]∪[0,2]7. B已知得f (- x )= - f (x ),g (1 - x )=g (1+x ), ∵g[f(-x)+1]=g[ - f(x)+1]=g[f(x)+1],∴y=g[f(x)+1]为偶函数∵f[g(x)]=f[g(2 - x)]∴y=f[g(x)]得图像关于直线x=1对称∵f[g( - x+1)]=f[g(x+1)]∴y=f[g(x+1)]为偶函数∵g[f( - x)]=g[ - f(x)]=g[2+f(x)]∴y=g[f(x)]不是基函数8. C由题知函数f(x)为偶函数,且当x ≥0时,函数f(x)为减函数,则当x <0时,函数f (x )为增函数。
函数的周期性(基础复习习题练习)课题:函数的周期性考纲要求:了解函数周期性、最⼩正周期的含义,会判断、应⽤简单函数的周期性.教材复习()1 周期函数:对于函数()y f x =,如果存在⾮零常数T ,使得当x 取定义域内的任何值时,都有,那么就称函数()y f x =为周期函数,称T 为这个函数的⼀个周期.()2最⼩正周期:如果在周期函数()f x 的所有周期中的正数,那么这个最⼩正数就叫作()f x 的最⼩正周期.基本知识⽅法 1.周期函数的定义:对于()f x 定义域内的每⼀个x ,都存在⾮零常数T ,使得 ()()f x T f x +=恒成⽴,则称函数()f x 具有周期性,T 叫做()f x 的⼀个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最⼩正数叫()f x 的最⼩正周期. 2.⼏种特殊的抽象函数:具有周期性的抽象函数:函数()y f x =满⾜对定义域内任⼀实数x (其中a 为常数),① ()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;②()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数;③()()1f x a f x +=±,则()x f 是以2T a =为周期的周期函数;④()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数;⑤1()()1()f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数. ⑥1()()1()f x f x a f x -+=-+,则()x f 是以4T a =为周期的周期函数. ⑦1()()1()f x f x a f x ++=-,则()x f 是以4T a =为周期的周期函数. ⑧函数()y f x =满⾜()()f a x f a x +=-(0a >),若()f x 为奇函数,则其周期为4T a =,若()f x 为偶函数,则其周期为2T a =.⑨函数()y f x =()x R ∈的图象关于直线x a =和x b =()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;⑩函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;⑾函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数;3.判断⼀个函数是否是周期函数要抓住两点:⼀是对定义域中任意的x 恒有()()f x T f x +=;⼆是能找到适合这⼀等式的⾮零常数T ,⼀般来说,周期函数的定义域均为⽆限集.4.解决周期函数问题时,要注意灵活运⽤以上结论,同时要重视数形结合思想⽅法的运⽤,还要注意根据所要解决的问题的特征来进⾏赋值.问题1.(06⼭东)已知定义在R 上的奇函数()f x 满⾜(2)()f x f x +=-,则(6)f 的值为 .A 1- .B 0 .C 1 .D 2问题2.()1(00上海) 设()f x 的最⼩正周期2T =且()f x它在区间[]0,1上的图象如右图所⽰的线段AB ,则在区间[]1,2上, ()2已知函数()f x 是周期为2的函数,当11x -<<时,2()1f x x =+当1921x << 时,()f x 的解析式是 ()3 ()x f 是定义在R 上的以2为周期的函数,对k Z ∈,⽤k I 表⽰区间已知当0x I ∈时,()2f x x =,求()x f 在k I 上的解析式。
函数的周期性、对称性一、单选题1.(2023·全国·高三专题练习)已知函数f x =x -e 2+ln ex e -x ,若f e 2020 +f 2e2020+⋅⋅⋅+f 2018e 2020 +f 2019e 2020 =20192a +b ,其中b >0,则12a+a b 的最小值为()A.34B.54C.2D.22【答案】A【解析】因为f x =x -e 2+ln exe -x,所以f x +f e -x =x -e 2+ln ex e -x +(e -x )-e2+ln e (e -x )e -(e -x )=lnex e -x +ln e (e -x )x =ln exe -x ⋅e (e -x )x=ln e 2=2,令S =f e 2020 +f 2e 2020 +⋅⋅⋅+f 2018e 2020 +f 2019e2020 则2S =f e 2020 +f 2019e 2020 +f 2e 2020 +f 2018e 2020 +⋅⋅⋅+f 2019e 2020 +f e2020 =2×2019所以S =2019所以20192a +b =2019,所以a +b =2,其中b >0,则a =2-b .当a >0时12|a |+|a |b =12a +2-b b =12a +2b -1=12a +2b ⋅(a +b )2-1=1252+b 2a +2a b-1≥1252+2b 2a ⋅2a b -1=54当且仅当b 2a =2a b, 即 a =23,b =43 时等号成立;当a <0时 12|a |+|a |b =1-2a +-a b =1-2a +b -2b =1-2a +-2b +1=121-2a +-2b ⋅(a +b )+1=12-52+b -2a +-2ab +1≥12-52+2b -2a ⋅-2a b +1=34,当且仅当 b -2a =-2a b, 即 a =-2,b =4 时等号成立;因为34<54,所以12|a |+|a |b 的最小值为34.故选:A .2.(2023春·重庆·高三统考阶段练习)已知函数f (x )=ln x 2+1-x +1,正实数a ,b 满足f (2a )+f (b -4)=2,则4b a +a2ab +b 2的最小值为( )A.1B.2C.4D.658【答案】B【解析】f x +f -x =ln x 2+1-x +1+ln x 2+1+x +1=2,故函数f x 关于0,1 对称,又f x 在R 上严格递增;f (2a )+f (b -4)=2,∴2a +b -4=0即2a +b =4.4b a +a 2ab +b 2=4b a +a b 2a +b =4b a +a4b ≥24b a ⋅a 4b=2.当且仅当a =169,b =49时取得.故选:B .3.(2023·全国·高三专题练习)已知函数f x 的定义域为R ,f 2x +2 为偶函数,f x +1 为奇函数,且当x ∈0,1 时,f x =ax +b .若f 4 =1,则3i =1f i +12=( )A.12B.0C.-12D.-1【答案】C【解析】因为f 2x +2 为偶函数,所以f -2x +2 =f 2x +2 ,用12x +12代替x 得:f -x +1 =f x +3 ,因为f x +1 为奇函数,所以f -x +1 =-f x +1 ,故f x +3 =-f x +1 ①,用x +2代替x 得:f x +5 =-f x +3 ②,由①② 得:f x +5 =f x +1 ,所以函数f x 的周期T =4,所以f 4 =f 0 =1,即b =1,因为f -x +1 =-f x +1 ,令x =0得:f 1 =-f 1 ,故f 1 =0,f 1 =a +b =0,解得:a =-1,所以x ∈0,1 时,f x =-x +1,因为f -x +1 =-f x +1 ,令x =12,得f 12 =-f 32 ,其中f 12 =-12+1=12,所以f 32 =-12,因为f -2x +2 =f 2x +2 ,令x =14得:f -2×14+2 =f 2×14+2 ,即f 32 =f 52 =-12,因为T=4,所以f 72 =f72-4=f-12,因为f-x+1=-f x+1,令x=32得:f-12=-f52 =12,故f 72 =12,3 i=1fi+12=f32 +f52 +f72 =-12-12+12=-12.故选:C4.(2023·四川资阳·统考模拟预测)已知函数f x 的定义域为R,f x-2为偶函数,f x-2+f-x=0,当x∈-2,-1时,f x =1a x-ax-4(a>0且a≠1),且f-2=4.则13k=1f k=( )A.16B.20C.24D.28【答案】C【解析】因为f x-2是偶函数,所以f-x-2=f(x-2),所以f(x)=f(-x-4),所以函数f(x)关于直线x=-2对称,又因为f x-2+f-x=0,所以-f x-2=f-x,所以f(x)=-f(-x-2),所以f(x)关于点(-1,0)中心对称,由f(x)=f(-x-4)及f(x)=-f(-x-2)得f(-x-4)=-f(-x-2)所以f(-x-4)=-f(-x-2)=f(-x)所以函数f(x)的周期为4,因为当x∈-2,-1时,f x =1a x-ax-4(a>0且a≠1),且f-2=4,所以4=1a-2+2a-4,解得:a=2或a=-4,因为a>0且a≠1,所以a=2.所以当x∈-2,-1时,f x =12x-2x-4,所以f(-2)=4,f(-1)=0,f(-3)=f(-1)=0,f(0)=-f(-2)=-4,f(1)=f(1-4)=f(-3)=0,f(2)=f(-2)=4,f(3)=f(-1)=0,f(4)=f(0)=-4,所以f(1)+f(2)+f(3)+f(4)=8,所以13k=1f k=f(1)+3×8=24,故选:C.5.(2023·全国·高三专题练习)已知函数f(x),g(x)的定义域均为R,且f(x)+g(2-x)=5,g(x)-f(x-4)=7.若y=g(x)的图像关于直线x=2对称,g(2)=4,则22k=1f k =( )A.-21B.-22C.-23D.-24【答案】D【解析】因为y =g (x )的图像关于直线x =2对称,所以g 2-x =g x +2 ,因为g (x )-f (x -4)=7,所以g (x +2)-f (x -2)=7,即g (x +2)=7+f (x -2),因为f (x )+g (2-x )=5,所以f (x )+g (x +2)=5,代入得f (x )+7+f (x -2) =5,即f (x )+f (x -2)=-2,所以f 3 +f 5 +⋯+f 21 =-2 ×5=-10,f 4 +f 6 +⋯+f 22 =-2 ×5=-10.因为f (x )+g (2-x )=5,所以f (0)+g (2)=5,即f 0 =1,所以f (2)=-2-f 0 =-3.因为g (x )-f (x -4)=7,所以g (x +4)-f (x )=7,又因为f (x )+g (2-x )=5,联立得,g 2-x +g x +4 =12,所以y =g (x )的图像关于点3,6 中心对称,因为函数g (x )的定义域为R ,所以g 3 =6因为f (x )+g (x +2)=5,所以f 1 =5-g 3 =-1.所以∑22k =1f (k )=f 1 +f 2 +f 3 +f 5 +⋯+f 21 +f 4 +f 6 +⋯+f 22 =-1-3-10-10=-24.故选:D6.(2023·全国·高三专题练习)设函数f x =x 3+ax 2+bx +2a ,b ∈R ,若f 2+x +f 2-x =8,则下列不等式正确的是( )A.f e +f 32>8 B.f e +f 2-3 >8C.f ln7 +f 2+3 >8 D.f ln5 +f 3ln2 <8【答案】C【解析】由题(2+x )3+a (2+x )2+b (2+x )+2+(2-x )3+a (2-x )2+b (2-x )+2=8,化简整理得(6+a )x 2+2(2a +b +3)=0,于是6+a =0,2a +b +3=0⇒a =-6,b =9,所以f (x )=x 3-6x 2+9x +2,进而f (x )=3x 2-12x +9=3(x -1)(x -3),据此,f (x )在(-∞,1),(3,+∞)上单调递增,f (x )在(1,3)上单调递减,因为f (2+x )+f (2-x )=8,即f (x )+f (4-x )=8.对于A ,由f (e )+f (4-e )=8,又1<4-e <32<3,所以f (4-e )>f 32,即f (e )+f 32<8,故A 错误;对于B ,f (2-3)=(2-3)3-6(2-3)2+9(2-3)+2=4,因为1<2<e<3,所以f(2)>f(e),而f(2)=23-6×22+9×2+2=4,所以f(e)+f(2-3)<8,故B错误;对于C,f(2+3)=(2+3)3-6(2+3)2+9(2+3)+2=4,而1<ln7<2,所以f(ln7)>f(2)=4,所以f(ln7)+f(2+3)>8,故C正确;对于D,由f(ln5)+f(4-ln5)=8,因为1<3ln2<4-ln5<3,所以f(3ln2)>f(4-ln5),所以f(ln5)+f(3ln2)>8,故D错误.故选:C.7.(2023·全国·高三专题练习)定义在R上的奇函数f x 满足f2-x=f x ,且在0,1上单调递减,若方程f x =-1在0,1上所有实根之和是( )上有实数根,则方程f x =1在区间-1,11A.30B.14C.12D.6【答案】A【解析】由f2-x=f x 知函数f x 的图象关于直线x=1对称,∵f2-x=f x ,f x 是R上的奇函数,∴f-x=f x+2=-f x ,∴f x+4=f x ,∴f x 的周期为4,考虑f x 的一个周期,例如-1,3,由f x 在0,1上是增函数,上是减函数知f x 在1,2f x 在-1,0上是减函数,f x 在2,3上是增函数,对于奇函数f x 有f0 =0,f2 =f2-2=f0 =0,故当x∈0,1时,f x <f2 =0,时,f x <f0 =0,当x∈1,2当x∈-1,0时,f x >f0 =0,当x∈2,3时,f x >f2 =0,方程f x =-1在0,1上有实数根,则这实数根是唯一的,因为f x 在0,1上是单调函数,则由于f2-x上有唯一实数,=f x ,故方程f x =-1在1,2在-1,0上f x >0,和2,3则方程f x =-1在-1,0上没有实数根,和2,3从而方程f x =-1在一个周期内有且仅有两个实数根,当x∈-1,3,方程f x =-1的两实数根之和为x+2-x=2,当x∈-1,11,方程f x =-1的所有6个实数根之和为x+2-x+4+x+4+2-x+x+8+2-x+8=2+8+2+8+2+8=30.故选:A.8.(2023·全国·高三专题练习)对于三次函数f x =ax3+bx2+cx+d a≠0,给出定义:设f'x 是函数y=f x 的导数,f″x 是f'x 的导数,若方程f″x =0有实数解x0,则称点x0,f x0为函数y =f x 的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g x =13x3-12x2+3x-512,则g12019+g22019+⋯+g20182019=( )A.2016B.2017C.2018D.2019【答案】C【解析】函数g x =13x3-12x2+3x-512,函数的导数g'x =x2-x+3,g'x =2x-1,由g'x0=0得2x0-1=0,解得x0=12,而g12 =1,故函数g x 关于点12,1对称,∴g x +g1-x=2,故设g12019+g22019+...+g20182019=m,则g20182019+g20172019+...+g12019=m,两式相加得2×2018=2m,则m=2018,故选C.9.(2023春·云南曲靖·高三曲靖一中校考阶段练习)定义在R上的函数f x 满足f-x+f x =0 ,f x =f2-x,且当x∈0,1时,f x =x2.则函数y=7f x -x+2的所有零点之和为( ) A.7 B.14 C.21 D.28【答案】B【解析】依题意,f x 是奇函数.又由f x =f2-x知,f x 的图像关于x=1对称.f x+4=f1+x+3=f1-x+3=f-2-x=-f2+x=-f2--x=-f-x=f x ,所以f x 是周期为4的周期函数.f2+x=f1+1+x=f1-1+x=f-x=-f x =-f2-x,所以f x 关于点2,0对称.由于y=7f x -x+2=0⇔f x =x-2 7从而函数y=7f x -x+2的所有零点之和即为函数f x 与g x =x-27的图像的交点的横坐标之和.而函数g x =x-27的图像也关于点2,0对称.画出y=f x ,g x =x-27的图象如图所示.由图可知,共有7个交点,所以函数y=7f x -x+2所有零点和为7×2=14.故选:B10.(2023·全国·高三专题练习)已知定义在R上的可导函数f x 的导函数为f (x),满足f (x)<f(x)且f x+3为偶函数,f(x+1)为奇函数,若f(9)+f(8)=1,则不等式f x <e x的解集为( )A.-3,+∞B.1,+∞C.(0,+∞)D.6,+∞【答案】C【解析】因为f x+3为偶函数,f(x+1)为奇函数,所以f x+3=f-x+3,f(x+1)+f(-x+1)=0.所以f x =f-x+6,f(x)+f(-x+2)=0,所以f(-x+6)+f(-x+2)=0.令t=-x+2,则f(t+4)+f(t)=0.令上式中t取t-4,则f(t)+f(t-4)=0,所以f(t+4)=f(t-4).令t取t+4,则f(t)=f(t+8),所以f(x)=f(x+8).所以f x 为周期为8的周期函数.因为f(x+1)为奇函数,所以f(x+1)+f(-x+1)=0,令x=0,得:f(1)+f(1)=0,所以f(1)=0,所以f(9)+f(8)=1,即为f(1)+f(0)=1,所以f(0)=1.记g x =f xe x,所以gx =f x -f xe x.因为f (x)<f(x),所以g x <0,所以g x =f xe x在R上单调递减.不等式f x <e x可化为f xe x<1,即为g x <g0 .所以x>0.故选:C11.(2023·全国·高三专题练习)设函数f x 的定义域为R,f x+1为奇函数,f x+2为偶函数,当x∈1,2时,f(x)=ax2+b.若f0 +f3 =6,则f 92 =( )A.-94B.-32C.74D.52【答案】D【解析】[方法一]:因为f x +1 是奇函数,所以f -x +1 =-f x +1 ①;因为f x +2 是偶函数,所以f x +2 =f -x +2 ②.令x =1,由①得:f 0 =-f 2 =-4a +b ,由②得:f 3 =f 1 =a +b ,因为f 0 +f 3 =6,所以-4a +b +a +b =6⇒a =-2,令x =0,由①得:f 1 =-f 1 ⇒f 1 =0⇒b =2,所以f x =-2x 2+2.思路一:从定义入手.f 92 =f 52+2 =f -52+2 =f -12 f -12 =f -32+1 =-f 32+1 =-f 52-f 52 =-f 12+2 =-f -12+2 =-f 32所以f 92 =-f 32 =52.[方法二]:因为f x +1 是奇函数,所以f -x +1 =-f x +1 ①;因为f x +2 是偶函数,所以f x +2 =f -x +2 ②.令x =1,由①得:f 0 =-f 2 =-4a +b ,由②得:f 3 =f 1 =a +b ,因为f 0 +f 3 =6,所以-4a +b +a +b =6⇒a =-2,令x =0,由①得:f 1 =-f 1 ⇒f 1 =0⇒b =2,所以f x =-2x 2+2.思路二:从周期性入手由两个对称性可知,函数f x 的周期T =4.所以f 92=f 12 =-f 32 =52.故选:D .二、多选题12.(2023春·云南·高三云南师大附中校考阶段练习)已知定义域为R 的函数f x 在-1,0 上单调递增,f 2+x =f 2-x ,且图象关于3,0 对称,则f x ( )A.周期T =4B.在0,2 单调递减C.满足f 2021 <f 2022 <f 2023D.在0,2023 上可能有1012个零点【答案】ABD【解析】A 选项:由f (2+x )=f (2-x )知f (x )的对称轴为x =2,且f (4+x )=f (-x ),又图象关于3,0 对称,即f (3+x )=-f (3-x ),故f (6+x )=-f (-x ),所以-f (4+x )=f (6+x ),即-f (x )=f (2+x ),所以f (x )=f (x +4),f (x )的周期为4,正确;B 选项:因为f (x )在-1,0 上单调递增,T =4,所以f (x )在3,4 上单调递增,又图象关于3,0 对称,所以f (x )在2,3 上单调递增,因为关于x =2对称,所以f (x )在1,2 上单调递减,f (1)=f (3)=0,故f (x )在0,2 单调递减,B 正确;C 选项:根据周期性,f (2021)=f (1),f (2022)=f (2),f (2023)=f (3),因为f (x )关于x =2对称,所以f (1)=f (3)=0,f (2)<f (1),故f (2022)<f (2021)=f (2023),错误;D 选项:在0,4 上,f (1)=f (3)=0,f (x )有2个零点,所以f (x )在0,2020 上有1010个零点,在2020,2023 上有2个零点,故f (x )在0,2023 上可能有1012个零点,正确,故选:ABD .13.(2023春·广东广州·高三统考阶段练习)已知函数f x 、g x 的定义域均为R ,f x 为偶函数,且f x +g 2-x =1,g x -f x -4 =3,下列说法正确的有( )A.函数g x 的图象关于x =1对称 B.函数f x 的图象关于-1,-1 对称C.函数f x 是以4为周期的周期函数 D.函数g x 是以6为周期的周期函数【答案】BC【解析】对于A 选项,因为f x 为偶函数,所以f -x =f x .由f x +g 2-x =1,可得f -x +g 2+x =1,可得g 2+x =g 2-x ,所以,函数g x 的图象关于直线x =2对称,A 错;对于B 选项,因为g x -f x -4 =3,则g 2-x -f -2-x =3,又因为f x +g 2-x =1,可得f x +f -2-x =-2,所以,函数f x 的图象关于点-1,-1 对称,B 对;对于C 选项,因为函数f x 为偶函数,且f x +f -2-x =-2,则f x +f x +2 =-2,从而f x +2 +f x +4 =-2,则f x +4 =f x ,所以,函数f x 是以4为周期的周期函数,C 对;对于D 选项,因为g x -f x -4 =3,且f x =f x -4 ,∴g x -f x =3,又因为f x +g 2-x =1,所以,g x +g 2-x =4,又因为g 2-x =g 2+x ,则g x +g x +2 =4,所以,g x +2 +g x +4 =4,故g x +4 =g x ,因此,函数g x 是周期为4的周期函数,D 错.故选:BC .14.(2023春·湖南长沙·高三长郡中学校考阶段练习)设定义在R 上的函数f x 与g x 的导函数分别为f x 和g x ,若f x +2 -g 1-x =2,f x =g x +1 ,且g x +1 为奇函数,则下列说法中一定正确的是( )A.g 1 =0 B.函数g x 的图象关于x =2对称C.2021k =1f k g k =0D.2022k =1g k =0【答案】AC【解析】因为g x +1 为奇函数,所以g x +1 =-g -x +1 ,取x =0可得g 1 =0,A 对,因为f x +2 -g 1-x =2,所以f x +2 +g 1-x =0;所以f x +g 3-x =0,又f x =g x +1 ,g x +1 +g 3-x =0,故g 2+x +g 2-x =0,所以函数g x 的图象关于点(2,0)对称,B 错,因为f x =g x +1 ,所以f x -g x +1 =0,所以f x -g x +1 =c ,c 为常数,因为f x +2 -g 1-x =2,所以f x -g 3-x =2,所以g x +1 -g 3-x =2-c ,取x =1可得c =2,所以g x +1 =g 3-x ,又g x +1 =-g -x +1 ,所以g 3-x =-g -x +1 ,所以g x =-g x -2 ,所以g x +4 =-g x +2 =g (x ),故函数g (x )为周期为4的函数,因为g x +2 =-g x ,所以g 3 =-g 1 =0,g 4 =-g 2 ,所以g (1)+g (2)+g (3)+g (4)=0,所以2022k =1g k =g (1)+g (2)+g (3)+g (4) +g (5)+g (6)+g (7)+g (8) +⋅⋅⋅+g (2017)+g (2018)+g (2019)+g (2020) +g (2021)+g (2022),所以2022k =1g k =505×0+ g (2021)+g (2022)=g (1)+g (2)=g (2),由已知无法确定g (2)的值,故2022k =1g k 的值不一定为0,D 错;因为f x +2 -g 1-x =2,所以f x +2 =2-g x +1 ,f x +6 =2-g x +5 ,所以f x +2 =f (x +6),故函数f (x )为周期为4的函数,f (x +4)g (x +4)=f (x )g (x )所以函数f (x )g (x )为周期为4的函数,又f (1)=2-g (0),f (2)=2-g (1)=2,f (3)=2-g (2)=2+g (0),f (4)=2-g (3)=2,所以f (1)g (1)+f (2)g (2)+f (3)g (3)+f (4)g (4)=0+2g (2)+2g (4)=0,所以2021k =1f k g k =505f (1)g (1)+f (2)g (2)+f (3)g (3)+f (4)g (4) +f (2021)g (2021)2021k =1f kg k =f (1)g (1)=0 ,C 对,故选:AC .15.(2023·全国·高三专题练习)设函数y =f (x )的定义域为R ,且满足f (x )=f (2-x ),f (-x )=-f (x -2),当x ∈(-1,1]时,f (x )=-x 2+1,则下列说法正确的是( )A.f (2022)=1B.当x ∈4,6 时,f (x )的取值范围为-1,0C.y =f (x +3)为奇函数D.方程f (x )=lg (x +1)仅有5个不同实数解【答案】BCD【解析】依题意,当-1<x<0时,0<f x <1,当0≤x≤1时,0≤f x ≤1,函数y=f(x)的定义域为R,有f(x)=f(2-x),又f(-x)=-f(x-2),即f(x)=-f(-x-2),因此有f(2-x)=-f(-x-2),即f(x+4)=-f(x),于是有f(x+8)=-f(x+4)=f(x),从而得函数f(x)的周期T=8,对于A,f2022=-f0 =-1,A不正确;=f252×8+6=f6 =f-2对于B,当4≤x≤5时,0≤x-4≤1,有0≤f(x-4)≤1,则f(x)=-f(x-4)∈[-1,0],当5≤x≤6时,-4≤2-x≤-3,0≤(2-x)+4≤1,有0≤f[(2-x)+4]≤1,f(x)=f(2-x)=-f[(2-x)+4]∈[-1,0],当x∈4,6,B正确;时,f(x)的取值范围为-1,0对于C,f(x+3)=-f[(x+3)+4]=-f(x-1)=-f[2-(x-1)]=-f(-x+3),函数y=f(x+3)为奇函数,C正确;对于D,在同一坐标平面内作出函数y=f(x)、y=lg(x+1)的部分图象,如图:方程f(x)=lg(x+1)的实根,即是函数y=f(x)与y=lg(x+1)的图象交点的横坐标,观察图象知,函数y=f(x)与y=lg(x+1)的图象有5个交点,因此方程f(x)=lg(x+1)仅有5个不同实数解,D正确.故选:BCD16.(2023·全国·高三专题练习)已知定义在R上的单调递增的函数f x 满足:任意x∈R,有f1-x+f1+x=2,f2+x=4,则( )+f2-xA.当x∈Z时,f x =xB.任意x∈R,f-x=-f xC.存在非零实数T,使得任意x∈R,f x+T=f xD.存在非零实数c,使得任意x∈R,f x -cx≤1【答案】ABD【解析】对于A,令x=1-t,则f t +f2-t=2,=2,即f x +f2-x又f2+x=4-2-f x=f x +2;=4-f2-x+f2-x=4,∴f x+2令x=0得:f1 +f1 =2,f2 +f2 =4,∴f1 =1,f2 =2,则由f x+2=f x +2可知:当x∈Z时,f x =x,A正确;对于B ,令x =1+t ,则f -t +f 2+t =2,即f -x +f 2+x =2,∴f -x =2-f 2+x =2-4-f 2-x =f 2-x -2,由A 的推导过程知:f 2-x =2-f x ,∴f -x =2-f x -2=-f x ,B 正确;对于C ,∵f x 为R 上的增函数,∴当T >0时,x +T >x ,则f x +T >f x ;当T <0时,x +T <x ,则f x +T <f x ,∴不存在非零实数T ,使得任意x ∈R ,f x +T =f x ,C 错误;对于D ,当c =1时,f x -cx =f x -x ;由f 1-x +f 1+x =2,f 2+x +f 2-x =4知:f x 关于1,1 ,2,2 成中心对称,则当a ∈Z 时,a ,a 为f x 的对称中心;当x ∈0,1 时,∵f x 为R 上的增函数,f 0 =0,f 1 =1,∴f x ∈0,1 ,∴f x -x ≤1;由图象对称性可知:此时对任意x ∈R ,f x -cx ≤1,D 正确.故选:ABD .17.(2023·全国·高三专题练习)设函数f (x )定义域为R ,f (x -1)为奇函数,f (x +1)为偶函数,当x ∈(-1,1)时,f (x )=-x 2+1,则下列结论正确的是( )A.f 72 =-34B.f (x +7)为奇函数C.f (x )在(6,8)上为减函数D.方程f (x )+lg x =0仅有6个实数解【答案】ABD【解析】f (x +1)为偶函数,故f (x +1)=f (-x +1),令x =52得:f 72 =f -52+1 =f -32,f (x -1)为奇函数,故f (x -1)=-f (-x -1),令x =12得:f -32 =-f 12-1 =-f -12,其中f -12 =-14+1=34,所以f 72 =f -32 =-f -12 =-34,A 正确;因为f (x -1)为奇函数,所以f (x )关于-1,0 对称,又f (x +1)为偶函数,则f (x )关于x =1对称,所以f (x )周期为4×2=8,故f (x +7)=f (x -1),所以f (-x +7)=f (-x -1)=-f x -1 =-f x -1+8 =-f x +7 ,从而f (x +7)为奇函数,B 正确;f (x )=-x 2+1在x ∈(-1,0)上单调递增,又f (x )关于-1,0 对称,所以f (x )在-2,0 上单调递增,且f (x )周期为8,故f (x )在(6,8)上单调递增,C 错误;根据题目条件画出f (x )与y =-lg x 的函数图象,如图所示:其中y =-lg x 单调递减且-lg12<-1,所以两函数有6个交点,故方程f (x )+lg x =0仅有6个实数解,D 正确.故选:ABD18.(2023·全国·高三专题练习)已知f (x )是定义域为(-∞,+∞)的奇函数,f (x +1)是偶函数,且当x ∈0,1 时,f (x )=-x (x -2),则( )A.f x 是周期为2的函数B.f 2019 +f 2020 =-1C.f x 的值域为-1,1D.y =f x 在0,2π 上有4个零点【答案】BCD【解析】对于A ,f x +1 为偶函数,其图像关于x 轴对称,把f x +1 的图像向右平移1个单位得到f x 的图像,所以f (x )图象关于x =1对称,即f (1+x )=f (1-x ),所以f (2+x )=f (-x ),f x 为R 上的奇函数,所以f (-x )=-f x ,所以f (2+x )=-f (x ),用2+x 替换上式中的x 得, f (4+x )=-f (x +2),所以,f (4+x )=f (x ),则f x 是周期为4的周期函数.故A 错误.对于B ,f x 定义域为R 的奇函数,则f 0 =0,f x 是周期为4的周期函数,则f 2020 =f 0 =0;当x ∈0,1 时,f x =-x x -2 ,则f 1 =-1×1-2 =1,则f 2019 =f -1+2020 =f -1 =-f 1 =-1,则f 2019 +f 2020 =-1.故B 正确.对于C ,当x ∈0,1 时,f x =-x x -2 ,此时有0<f x ≤1,又由f x 为R 上的奇函数,则x ∈-1,0 时,-1≤f x <0,f (0)=0,函数关于x =1对称,所以函数f x 的值域-1,1 .故C 正确.对于D ,∵f (0)=0,且x ∈0,1 时,f x =-x x -2 ,∴x ∈[0,1],f (x )=-x (x -2),∴x ∈[1,2],2-x ∈[0,1],f (x )=f (2-x )=-x (x -2)①∴x ∈[0,2]时,f (x )=-x (x -2),此时函数的零点为0,2;∵f (x )是奇函数,∴x ∈[-2,0],f (x )=x (x +2),②∴x ∈2,4 时,∵f (x )的周期为4,∴x -4∈-2,0 ,f x =f x -4 =x -2 x -4 ,此时函数零点为4;③∴x ∈4,6 时,∴x -4∈0,2 ,f x =f x -4 =-(x -4)(x -6),此时函数零点为6;④∴x ∈6,2π 时,∴x -4∈2,4 ,f x =f x -4 =x -6 x -8 ,此时函数无零点;综合以上有,在(0,2π)上有4个零点.故D 正确;故选:BCD19.(2023春·广东广州·高三广州市禺山高级中学校考阶段练习)已知f x 是定义域为(-∞,+∞)的奇函数,f x +1 是偶函数,且当x ∈0,1 时,f x =-x x -2 ,则( )A.f x 是周期为2的函数B.f 2019 +f 2020 =-1C.f x 的值域为[-1,1]D.f x 的图象与曲线y =cos x 在0,2π 上有4个交点【答案】BCD【解析】根据题意,对于A ,f x 为R 上的奇函数,f x +1 为偶函数,所以f (x )图象关于x =1对称,f (2+x )=f (-x )=-f (x )即f (x +4)=-f (x +2)=f (x )则f x 是周期为4的周期函数,A 错误;对于B ,f x 定义域为R 的奇函数,则f 0 =0,f x 是周期为4的周期函数,则f 2020 =f 0 =0;当x ∈0,1 时,f x =-x x -2 ,则f 1 =-1×1-2 =1,则f 2019 =f -1+2020 =f -1 =-f 1 =-1,则f 2019 +f 2020 =-1;故B 正确.对于C ,当x ∈0,1 时,f x =-x x -2 ,此时有0<f x ≤1,又由f x 为R 上的奇函数,则x ∈-1,0 时,-1≤f x <0,f (0)=0,函数关于x =1对称,所以函数f x 的值域[-1,1].故C 正确.对于D ,∵f (0)=0,且x ∈0,1 时,f x =-x x -2 ,∴x ∈[0,1],f (x )=-x (x -2),∴x ∈[1,2],2-x ∈[0,1],f (x )=f (2-x )=-x (x -2),∴x ∈[0,2],f (x )=-x (x -2),∵f (x )是奇函数,∴x ∈[-2,0],f (x )=x (x +2),∵f (x )的周期为4,∴x ∈[2,4],f (x )=(x -2)(x -4),∴x ∈[4,6],f (x )=-(x -4)(x -6),∴x ∈[6,2π],f (x )=(x -6)(x -8),设g (x )=f (x )-cos x ,当x ∈[0,2],g (x )=-x 2+2x -cos x ,g ′(x )=-2x +2+sin x ,设h(x)=g′(x),h′(x)=-2+cos x<0在[0,2]恒成立,h(x)在[0,2]单调递减,即g′(x)在[0,2]单调递减,且g′(1)=sin1>0,g′(2)=-2+sin2<0,存在x0∈(1,2),g′(x0)=0,x∈(0,x0),g′(x)>0,g(x)单调递增,x∈(x0,2),g′(x)<0,g(x)单调递减,g(0)=-1,g(1)=1-cos1>0,g(x0)>g(1)>0,g(2)=-cos2>0,所以g(x)在(0,x0)有唯一零点,在(x0,2)没有零点,即x∈(0,2],f x 的图象与曲线y=cos x有1个交点,当x∈2,4时,,g x =f x -cos x=x2-6x+8-cos x,则g′x =2x-6+sin x,h x =g′x =2x-6+sin x,则h′x =2+cos x>0,所以g′x 在2,4上单调递增,且g′3 =sin3>0,g′2 =-2+sin2<0,所以存在唯一的x1∈2,3⊂2,4,使得g′x =0,所以x∈2,x1,g′x <0,g x 在2,x1单调递减,x∈x1,4,g′x >0,g x 在x1,4单调递增,又g3 =-1-cos3<0,所以g x1<g(3)<0,又g2 =-cos2>0,g4 =-cos4>0,所以g x 在2,x1上有一个唯一的零点,在x1,4上有唯一的零点,所以当x∈2,4时,f x 的图象与曲线y=cos x有2个交点,,当x∈4,6时,同x∈[0,2],f x 的图象与曲线y=cos x有1个交点,当x∈[6,2π],f(x)=(x-6)(x-8)<0,y=cos x>0,f x 的图象与曲线y=cos x没有交点,所以f x 的图象与曲线y=cos x在0,2π上有4个交点,故D正确;故选:BCD.20.(2023·全国·高三专题练习)已知函数f2x+1的图像关于直线x=1对称,函数y=f x+1关于点1,0对称,则下列说法正确的是( )A.f1-x=f1+xB.f x 的周期为4C.f1 =0D.f x =f32-x【答案】AB【解析】f2x的图像关于直线x=32对称,f x 的图像关于x=3对称,又关于点2,0中心对称,所以周期为4,所以B正确而D错误;又f 3-x =f 3+x ,其中x 换x +1得f 2-x =f 4+x =f x ,再将x 换x +1得f 1-x =f 1+x ,但无法得到f (1)=0 所以A 正确C 错误.故选:AB .21.(2023·全国·高三专题练习)已知函数f (x )及其导函数f (x )的定义域均为R ,记g (x )=f (x ),若f 32-2x ,g (2+x )均为偶函数,则( )A.f (0)=0B.g -12 =0C.f (-1)=f (4)D.g (-1)=g (2)【答案】BC【解析】[方法一]:对称性和周期性的关系研究对于f (x ),因为f 32-2x为偶函数,所以f 32-2x =f 32+2x 即f 32-x =f 32+x ①,所以f 3-x =f x ,所以f (x )关于x =32对称,则f (-1)=f (4),故C 正确;对于g (x ),因为g (2+x )为偶函数,g (2+x )=g (2-x ),g (4-x )=g (x ),所以g (x )关于x =2对称,由①求导,和g (x )=f (x ),得f 32-x=f 32+x ⇔-f 32-x =f 32+x ⇔-g 32-x =g 32+x ,所以g 3-x +g x =0,所以g (x )关于32,0 对称,因为其定义域为R ,所以g 32=0,结合g (x )关于x =2对称,从而周期T =4×2-32 =2,所以g -12 =g 32 =0,g -1 =g 1 =-g 2 ,故B 正确,D 错误;若函数f (x )满足题设条件,则函数f (x )+C (C 为常数)也满足题设条件,所以无法确定f (x )的函数值,故A 错误.故选:BC .[方法二]:【最优解】特殊值,构造函数法.由方法一知g (x )周期为2,关于x =2对称,故可设g x =cos πx ,则f x =1πsin πx +c ,显然A ,D 错误,选BC .故选:BC .[方法三]:因为f 32-2x,g (2+x )均为偶函数,所以f 32-2x =f 32+2x 即f 32-x =f 32+x ,g (2+x )=g (2-x ),所以f 3-x =f x ,g (4-x )=g (x ),则f (-1)=f (4),故C 正确;函数f (x ),g (x )的图象分别关于直线x =32,x =2对称,又g (x )=f (x ),且函数f (x )可导,所以g 32 =0,g 3-x =-g x ,所以g (4-x )=g (x )=-g 3-x ,所以g (x +2)=-g (x +1)=g x ,所以g -12=g 32 =0,g -1 =g 1 =-g 2 ,故B 正确,D 错误;若函数f (x )满足题设条件,则函数f (x )+C (C 为常数)也满足题设条件,所以无法确定f (x )的函数值,故A 错误.故选:BC .【整体点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.22.(2023·全国·高三专题练习)定义f x 是y =f x 的导函数y =f x 的导函数,若方程f x =0有实数解x 0,则称点x 0,f x 0 为函数y =f x 的“拐点”.可以证明,任意三次函数f x =ax 3+bx 2+cx +d a ≠0 都有“拐点”和对称中心,且“拐点”就是其对称中心,请你根据这一结论判断下列命题,其中正确命题是( )A.存在有两个及两个以上对称中心的三次函数B.函数f x =x 3-3x 2-3x +5的对称中心也是函数y =tan π2x 的一个对称中心C.存在三次函数h x ,方程h x =0有实数解x 0,且点x 0,h x 0 为函数y =h x 的对称中心D.若函数g x =13x 3-12x 2-512,则g 12021+g 22021 +g 32021 +⋅⋅⋅+g 20202021 =-1010【答案】BCD【解析】对于A .设三次函数f x =ax 3+bx 2+cx +d a ≠0 ,易知y =f x 是一次函数,∴任何三次函数只有一个对称中心,故A 不正确;对于B .由f x =x 3-3x 2-3x +5,得f x =3x 2-6x -3,f x =6x -6,由6x -6=0,得x =1,函数f x 的对称中心为1,0 ,又由π2x =k π2,k ∈Z ,得x =k ,k ∈Z ,∴f x 的对称中心是函数y =tan π2x 的一个对称中心,故B 正确;对于C .设三次函数h x =ax 3+bx 2+cx +d a ≠0 ,所以h x =3ax 2+2bx +c ,h x =6ax +2b联立3ax 02+2bx 0+c =0,6ax 0+2b =0,得3ac -b 2=0,即当3ac -b 2=0时,存在三次函数h x ,方程h x =0有实数解x 0,且点x 0,h x 0 为函数y =h x 的对称中心,故C 正确.对于D .∵g x =13x 3-12x 2-512,∴g x =x 2-x ,g x =2x -1,令g x =2x -1=0,得x =12,∵g 12 =13×12 3-12×12 2-512=-12,∴函数g x =13x 3-12x 2-512的对称中心是12,-12,∴g x +g 1-x =-1,设T =g 12021+g 22021 +g 32021 +⋯+g 20202021 ,所以2T =g 12021 +g 20202021 +g 22021 +g 20192021 +⋯+g 20202021 +g 12021 =-2020所以g 12021 +g 22021 +g 32021+⋯+g 20202021 =-1010,故D 正确.故选:BCD .三、填空题23.(2023·全国·高三专题练习)设f x 的定义域为R ,且满足f 1-x =f 1+x ,f x +f -x =2,若f 1 =3,则f 1 +f 2 +f 3 +⋯+f 2022 f 2023 +f 2028 +f 2030=___________.【答案】2024【解析】因为f x +f -x =2,f 1 =3,所以f -1 =-1,f 0 =1,f 2 =f 0 =1,由f 1-x =f 1+x ,得f -x =f x +2 ,f x =f 2-x ,有f x +2 +f 2-x =2,可得f x +f 2-x -2 =2,有f x +f 4-x =2,又由f x +f -x =2,可得f 4-x =f -x ,可知函数f x 的周期为4,可得f 2023 =f -1 =-1,f 2028 =f 0 =1,f 2030 =f 2 =1,有f 2023 +f 2028 +f 2030 =1,因为f x +f -x =2,f 1 =3,所以f -1 =-1,f 0 =1由f 1-x =f 1+x 得f -x =f x +2 ,所以f x +f x +2 =2,f x +1 +f x +3 =2,即f x +f x +1 +f x +2 +f x +3 =4,所以f -1 +f 0 +f 1 +f 2 + f 3 +f 4 +⋯+f 2021 +f 2022 =4×506=2024所以f 1 +f 2 +f 3 +⋯+f 2022 =2024-f 0 -f -1 =2024-1--1 =2024.故f 1 +f 2 +f 3 +⋯+f 2022 f 2023 +f 2028 +f 2030 =2024.故答案为:202424.(2023·全国·高三专题练习)对于定义在D 上的函数f x ,点A m ,n 是f x 图像的一个对称中心的充要条件是:对任意x ∈D 都有f x +f 2m -x =2n ,判断函数f x =x 3+2x 2+3x +4的对称中心______.【答案】-23,7027【解析】因为f x =x 3+2x 2+3x +4,由于f x +f -23×2-x =x 3+2x 2+3x +4+-23×2-x 3+2-23×2-x 2+3-23×2-x +4=7027×2=14027.即m =-23,n =7027.所以-23,7027是f x =x 3+2x 2+3x +4的一个对称中心.故答案为:-23,7027 .25.(2023·全国·高三专题练习)对于三次函数f x =ax 3+bx 2+cx +d a ≠0 ,现给出定义:设f x 是函数y =f x 的导数,f x 是f x 的导数,若方程f x =0有实数解x 0,则称点x 0,f x 0 为函数f x =ax 3+bx 2+cx +d a ≠0 的“拐点”.经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g x =2x 3-3x 2+1,则g 1100+g 2100+⋯+g 99100 =____.【答案】4912【解析】依题意得,g x =6x 2-6x ,g x =12x -6,令g x =0,得x =12, ∵g 12 =12,∴函数g x 的对称中心为12,12,则g 1-x +g x =1,∵1100+99100=2100+98100=⋯=49100+51100=1,∴g 1100 +g 99100 =g 2100 +g 98100 =⋯=g 49100 +g 51100 =1∴g 1100 +g 2100+⋯+g 99100 =g 1100 +g 99100 +g 2100 +g 98100 +⋯+g 49100 +g 51100 +g 12=49+12=4912,故答案为4912.26.(2023·四川成都·成都七中校考模拟预测)已知S n 为数列a n 的前n 项和,数列a n 满足a 1=-2,且S n =32a n+n ,f x 是定义在R 上的奇函数,且满足f 2-x =f x ,则f a 2021 =______.【答案】0【解析】∵S n =32a n +n ,∴S n -1=32a n -1+n -1n ≥2 ,两式相减得,a n =32a n -32a n -1+1,即a n -1=3a n -1-1 ,∴a n -1a n -1-1=3,即数列a n -1 是以-3为首项,3为公比的等比数列,∴a n -1=-3⋅3n -1=-3n ,∴a n =-3n +1.∵f x 是定义在R 上的奇函数,且满足f 2-x =f x ,∴令x =2,则f 2 =f 0 =0,又f2-x=f x =-f(-x),∴f(2+x)=-f(x),∴f(x+4)=f(x+2+2)=-f(x+2)=-[-f(-x)]=f(x),即f(x+4)=f(x),即f x 是以4为周期的周期函数.∵a2021=-32021+1=-4-12021+1=-C020*******⋅-10+C1202142020⋅-11+⋯+C2020202141⋅-12020+C2021202140⋅-12021+1=-C020*******⋅-10+C1202142020⋅-11+⋯+C2020202141⋅-12020+2其中C020*******⋅-10+C1202142020⋅-11+⋯+C2020202141⋅-12020能被4整除,∴f a2021=f-32021+1=f2 =0.故答案为:0.27.(2023·全国·高三专题练习)已知定义域为R的奇函数f x 满足f x+1=f3-x,当x∈0,2时,f x =-x2+4,则函数y=f x -a a∈R在区间-4,8上的零点个数最多时,所有零点之和为__________.【答案】14【解析】由于定义域为R的奇函数f x 满足f x+1=f3-x,∴f-x=-f x ,f x+4=f-x,∴f x+4=-f x ,∴f x+8=-f x+4=f x ,∴函数f x 为周期函数,且周期为8,当x∈0,2时,f x =-x2+4,函数y=f x -a a∈R在区间-4,8上的零点的个数,即为函数y=f x 与y=a 的交点的个数,作出函数 y=f x ,x∈-4,8上的函数的图象,显然,当a=0 时,交点最多,符合题意,此时,零点的和为-4+-2+0+2+4+6+8=14 .28.(2023·全国·高三专题练习)已知函数f(x)满足f(x+3)=f(1-x)+9f(2)对任意x∈R恒成立,又函数f x +9 的图象关于点(-9,0)对称,且f (1)=2022,则f (45)=_________.【答案】-2022【解析】因为函数f (x )满足f (x +3)=f (1-x )+9f (2)对任意x ∈R 恒成立,所以令x =-1,即f (2)=f (2)+9f (2),解得f (2)=0,所以f (x +3)=f (1-x )对任意x ∈R 恒成立,又函数f x +9 的图象关于点(-9,0)对称,将函数f x +9 向右平移9个单位得到f (x ),所以f (x )关于点(0,0),即f (x )为R 上的奇函数,所以f (x )=-f -x ,又f (x +3)=f (1-x )对任意x ∈R 恒成立,令x =-x -3,得f (-x )=f (x +4),即-f (x )=f (x +4),再令x =x +4,得-f (x +4)=f (x +8),分析得f (x )=f (x +8),所以函数f (x )的周期为8,因为f (1)=2022,所以在f (x +3)=f (1-x )中,令x =0,得f (3)=f (1)=2022,所以f (45)=f 6×8-3 =f -3 =-f 3 =-2022.故答案为:-2022.29.(2023·全国·高三专题练习)已知f x 是定义在R 上的函数,若对任意x ∈R ,都有f (x +8)=f (x )+f (4),且函数f (x -2)的图像关于直线x =2对称,f (2)=3,则f (2022)=_______.【答案】3【解析】因为函数f (x -2)的图像关于直线x =2对称,所以函数f (x )的图像关于直线x =0对称,即函数f x 是偶函数,则有f x =f -x ;因为对任意x ∈R ,都有f (x +8)=f (x )+f (4),令x =-4,得f -4+8 =f -4 +f 4 ⇒f -4 =f 4 =0,所以对任意x ∈R ,都有f (x +8)=f (x )+f (4)=f x ,即函数f x 的周期为8,则f 2022 =f 252×8+6 =f 6 =f 6-8 =f -2 =f 2 =3,故答案为:3.30.(2023·全国·高三专题练习)已知定义在R 上的函数f (x )和函数g (x )满足2f (x )=g (x )-g (-x ),且对于任意x 都满足f (x )+f (-x -4)+5=0,则f (2021)+f (2019)=________.【答案】5050【解析】由题意知:f (x )定义域为R ,2f (-x )=g (-x )-g (x ),可得:f (x )+f (-x )=0,f (x )为奇函数,又f (-x -4)=-f (x )-5=-f (x +4),则f (x +4)=f (x )+5,可得:f (2021)+f (2019)=f (1+4×505)+f (-1+4×505)=f (1)+5×505+f (-1)+5×505=5050.故答案为:5050.31.(2023·全国·高三专题练习)已知定义域为R 的奇函数f x ,当x >0时,有f x =-log 34-x ,0<x ≤54f x -3 ,x >54,则f 2 +f 4 +f 6 +⋅⋅⋅+f 2022 =______.【答案】0【解析】R上的奇函数f x ,则有f-x=-f(x),而当x>0时,有f x =-log34-x,0<x≤5 4f x-3,x>5 4,于是有f(2)=f(-1)=-f(1)=1,f(4)=f(1)=-1,f(6)=f(3)=f(0)=0,因∀x>54,f(x)=f(x-3),则有∀n∈N∗,f(6n-4)=f(2)=1,f(6n-2)=f(1)=-1,f(6n)=f(3)=0,所以f2 +f4 +f6 +⋅⋅⋅+f2022=337f2 +f4 +f6=0.故答案为:032.(2023·全国·高三专题练习)已知函数f x =x3-3x2+9x+4,若f a =7,f b =15,则a+b=___________.【答案】2【解析】因为f x =3x2-6x+9,对称轴为x=1,所以f x 的对称中心为1,f1,即1,11,因为f x =3x2-6x+9=3(x-1)2+6>0,所以f x 在R上单调递增,所以方程f a =7,f b =15的解a,b均有且只有一个,因为f a +f b =2f1 =22,所以a,7,b,15关于对称中心1,11对称,所以a+b=2,故答案为:233.(2023·全国·高三专题练习)已知函数f x 的定义域为R,且f x 为奇函数,其图象关于直线x=2对称.当x∈0,4时,f x =x2-4x,则f2022=____.【答案】4【解析】∵f x 的图象关于直线x=2对称,∴f(-x)=f(x+4),又f x 为奇函数,∴f(-x)=-f x ,故f(x+4)=-f x ,则f(x+8)=-f(x+4)=f x ,∴函数f x 的周期T=8,又∵2022=252×8+6,∴f2022= f6 =f(-2)=-f2 =-(4-8)=4.故答案为:4.34.(2023·全国·高三专题练习)若函数f(x)=1-x2x2+ax+b,a,b∈R的图象关于直线x=2对称,则a+b=_______.【答案】7【解析】由题意f(2+x)=f(2-x),即f(x)=f(4-x),所以f(0)=f(4)f(1)=f(3),即b=-15(16+4a+b)0=-8(9+3a+b),解得a=-8b=15,此时f(x)=(1-x2)(x2-8x+15)=-x4+8x3-14x2-8x+15,f(4-x)=-(4-x)4+8(4-x)3-14(4-x)2-8(4-x)+15=-(x4-16x3+96x2-256x+256)+8(64-48x+12x2-x3)-14(16-8x+x2)-32+8x+15= -x4+8x3-14x2-8x+15=f(x),满足题意.所以a=-8,b=15,a+b=7.故答案为:7.35.(2023·全国·高三专题练习)已知函数f x =3x-5x-2,g x =2x+22x-2+1,记f(x)与g(x)图像的交点横,纵坐标之和分别为m与n,则m-n的值为________.【答案】-2.【解析】f(x)=3x-5x-2=3+1x-2在(-∞,2)和(2,+∞)上都单调递减,且关于点(2,3)成中心对称,g(x)=2x+22x-2+1=4×2x-2+22x-2+1=4-22x-2+1在(-∞,+∞)上单调递增,g(4-x)+g(x)=4-222-x+1+4-22x-2+1=8-2(2x-2+1)+2(22-x+1)(22-x+1)(2x-2+1)=8-2(2x-2+22-x+2)2+2x-2+22-x=8-2=6,所以g(x)的图像也关于点(2,3)成中心对称,所以f(x)与g(x)图像有两个交点且关于点(2,3)对称,设这两个交点为(x1,y1)、(x2,y2),则x1+x2=2×2=4,y1+y2=2×3=6,所以m=4,n=6,所以m-n=4-6=-2.故答案为:-2.。
第15课 函数的周期性◇考纲解读掌握周期函数的定义及最小正周期的意义.◇知识梳理对于函数()x f ,存在非0常数T ,使得对于其定义域内总有()()x f T x f =+,则称的常数T 为函数的周期.1.周期函数的定义:对于函数()x f ,存在非0常数T ,使得对于其定义域内总有()()x f T x f =+,则称的常数_____为函数的周期.2.周期函数的性质:① ()()x f T x f =+()f x ⇒的周期为_____;②()()()x f x f a x f ⇒-=+的周期为_____;③如()()()x f x f a x f ⇒=+1的周期为_____; ④()()()x f x f a x f ⇒-=+1的周期为_____;⑤()()()1()1f x f x a f x f x -+=⇒+的周期为_____; ⑥()()()1()1f x f x a f x f x ++=⇒-的周期为_____;⑦()()()f x a f x b f x +=+⇒的周期为_____;⑧如果奇函数()y f x =满足()()f a x f a x +=-()f x ⇒的周期为_____;⑨如果偶函数()y f x =满足()()f a x f a x +=-()f x ⇒的周期为_____;◇基础训练1.设f (x )是定义在R 上最小正周期为T 的函数,则f (2x +3)是( )A.最小正周期为T 的函数B.最小正周期为2T 的函数C.最小正周期为2T的函数 D.不是周期函数2. 设函数()f x (x R ∈)是以3为周期的奇函数,且()()11,2,f f a >=则( )A. a >2B. a <-2C. a >1D. a <-13.(2006山东)已知定义在R 上的奇函数f (x )满足f (x+2)=-f (x ),则,f (6)的值为 ( )A.-1B.0C. 1D.24.(2007深圳一模)函数f (x )是定义域为R 的偶函数,又是以2为周期的周期函数.若f (x )在[-1,0]上是减函数,那么f (x )在[2,3]上是( )A.增函数B.减函数C.先增后减的函数D.先减后增的函数 ◇典型例题例1. (安徽卷)函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________例2. 已知函数()y f x =是定义在R 上的周期函数,周期5T =,函数()(11)y f x x =-≤≤是奇函数又知()y f x =在[0,1]上是一次函数,在[1,4]上是二次函数,且在2x =时函数取得最小值5-①证明:(1)(4)0f f +=;②求(),[1,4]y f x x =∈的解析式◇能力提升1.已知定义在R 上的函数)(x f 是偶函数,对2)3()2()2( -=--=+∈f x f x f R x ,当有都时,)2007(f 的值为( )A .2B .4C .-2D .-42.(2007安徽)定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 可能为( )A.0B.1C.3D.5 3 .(2008珠海质检理)定义在R 上的奇函数)(x f 满足:对于任意,(3)()x R f x f x ∈+=-有,若(1)2f =,(5)f =则 ____.4.(2008中山一模)设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则)5.2004(-f =_______.5.(2007广州二模)已知函数)x (f 满足1(x)(1)2,(x 1)1(x)f f f f +=+=-,则(3)f 的值为_________, (1)(2)(3)(2007)f f f f ⋅⋅⋅⋅ 的值为_____________.6.(2007北京海淀) 设函数()f x 是定义在R 上的奇函数,在1,12骣÷ç÷ç÷ç桫上单调递增,且满足()(1)f x f x -=-,给出下列结论:①(1)0f =;②函数()f x 的周期是2;③函数()f x 在1,02骣÷ç-÷ç÷ç桫上单调递增; ④函数(1)f x +是奇函数.其中正确的命题的序号是 .第15课 函数的周期性◇知识梳理1.T .2.① T ;②a 2;③a 2;④2a ;⑤2a ;⑥a 4;⑦a b -;⑧a 4;⑨2a ; ◇基础训练1. C ,2. D ,3. B ,4. A .◇典型例题例1.解:由()()12f x f x +=得()()14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()115(5)(1)(12)5f f f f f =-=-==--+。
基本知识方法1.周期函数的定义:对于 f (X)定义域内的每一个X ,都存在非零常数T ,使得f(x TH f (X)恒成立,则称函数f (X)具有周期性,T叫做f(x)的一个周期,则kT( k∙ Z,k=O)也是f (X)的周期,所有周期中的最小正数叫 f (X)的最小正周期2. 几种特殊的抽象函数:具有周期性的抽象函数:函数y = f X满足对定义域内任一实数X (其中a为常数),①fx=fχ∙a ,贝U y=fx是以T = a为周期的周期函数;②f X ∙ a = -f X ,则f X是以T ≡2a为周期的周期函数;1③f X ∙ a,贝U f X是以T =2a为周期的周期函数;f(X)④f X a = f X -a ,则f X是以T =2a为周期的周期函数;⑤f (X a) J - f (X),贝U f X是以T =2a为周期的周期函数1+ f(x)⑥f(Xa^-Fff,则fx是以T s为周期的周期函数⑦f(X ∙ a) = 1 f (X),贝y f X是以T =4a为周期的周期函数.1-f(χ)1 .已知定义在R上的奇函数f (X)满足f(X • 2) = -f (X),贝U f⑹的值为A. -1B. 0C. 1D. 2 22(1)设f(x)的最小正周期T =2且f (X)为偶函数,它在区间1.0, 1上的图象如右图所示的线段AB,则在区间∣1,2 ]上,f (X)=-----------函数的周期性2已知函数f(χ)是周期为2的函数,当-1:::x:::1时,f(x) = χ2∙1 , 当19 :::X ::: 21时,f (X)的解析式是___________________3 f X是定义在R上的以2为周期的函数,对k∙ Z ,用I k表示区间2k-1,2k∙11, 已知当X I0时,f X = X2,求f X在I k上的解析式。
3. 1定义在R上的函数f X满足f X A f X 2 ,当X 3,5】时,fπλ(πλf (x )= 2 - X -4 ,贝U A. f sin —JC f cos—; B- f (Sin1 )> f (COSI);I 6丿V 6 JC2兀、f2兀、C. f . cos一< f . Sin 一: D- f (COS2)A f (sιn2 )I 3 丿I 3 J2 设f (X)是定义在R上以6为周期的函数,f (X)在(0,3)内单调递减,且y = f (X)的图像关于直线X = 3对称,则下面正确的结论是A. f (1.5) ::f(3.5) ::f (6.5)B. f (3.5) ::f(1.5) ::f(6.5)C. f (6.5) :: f(3.5) ::: f (1.5)D. f(3.5) ::: f (6.5) :: f (1.5)4.已知函数f(x)是定义在(-∞,+ ∞)上的奇函数,若对于任意的实数X≥0,都有f(x+2)=f(x), 且当x∈[0,2)时,•';•二’‘工,'— 1 ',贝U f(-2013)+f(2014) 的值为5. 已知是'上最小正周期为2的周期函数,且当' -时,' ,则函数的图象在区间[0,6]上与轴的交点的个数为________________则"沁=6. 已知f(X)为偶函数,且f(2+X)=f(2-X) ,当-2≤X≤ 0 时,一 -;若•「,… 一,7. 已知定义在R 上的奇函数f 迥,满足/(j →) = -ΛJ ),且在区间上是增函数,则()o A: B : C :' ■D :;:廷:密:Y 曲氏A. B.2 + M C. 2 - 2√2D. 29定义在R 上的函数f X ,对任意χ. R ,有f χ . y . f x _y =2f χ f y ,且fOF ,1求证:fO=1 ;2判断f X 的奇偶性;3若存在非零常数c ,使 2,①证明对任意x∙ R 都有f χ ∙ c = -f χ成立;②函数f X 是不是周期函数,为什么?8.已知函数定义在R 上,对任意实数X 有f{τ) I 2v2,若函数 "=1'的图象关于直线对称,,则」(则"沁=8.已知f (X)是定义在R 上的奇函数,满足f (X • 2) = - f (X),且χ∙ [0, 2时, f(x)= 2x- X . 1求证:f (X)是周期函数;2当χ∙ [2, 4]时,求f(x)的表达式;3 计算 f (1) +f (2) +f ( 3) +……+f (2013)9. ( 05朝阳模拟)已知函数f (X)的图象关于点-3,0对称,且满足f(x)--f(χP), I 4丿2课后作业:1. ( 2013榆林质检)若已知f(x)是R 上的奇函数,且满足f(χ∙4)=f(x),当X 0时,f(x)=2χ2 ,贝U f(7)等于 A -2B. 2C.-98D. 982. 设函数f X ( X ∙ R )是以3为周期的奇函数,且 f 11, f 2 = a ,则A. a 2B. a —2C. a 1D. a -13.函数f(x)既是定义域为 R 的偶函数,又是以2为周期的周期函数,若f (X)在∣-1,0 1上是减函数,那么 f (X)在∣2,3 1上是A.增函数B.减函数C.先增后减函数D.先减后增函数,记 f n (X )= f{ f [ f f (X )]},则 f 2007 (X) X 1 n 个 fI 3 I5.已知定义在R 上的函数f (X)满足f(X ^-f x - ,且 f -2=3,则 f (2014)=6.设偶函数 f (x)对任意X R , 1,且当X t 3,-2]时, f(x)f (X )=2x , A.--7则 f (113.5)= B. - C.-7D.- 57.设函数 f (X)是定义在R 上的奇函数,对于任意的1 - f(X ) χ∙ R ,都有 f(x T)= 1 f(X),当 O :: X ≤ 1 时,f (X) =2x ,则 f(11∙5A.1 -1B. 1C.-2又f (-1) =1 , f(0) 一2 ,求f (1) f(2) f (3)…f (2006)的值高考真题:1. f (x)是定义在R 上的以3为周期的奇函数,且 f(2)=0在区间0,6内解的个数的最小值是A. 2B. 3C. 4D. 52.定义在R 上的函数f(x)满足f (x ∙6) = f(x),当-3 ≤ X ” T 时,2f(x) =p x 2 ,当-1 ≤ X ::3时,f (X) =X ,则 f(1) f(2) f(3) —f (2012)=A. 335B. 338C. 1678D. 20123•已知函数f (x)为R 上的奇函数,且满足 f(χ∙2)=-f(x), 当 0 ≤ X <1 时,f(x) X ,贝U f (7.5)等于 A 0.5B. -0.5C. 1.5D. -1.514.函数f X 对于任意实数X 满足条件f X • 2,若f 1 - -5 ,f(X )则 f f 5= ___________7.设f(x)是定义在R 上的奇函数,且 目=f (X)的图象关于直线对称,则 f (1) f (2)f(3) f(4) f(5)=8.设函数 f (x)在上满足 f (2 -x) = f (2 ∙ x), f (7 -x) = f (7 ∙ x),且在闭区 间 0,7 1 上,只有 f(1)= f(3) =0 .(I )试判断函数 y = f (X)的奇偶性;(∏)试求方程f(X) =0在闭区间∣-2005,20051上的根的个数,并证明你的结论.5.已知 f (x)是周期为2的奇函数,当0:::x”:1时,f(x) 3 5=f( ), c= f(),则2 2 设 a = f (6),b5 A. a ::: :::C. C ::: b ::: a =Ig X.D. c :: a b 6.定义在R 上的函数 f(x)既是偶函数又是周期函数,若f (X)的最小正周期是二,且当 χ∙ [0, 2] ^, f (X H SinX ,则 f5T 的值为A. -12B.丄2C. 一 3D. 23。
课题:函数的周期性
考纲要求:
了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.
教材复习
()1 周期函数:对于函数()y f x =,如果存在非零常数T ,使得当x 取定义域内的任何值时,都有 ,那么就称函数()y f x =为周期函数,称T 为这个函数的一个周期.
()2最小正周期:如果在周期函数()f x 的所有周期中 的正数,那么这个最
小正数就叫作()f x 的最小正周期.
基本知识方法 1.周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得 ()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,
则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期. 2.几种特殊的抽象函数:具有周期性的抽象函数:
函数()y f x =满足对定义域内任一实数x (其中a 为常数),
① ()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;
②()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数;
③()()
1f x a f x +=±,则()x f 是以2T a =为周期的周期函数; ④()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数;
⑤1()()1()
f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数. ⑥1()()1()f x f x a f x -+=-
+,则()x f 是以4T a =为周期的周期函数. ⑦1()()1()
f x f x a f x ++=-,则()x f 是以4T a =为周期的周期函数. ⑧函数()y f x =满足()()f a x f a x +=-(0a >),若()f x 为奇函数,则其周期为4T a =,若()f x 为偶函数,则其周期为2T a =.
⑨函数()y f x =()x R ∈的图象关于直线x a =和x b =()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;
⑩函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;
⑾函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数;
3.判断一个函数是否是周期函数要抓住两点:一是对定义域中任意的x 恒有()()f x T f x +=;
二是能找到适合这一等式的非零常数T ,一般来说,周期函数的定义域均为无限集.
4.解决周期函数问题时,
要注意灵活运用以上结论,同时要重视数形结合思想方法的运用,还要注意根据所要解决的问题的特征来进行赋值.
问题1.(06山东)已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,则(6)f 的
值为 .A 1- .B 0 .C 1 .D 2
问题2.()1(00上海) 设()f x 的最小正周期2T =且()f x
它在区间[]0,1上的图象如右图所示的线段AB ,则在区间[]1,2上, ()2已知函数()f x 是周期为2的函数,当11x -<<时,2()1f x x =+当1921x << 时,()f x 的解析式是 ()3 ()x f 是定义在R 上的以2为周期的函数,对k Z ∈,用k I 表示区间已知当0x I ∈时,()2f x x =,求()x f 在k I 上的解析式。
问题3.()1(04福建)定义在R 上的函数()x f 满足()()2+=x f x f ,当[]5,3∈x 时, ()42--=x x f ,则 .A sin cos 66f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝
⎭; .B ()()sin1cos1f f >; ()2(05天津文) 设()f x 是定义在R 上以6为周期的函数,()f x 在(0,3)内单调递减,
且()y f x =的图像关于直线3x =对称,则下面正确的结论是
问题4.定义在R 上的函数()x f ,对任意R x ∈,有()()()()y f x f y x f y x f 2=-++,且()00≠f ,()1求证:()10=f ;()2判断()x f 的奇偶性;
()3若存在非零常数c ,使02=⎪⎭
⎫ ⎝⎛
c f ,①证明对任意R x ∈都有()()x f c x f -=+成立; ②函数()x f 是不是周期函数,为什么? 问题5.(01全国)设()f x 是定义在R 上的偶函数,其图象关于直线1x =对称,对任
意的121,0,2x x ⎡⎤∈⎢⎥⎣⎦
,都有1212()()()f x x f x f x +=⋅. ()1设(1)2f =,求1(
)2f 、1()4
f ;()2证明:()f x 是周期函数. ()3记⎪⎭⎫ ⎝⎛+=n n f a n 212,求lim(ln )n n a →∞. 课后作业:
1.(2013榆林质检)
若已知()f x 是R 上的奇函数,且满足(4)()f x f x +=,当()0,2x ∈时,2()2f x x =,则(7)f 等于 .A 2- .B 2 .C 98- .D 98
2.设函数()f x (x R ∈)是以3为周期的奇函数,且()()11,2f f a >=,则
3.函数()f x 既是定义域为R 的偶函数,又是以2为周期的周期函数,若()f x 在[]1,0-上
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.
是减函数,那么()f x 在[]2,3上是 .A 增函数 .B 减函数 .C 先增后减函数 .D 先减后增函数
4.设1()1x f x x -=+,记(){[()]}n n f
f x f f f f x =⋅⋅⋅14243个,则2007()f x = 5.已知定义在R 上的函数()f x 满足3()2f x f x ⎛⎫=-+ ⎪⎝
⎭,且()23f -=, 则(2014)f =
6.设偶函数()f x 对任意x R ∈,都有1(3)()
f x f x +=-,且当[]3,2x ∈--时, ()2f x x =,则(113.5)f = .A 27- .B 27 .C 15- .D 15
7.设函数()f x 是定义在R 上的奇函数,对于任意的x R ∈,都有1()(1)1()
f x f x f x -+=+, 当0x <≤1时,()2f x x =,则(11.5)f = .A 1- .B 1 .C 12 .D 12
- 8.已知()f x 是定义在R 上的奇函数,满足(2)()f x f x +=-,且[0,2]x ∈时,2()2f x x x =-.()1求证:()f x 是周期函数;()2当[2,4]x ∈时,求()f x 的表达式; ()3计算(1)(2)(3)(2013)f f f f ++++g g g .
9.(05朝阳模拟)已知函数()f x 的图象关于点3,04⎛⎫- ⎪⎝⎭
对称,且满足3()()2f x f x =-+,又(1)1f -=,(0)2f =-,求(1)(2)(3)f f f +++…(2006)f +的值
走向高考:
1.(05福建))(x f 是定义在R 上的以3为周期的奇函数,且0)2(=f 在区间()0,6内解
的个数的最小值是 .A 2 .B 3 .C 4 .D 5
2.(2012山东)定义在R 上的函数()f x 满足(6)()f x f x +=,当3-≤1x <-时,
()2()2f x x =-+,当1-≤3x <时,()f x x =,则(1)(2)(3)(2012)f f f f +++=g
g g 3. (96全国)已知函数)(x f 为R 上的奇函数,且满足(2)()f x f x +=-,
当0≤1x <时,()f x x =,则(7.5)f 等于
4.(06安徽)函数()f x 对于任意实数x 满足条件()()
12f x f x +=,若()15f =-, 则()()5f f =
5. (06福建文)已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x = 设63(),(),52a f b f ==5(),2
c f =则
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.
6.(04天津)定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期
是π,且当]2,0[π∈x 时,x x f sin )(=,则53f π⎛⎫
⎪⎝⎭的值为
7.(05天津)设)(x f 是定义在R 上的奇函数,且)(x f y =的图象关于直线21
=x
对称,则(1)(2)(3)(4)(5)f f f f f ++++=
8.★(05广东)设函数()f x 在(,)-∞+∞上满足(2)(2)
f x f x -=+,(7)(7)f x f x -=+,且在闭区间
[]0,7上,只有(1)(3)0f f ==.
(Ⅰ)试判断函数()y f x =的奇偶性;
(Ⅱ)试求方程()0f x =在闭区间[]2005,2005-上的根的个数,并证明你的结论.。