2020年湖北省天门市中考数学试卷(含解析)
- 格式:docx
- 大小:198.79 KB
- 文档页数:19
2020年湖北省天门市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.1.(3分)如果向北走6步记作+6,那么向南走8步记作()A. +8 步B. -8步C. +14 步D. -2 步2.(3分)北京时间5月27日,蛟龙号载人潜水器在太平洋马里亚纳海沟作业区开展了本航段第3次下潜,最大下潜深度突破6500米,数6500用科学记数法表小为()A. 65X 102B. 6.5X102C, 6.5X103D. 6.5X1043.(3分)如图,已知AB// CD// EF, FC平分/ AFE / C=25°,则/A的度数是A. 25B. 350C. 450D. 50°4.(3分)如图是一个正方体的展开图,把展开图折叠成正方体后,有弘”字一面的相对面上的字是()A.传B.统C.文D.化5.(3分)下列运算正确的是()A. (l 3)0=1B.代=±3C. 2 1=-2D. (-a2)3=a66.(3分)关于一组数据:1, 5, 6, 3, 5,下列说法错误的是()A.平均数是4B.众数是5C.中位数是6D.方差是3.27.(3分)一个扇形的弧长是10冗cm面积是60冗cm,则此扇形的圆心角的度数是()A. 300B. 150℃. 120° D. 75°8.(3分)若a、B为方程2x2 —5x—1=0的两个实数根,则2a2+3a+5B的值为()A. - 13B. 12C. 14D. 159.(3分)如图,P (m, m)是反比例函数y」在第一象限内的图象上一点,以P为顶点作等边△ PAB,使AB落在x轴上,则4 POB的面积为()A「B. 3 ; C D 一二2 4 210.(3分)如图,矩形ABCD中,A已BD于点E, CF平分/ BCD,交EA的延长线于点F,且BC=4 CD=2,给出下列2论:①/ BAE=Z CAD;②/ DBC=30;③ AE=p5;④AF=2^,其中正确结论的个数有()A. 1个B. 2个C. 3个D. 4个二、填空题:本大题共6小题,每小题3分,共18分,请将结果直接填写在答题卡对应的横线上.11.(3 分)已知2a— 3b=7,贝U 8+6b - 4a= ___12.(3分)六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需元.13.(3分)飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是s=60t-4t2,则飞机着陆后滑行的最长时间为秒.2 ------14.(3分)为加强防汛工作,某市对一拦水坝进行加固,如图,加固前拦水坝的横断面是梯形ABCD已知迎水坡面AB=12米,背水坡面CD=1需米,/ B=60°,加固后拦水坝的横断面为梯形ABED tanE=^/3,则CE的长为15.(3分)有5张看上去无差别的卡片,正面分别写着1, 2, 3, 4, 5,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是.16.(3分)如图,在平面直角坐标系中,△ ABC的顶点坐标分别为A ( - 1, 1), B (0, - 2), C (1, 0),点P (0, 2)绕点A旋转180得到点R ,点P1绕点B 旋转180°得到点P2,点P2绕点C旋车专180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2020的坐标为.三、解答题:本大题共9小题,共72分.17.(6分)化简:等吟-伊方.a2-b2a2-b25x+l >3(iT)18.(6分)解不等式组,1 7 3 ,并把它的解集在数轴上表示出来.।।। ______ I ।_______ ।।)-5 -4 -3 -2 -1 0 1 2 3 4 519.(6分)如图,下列4X4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.圉1 图220.(6分)近几年,随着电子商务的快速发展,电商包裹件”占快递件”总量的比例逐年增长,根据企业财报,某网站得到如下统计表:(1)请选择适当的统计图,描述2014-2020年电商包裹件”占当年快递件”总量的百分比(精确到1%);(2)若2018年快递件”总量将达到675亿件,请估计其中电商包裹件”约为多少亿件?21.(8分)如图,AB为。
湖北省天门市2020年中考数学试题及参考答案与解析(满分120分,考试时间120分钟)一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案)1.下列各数中,比﹣2小的数是()A.0 B.﹣3 C.﹣1 D.|﹣0.6|2.如图是由4个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.3.我国自主研发的“北斗系统”现已广泛应用于国防、生产和生活等各个领域,多项技术处于国际领先地位,其星载原子钟的精度,已经提升到了每3000000年误差1秒.数3000000用科学记数法表示为()A.0.3×106B.3×107C.3×106D.30×1054.将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°5.下列说法正确的是()A.为了解人造卫星的设备零件的质量情况,选择抽样调查B.方差是刻画数据波动程度的量C.购买一张体育彩票必中奖,是不可能事件D.掷一枚质地均匀的硬币,正面朝上的概率为16.下列运算正确的是()A.=±2 B.()﹣1=﹣2 C.a+2a2=3a3D.(﹣a2)3=﹣a67.对于一次函数y=x+2,下列说法不正确的是()A.图象经过点(1,3)B.图象与x轴交于点(﹣2,0)C.图象不经过第四象限D.当x>2时,y<48.一个圆锥的底面半径是4cm,其侧面展开图的圆心角是120°,则圆锥的母线长是()A.8cm B.12cm C.16cm D.24cm9.关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1 B.﹣4 C.﹣4或1 D.﹣1或410.如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题共6个小题,每小题3分,满分18分)11.已知正n边形的一个内角为135°,则n的值是.12.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了场.13.如图,海中有个小岛A,一艘轮船由西向东航行,在点B处测得小岛A位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D处,测得小岛A在它的北偏西60°方向,此时轮船与小岛的距离AD为海里.14.有3张看上去无差别的卡片,上面分别写着2,3,4.随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字之和是奇数的概率为.15.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为元.16.如图,已知直线a:y=x,直线b:y=﹣x和点P(1,0),过点P作y轴的平行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为.三、解答题(本大题共8个小题,满分72分.)17.(12分)(1)先化简,再求值:÷,其中a=﹣1.(2)解不等式组,并把它的解集在数轴上表示出来.18.(6分)在平行四边形ABCD中,E为AD的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC上找出一点M,使点M是BC的中点;(2)如图2,在BD上找出一点N,使点N是BD的一个三等分点.19.(7分)5月20日九年级复学啦!为了解学生的体温情况,班主任张老师根据全班学生某天上午的《体温监测记载表》,绘制了如下不完整的频数分布表和扇形统计图.学生体温频数分布表组别温度(℃)频数(人数)甲36.3 6乙36.4 a丙36.5 20丁36.6 4请根据以上信息,解答下列问题:(1)频数分布表中a =,该班学生体温的众数是,中位数是;(2)扇形统计图中m=,丁组对应的扇形的圆心角是度;(3)求该班学生的平均体温(结果保留小数点后一位).20.(8分)把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2.(1)直接写出抛物线C2的函数关系式;(2)动点P(a,﹣6)能否在抛物线C2上?请说明理由;(3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1,y2的大小,并说明理由.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D的直线EF交AC于点F,交AB的延长线于点E,且∠BAC=2∠BDE.(1)求证:DF是⊙O的切线;(2)当CF=2,BE=3时,求AF的长.22.(9分)如图,直线AB与反比例函数y=(x>0)的图象交于A,B两点,已知点A的坐标为(6,1),△AOB的面积为8.(1)填空:反比例函数的关系式为;(2)求直线AB的函数关系式;(3)动点P在y轴上运动,当线段PA与PB之差最大时,求点P的坐标.23.(10分)实践操作:第一步:如图1,将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD上的点C′处,点B落在点B'处,得到折痕EF,B'C′交AB于点M,C′F交DE于点N,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA'D的形状是;(2)如图2,线段MC′与ME是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若AC′=2cm,DC'=4cm,求DN:EN的值.24.(12分)小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟,在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段AB表示小华和商店的距离y1(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是米/分钟,妈妈在家装载货物所用时间是分钟,点M的坐标是.(2)直接写出妈妈和商店的距离y2(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;(3)求t为何值时,两人相距360米.答案与解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案)1.下列各数中,比﹣2小的数是()A.0 B.﹣3 C.﹣1 D.|﹣0.6|【知识考点】绝对值;有理数大小比较.【思路分析】先计算|﹣0.6|,再比较大小.【解题过程】解:∵|﹣0.6|=0.6,∴﹣3<﹣2<﹣1<0<|﹣0.6|.故选:B.2.如图是由4个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】从上面看物体所得到的图形即为俯视图,因此选项C的图形符合题意.【解题过程】解:俯视图就是从上面看到的图形,因此选项C的图形符合题意,故选:C.3.我国自主研发的“北斗系统”现已广泛应用于国防、生产和生活等各个领域,多项技术处于国际领先地位,其星载原子钟的精度,已经提升到了每3000000年误差1秒.数3000000用科学记数法表示为()A.0.3×106B.3×107C.3×106D.30×105【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解题过程】解:3000000=3×106,故选:C.4.将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°【知识考点】平行线的性质;三角形的外角性质.【思路分析】由∠B=∠EDF=90°,∠A=45°,∠F=60°,利用三角形内角和定理可得出∠ACB=45°,由EF∥BC,利用“两直线平行,内错角相等”可得出∠EDC的度数,结合三角形外角的性质可得结论.【解题过程】解:∵∠B=90°,∠A=45°,∴∠ACB=45°.∵∠EDF=90°,∠F=60°,∴∠DEF=30°.∵EF∥BC,∴∠EDC=∠DEF=30°,∴∠CED=∠ACB﹣∠EDC=45°﹣30°=15°.故选:A.5.下列说法正确的是()A.为了解人造卫星的设备零件的质量情况,选择抽样调查B.方差是刻画数据波动程度的量C.购买一张体育彩票必中奖,是不可能事件D.掷一枚质地均匀的硬币,正面朝上的概率为1【知识考点】全面调查与抽样调查;方差;随机事件;概率的意义;概率公式.【思路分析】根据普查、抽查,方差,概率的意义逐项进行判断即可.【解题过程】解:为了解人造卫星的设备零件的质量情况,应选择全面调查,即普查,不宜选择抽样调查,因此选项A不符合题意;方差是刻画数据波动程度的量,反映数据的离散程度,因此选项B符合题意;购买一张体育彩票中奖,是可能的,只是可能性较小,是可能事件,因此选项C不符合题意;掷一枚质地均匀的硬币,正面朝上的概率为,因此选项D不符合题意;故选:B.6.下列运算正确的是()A.=±2 B.()﹣1=﹣2 C.a+2a2=3a3D.(﹣a2)3=﹣a6【知识考点】算术平方根;合并同类项;幂的乘方与积的乘方;负整数指数幂.【思路分析】根据算术平方根、幂的乘方与积的乘方、合并同类项、负整数指数幂分别进行计算,即可判断.【解题过程】解:A.因为=2,所以A选项错误;B.因为()﹣1=2,所以B选项错误;C.因为a与2a2不是同类项,不能合并,所以C选项错误;D.因为(﹣a2)3=﹣a6,所以D选项正确.故选:D.7.对于一次函数y=x+2,下列说法不正确的是()A.图象经过点(1,3)B.图象与x轴交于点(﹣2,0)C.图象不经过第四象限D.当x>2时,y<4【知识考点】一次函数的性质;一次函数图象上点的坐标特征.【思路分析】根据题目中的函数解析式和一次函数的性质可以判断各个选项中的结论是否成立,从而可以解答本题.【解题过程】解:∵一次函数y=x+2,∴当x=1时,y=3,∴图象经过点(1,3),故选项A正确;令y=0,解得x=﹣2,∴图象与x轴交于点(﹣2,0),故选项B正确;∵k=1>0,b=2>0,∴不经过第四象限,故选项C正确;∵k=1>0,∴函数值y随x的增大而增大,当x=2时,y=4,∴当x>2时,y>4,故选项D不正确,故选:D.8.一个圆锥的底面半径是4cm,其侧面展开图的圆心角是120°,则圆锥的母线长是()A.8cm B.12cm C.16cm D.24cm【知识考点】圆锥的计算.【思路分析】根据圆锥侧面展开图的实际意义求解即可.【解题过程】解:圆锥的底面周长为2π×4=8πcm,即为展开图扇形的弧长,由弧长公式得,=8π,解得,R=12,即圆锥的母线长为12cm.故选:B.9.关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1 B.﹣4 C.﹣4或1 D.﹣1或4【知识考点】根的判别式;根与系数的关系.【思路分析】根据方程的根的判别式,得出m的取值范围,然后根据根与系数的关系可得α+β=﹣2(m﹣1),α•β=m2﹣m,结合α2+β2=12即可得出关于m的一元二次方程,解之即可得出结论.【解题过程】解:∵关于x的方程x2﹣2(m﹣1)x+m2=0有两个实数根,∴△=[2(m﹣1)]2﹣4×1×(m2﹣m)=﹣4m+4≥0,解得:m≤1.∵关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,∴α+β=﹣2(m﹣1),α•β=m2﹣m,∴α2+β2=(α+β)2﹣2α•β=[﹣2(m﹣1)]2﹣2(m2﹣m)=12,即m2﹣3m﹣4=0,解得:m=﹣1或m=4(舍去).故选:A.10.如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个【知识考点】全等三角形的判定与性质;等腰直角三角形.【思路分析】如图,作AM⊥BD于M,AN⊥EC于N.证明△BAD≌△CAE,利用全等三角形的性质一一判断即可.【解题过程】解:如图,作AM⊥BD于M,AN⊥EC于N.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴EC=BD,∠BDA=∠AEC,故①正确∵∠DOF=∠AOE,∠DFO=∠EAO=90°,∴BD⊥EC,故②正确,∵△BAD≌△CAE,AM⊥BD,AN⊥EC,∴AM=AN,∴FA平分∠EFB,∴∠AFE=45°,故④正确,若③成立,则∠AEF=∠ABD=∠ADB,推出AB=AD,显然与条件矛盾,故③错误,故选:C.【总结归纳】本题考查全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共6个小题,每小题3分,满分18分)11.已知正n边形的一个内角为135°,则n的值是.【知识考点】多边形内角与外角.【思路分析】根据多边形的相邻的内角与外角互为邻补角求出每一个外角的度数,再根据多边形的边数等于外角和除以每一个外角的度数进行计算即可得解.【解题过程】解:∵正n边形的一个内角为135°,∴正n边形的一个外角为180°﹣135°=45°,∴n=360°÷45°=8.故答案为:8.12.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了场.【知识考点】一元一次方程的应用;二元一次方程组的应用.【思路分析】设该队胜了x场,负了y场,根据:①某队14场比赛;②得到23分;列方程组即可求解.【解题过程】解:设该队胜了x场,负了y场,依题意有,解得.故该队胜了9场.故答案为:9.13.如图,海中有个小岛A,一艘轮船由西向东航行,在点B处测得小岛A位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D处,测得小岛A在它的北偏西60°方向,此时轮船与小岛的距离AD为海里.【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】如图,过点A作AC⊥BD于点C,根据题意可得,∠BAC=∠ABC=45°,∠ADC=30°,AB=20,再根据锐角三角函数即可求出轮船与小岛的距离AD.【解题过程】解:如图,过点A作AC⊥BD于点C,根据题意可知:∠BAC=∠ABC=45°,∠ADC=30°,AB=20,在Rt△ABC中,AC=BC=AB•sin45°=20×=10,在Rt△ACD中,∠ADC=30°,∴AD=2AC=20(海里).答:此时轮船与小岛的距离AD为20海里.故答案为:20.【总结归纳】本题考查了解直角三角形的应用﹣方向角问题,解决本题的关键是掌握方向角定义.14.有3张看上去无差别的卡片,上面分别写着2,3,4.随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字之和是奇数的概率为.【知识考点】列表法与树状图法.【思路分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到的两张卡片上的数字之和为奇数的情况,再利用概率公式即可求得答案.【解题过程】解:画树状图得:∵共有9种等可能的结果,两次取出的数字之和是奇数的有4种结果,∴两次取出的数字之和是奇数的概率为,故答案为:.15.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为元.【知识考点】二次函数的应用.【思路分析】根据题意,可以得到利润和售价之间的函数关系,然后化为顶点式,即可得到当售价为多少元时,利润达到最大值.【解题过程】解:设每顶头盔的售价为x元,获得的利润为w元,w=(x﹣50)[200+(80﹣x)×20]=﹣20(x﹣70)2+8000,∴当x=70时,w取得最大值,此时w=8000,故答案为:70.16.如图,已知直线a:y=x,直线b:y=﹣x和点P(1,0),过点P作y轴的平行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为.【知识考点】规律型:点的坐标;正比例函数的性质;一次函数图象上点的坐标特征.【思路分析】点P(1,0),P1在直线y=x上,得到P1(1,1),求得P2的纵坐标=P1的纵坐标=1,得到P2(﹣2,1),即P2的横坐标为﹣2=﹣21,同理,P3的横坐标为﹣2=﹣21,P4的横坐标为4=22,P5=22,P6=﹣23,P7=﹣23,P8=24…,求得P4n=2,于是得到结论.【解题过程】解:∵点P(1,0),P1在直线y=x上,∴P1(1,1),∵P1P2∥x轴,∴P2的纵坐标=P1的纵坐标=1,∵P2在直线y=﹣x上,∴1=﹣x,∴x=﹣2,∴P2(﹣2,1),即P2的横坐标为﹣2=﹣21,同理,P3的横坐标为﹣2=﹣21,P4的横坐标为4=22,P5=22,P6=﹣23,P7=﹣23,P8=24…,∴P4n=2,∴P2020的横坐标为2=21010,故答案为:21010.三、解答题(本大题共8个小题,满分72分.)17.(12分)(1)先化简,再求值:÷,其中a=﹣1.(2)解不等式组,并把它的解集在数轴上表示出来.【知识考点】分式的化简求值;在数轴上表示不等式的解集;解一元一次不等式组.【思路分析】(1)先把除法变成乘法,算乘法,最后代入求出即可;(2)先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解题过程】解:(1)原式=•=,当a=﹣1时,原式==2;(2),∵解不等式①得:x>﹣2,解不等式②得:x≤4,∴不等式组的解集是:﹣2<x≤4,在数轴上表示为:.18.(6分)在平行四边形ABCD中,E为AD的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC上找出一点M,使点M是BC的中点;(2)如图2,在BD上找出一点N,使点N是BD的一个三等分点.【知识考点】平行四边形的性质;作图—复杂作图.【思路分析】(1)连接AC和BD,它们的交点为O,延长EO并延长交AD于M,则M点为所作;(2)连接CE 交BD 于点N ,则N 点为所作.【解题过程】解:(1)如图1,M 点就是所求作的点:(2)如图2,点N 就是所求作的点:19.(7分)5月20日九年级复学啦!为了解学生的体温情况,班主任张老师根据全班学生某天上午的《体温监测记载表》,绘制了如下不完整的频数分布表和扇形统计图.学生体温频数分布表请根据以上信息,解答下列问题:(1)频数分布表中a= ,该班学生体温的众数是 ,中位数是 ;(2)扇形统计图中m = ,丁组对应的扇形的圆心角是 度;(3)求该班学生的平均体温(结果保留小数点后一位).【知识考点】频数(率)分布表;扇形统计图;中位数;众数.【思路分析】(1)根据丙组的人数和所占的百分比求出总人数,再用总人数乘以乙组所占的百分比,求出a 的值;再根据众数与中位数的定义求解;(2)用甲组的人数除以总人数得出甲组所占百分比,求出m 的值;用360°丁组所占百分比,即可求出丁组对应的扇形圆心角的度数;(3)利用加权平均数的公式计算即可.【解题过程】解:(1)20÷50%=40(人),a =40×25%=10;36.5出现了20次,次数最多,所以众数是36.5;40个数据按从小到大的顺序排列,其中第20、21个数据都是36.5,所以中位数是(36.5+36.5)÷2=36.5.故答案为:10,36.5,36.5;(2)m%=×100%=15%,m =15; 360°×=36°.故答案为:15,36;组别温度(℃) 频数(人数) 甲36.3 6 乙36.4 a 丙36.5 20 丁 36.6 4(3)该班学生的平均体温为:=36.455≈36.5(℃).20.(8分)把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2.(1)直接写出抛物线C2的函数关系式;(2)动点P(a,﹣6)能否在抛物线C2上?请说明理由;(3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1,y2的大小,并说明理由.【知识考点】二次函数图象上点的坐标特征;二次函数图象与几何变换;待定系数法求二次函数解析式.【思路分析】(1)根据二次函数图象左加右减,上加下减的平移规律进行求解;(2)根据二次函数的最小值即可判断;(3)根据二次函数的性质可以求得y1与y2的大小.【解题过程】解:(1)∵y=x2+2x+3=(x+1)2+2,∴把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2:y=(x+1﹣4)2+2﹣5,即y=(x﹣3)2﹣3,∴抛物线C2的函数关系式为:y=(x﹣3)2﹣3.(2)动点P(a,﹣6)不在抛物线C2上,理由如下:∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,∴函数的最小值为﹣3,∵﹣6<﹣3,∴动点P(a,﹣6)不在抛物线C2上;(3)∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,∴抛物线的开口向上,对称轴为x=3,∴当x<3时,y随x的增大而减小,∵点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0<3,∴y1>y2.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D的直线EF交AC于点F,交AB的延长线于点E,且∠BAC=2∠BDE.(1)求证:DF是⊙O的切线;(2)当CF=2,BE=3时,求AF的长.【知识考点】等腰三角形的性质;圆周角定理;切线的判定与性质;相似三角形的判定与性质.【思路分析】(1)连接OD,AD,根据切线的判定即可求证.(2)先证明△EOD∽△EAF,设OD=x,根据相似三角形的性质列出关于x的方程从而可求出答案.【解题过程】(1)证明:连接OD,AD,∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴∠BAC=2∠BAD,∵∠BAC=2∠BDE,∴∠BDE=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∵∠ADO+∠ODB=90°,∴∠BDE+∠ODB=90°,∴∠ODE=90°,即DF⊥OD,∵OD是⊙O的半径,∴DF是⊙O的切线.(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵BO=AO,∴OD∥AC,∴△EOD∽△EAF,∴,设OD=x,∵CF=2,BE=3,∴OA=OB=x,AF=AC﹣CF=2x﹣2,∴EO=x+3,EA=2x+3,∴=,解得x=6,经检验,x=6是分式方程的解,∴AF=2x﹣2=10.22.(9分)如图,直线AB与反比例函数y=(x>0)的图象交于A,B两点,已知点A的坐标为(6,1),△AOB的面积为8.(1)填空:反比例函数的关系式为;(2)求直线AB的函数关系式;(3)动点P在y轴上运动,当线段PA与PB之差最大时,求点P的坐标.【知识考点】反比例函数综合题.【思路分析】(1)将点A坐标(6,1)代入反比例函数解析式y=,求出k的值即可;(2)过点A作AC⊥x轴于点C,过B作BD⊥y轴于D,延长CA,DB交于点E,则四边形ODEC 是矩形,设B(m,n),根据△AOB的面积为8,得3n﹣m=8,得方程3n2﹣8n﹣3=0,解出可得B的坐标,利用待定系数法可得AB的解析式;(3)如图,根据“三角形两边之差小于第三边可知:当点P为直线AB与y轴的交点时,PA﹣PB有最大值是AB,可解答.【解题过程】解:(1)将点A坐标(6,1)代入反比例函数解析式y=,得k=1×6=6,则y=,故答案为:y=;(2)过点A作AC⊥x轴于点C,过B作BD⊥y轴于D,延长CA,DB交于点E,则四边形ODEC 是矩形,设B(m,n),∴mn=6,∴BE=DE﹣BD=6﹣m,AE=CE﹣AC=n﹣1,∴S△ABE==,∵A、B两点均在反比例函数y=(x>0)的图象上,∴S△BOD=S△AOC==3,∴S△AOB=S矩形ODEC﹣S△AOC﹣S△BOD﹣S△ABE=6n﹣3﹣3﹣=3n﹣m,∵△AOB的面积为8,∴3n﹣m=8,∴m=6n﹣16,∵mn=6,∴3n2﹣8n﹣3=0,解得:n=3或﹣(舍),∴m=2,∴B(2,3),设直线AB的解析式为:y=kx+b,则,解得:,∴直线AB的解析式为:y=﹣x+4;(3)如图,根据“三角形两边之差小于第三边可知:当点P为直线AB与y轴的交点时,PA﹣PB有最大值是AB,把x=0代入y=﹣x+4中,得:y=4,∴P(0,4).【总结归纳】本题考查了反比例函数与一次函数的交点问题,反比例函数图象上点的坐标特征,利用待定系数法求反比例函数和一次函数的解析式,难度适中,利用数形结合是解题的关键.23.(10分)实践操作:第一步:如图1,将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD上的点C′处,点B落在点B'处,得到折痕EF,B'C′交AB于点M,C′F交DE于点N,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA'D的形状是;(2)如图2,线段MC′与ME是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若AC′=2cm,DC'=4cm,求DN:EN的值.【知识考点】四边形综合题.【思路分析】(1)由折叠性质得AD=AD′,AE=A′E,∠ADE=∠A′DE,再根据平行线的性质和等腰三角形的判定得到四边形AEA′D是菱形,进而结合内角为直角条件得四边形AEA′D为正方形;(2)连接C′E,证明Rt△EC′A≌Rt△CEB′,得∠C′EA=∠EC′B′,便可得结论;(3)设DF=xcm,则FC′=FC=(8﹣x)cm,由勾股定理求出x的值,延长BA、FC′交于点G,求得AG,再证明△DNF∽△ENG,便可求得结果.【解题过程】解:(1)∵ABCD是矩形,∴∠A=∠ADC=90°,∵将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,∴AD=AD′,AE=A′E,∠ADE=∠A′DE=45°,∴∵AB∥CD,∴∠AED=∠A′DE=∠ADE,∴AD=AD′,∴AD=AE=A′E=A′D,∴四边形AEA′D是菱形,∵∠A=90°,∴四边形AEA′D是正方形.故答案为:正方形;(2)MC′=ME.证明:如图1,连接C′E,由(1)知,AD=AE,∵四边形ABCD是矩形,∴AD=BC,∠EAC′=∠B=90°,由折叠知,B′C′=BC,∠B=∠B′,∴AE=B′C′,∠EAC′=∠B′,又EC′=C′E,∴Rt△EC′A≌Rt△CEB′(HL),∴∠C′EA=∠EC′B′,∴MC′=ME;(3)∵Rt△EC′A≌Rt△CEB′,∴AC′=B′E,由折叠知,B′E=BD,∴AC′=BE,∵AC′=2cm,DC′=4cm,∴AB=CD=2+4+2=8(cm),设DF=xcm,则FC′=FC=(8﹣x)cm,∵DC′2+DF2=FC′2,∴42+x2=(8﹣x)2,解得,x=3,即DF=3cm,如图2,延长BA、FC′交于点G,则∠AC′G=∠DC′F,∴tan∠AC′G=tan∠DC′F=,∴,∴,∵DF∥EG,∴△DNF∽△ENG,∴.【总结归纳】本题主要考查了矩形的性质,正方形的性质与判定,等腰三角形的判定,全等三角形的性质与判定,相似三角形的性质与判定,第(2)题关键在于证明三角形全等,第(3)题关键证明相似三角形.24.(12分)小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟,在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段AB表示小华和商店的距离y1(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是米/分钟,妈妈在家装载货物所用时间是分钟,点M的坐标是.(2)直接写出妈妈和商店的距离y2(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;(3)求t为何值时,两人相距360米.【知识考点】一次函数的应用.【思路分析】(1)根据图象即可求出答案.(2)根据时间范围列出函数关系式即可(3)根据两人的运动情况分类讨论,列出相应的方程即可求出答案.【解题过程】解:(1)妈妈骑车的速度为120米/分钟,妈妈在家装载货物时间为5分钟,点M的坐标为(20,1200).故答案为:120,5,(20,1200).(2),其图象如图所示,(3)由题意可知:小华速度为60米/分钟,妈妈速度为120米/分钟,①相遇前,依题意有60t+120t+360=1800,解得t=8分钟,②相遇后,依题意有,60t+120t﹣360=1800,解得t=12分钟.③依题意,当t=20分钟时,妈妈从家里出发开始追赶小华,此时小华距商店为1800﹣20×60=600米,只需10分钟,即t=30分钟,小华到达商店.而此时妈妈距离商店为1800﹣10×120=600米>360米,∴120(t﹣5)+360=1800×2,解得t=32分钟,∴t=8,12或32分钟时,两人相距360米【总结归纳】本题考查一次函数,解题的关键是正确找出题中的等量关系,本题属于基础中等.。
湖北省天门市中考数学试卷及答案注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.满分120分.考题时间120分钟.2.答第Ⅰ卷前,考生务必用钢笔(圆珠笔)将自己的姓名,用2B 铅笔将准考证号、考题科目写或涂在答题卡上.3.第Ⅰ卷每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用4B 橡皮擦干净后,再涂选其它答案.答案写在第Ⅰ卷上无效.4.答第Ⅱ卷时,将答案直接写在试卷上.5.考题结束后,考生须将第Ⅰ卷、第Ⅱ卷、答题卡一并交回.第Ⅰ卷(选择题 共36分)一.选择题(本大题共有12个小题,每小题3分,共36分)01.43-的倒数是( ).A 、43 B 、34- C 、34 D 、43-02.一个几何体的三视图如图所示,则这个几何体是( ).03.关于x 的一元二次方程(m -1)x 2+x +m 2-1=0有一根为0,则m 的值为( ).A 、1B 、-1C 、1或-1D 、2104.初三(1)班10名同学体育测试成绩如右表,那么这10名同学体育测试成绩的众数和中位数分别是( ). A 、38,36 B 、38,38 C 、36,37 D 、38,37 05.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线),这个容器的形状是图中( ).06.如图,a ∥b ,∠1=105°,∠2=140°,则∠3的度数是( ).A 、75°B 、65°C 、55°D 、50° 07.下列命题中,真命题是( ).A 、一组对边平行且有一组邻边相等的四边形是平行四边形B 、顺次连结四边形各边中点所得到的四边形是矩形C 、等边三角形既是轴对称图形又是中心对称图形D 、对角线互相垂直平分的四边形是菱形08.如图,为了测量河两案A 、B 两点的距离,在与AB 垂直的方向点C 处测得AC=a ,∠ACB =α,那么AB 等于( ).A 、a ·sin αB 、a ·tan αC 、a ·cos αD 、αtan aA B C D 主视图左视图俯视图(第02题图)A B C D A 1 2 3(第06题图)abA BCaα(第08题图)09.将分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上,放在桌面上,随机抽取一张(不放回),接着再随机抽取一张,恰好两张卡片上的数字相邻的概率为( ).A 、51 B 、41 C 、31 D 、2110.设计一个商标图案如图中阴影部分,矩形ABCD 中,AB =2BC ,且AB =8cm ,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F ,则商标图案的面积等于( ).A 、(4π+8)cm 2B 、(4π+16)cm 2C 、(3π+8)cm 2D 、(3π+16)cm 2 11.已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,下列结论:①abc >0;②2a +b <0;③a -b +c <0;④a +c >0,其中正确结论的个数为( ). A 、4个 B 、3个 C 、2个 D 、1个12.如图,在平面直角坐标系中,OABC 是正方形,点A 的坐标是(4,0),点P 为边AB 上一点,∠CPB =60°,沿CP 折叠正方形,折叠后,点B 落在平面内点B ’处,则B ’点的坐标为( ).A 、(2,32) B 、(23,32-) C 、(2,324-) D 、(23,324-)第Ⅱ卷(非选择题 共84分)二.填空题(本大题有4个小题,每小题4分,共16分)13.已知不等式组⎩⎨⎧--++1m 1x n m 2x <>的解集为-1<x <2,则(m +n)2008=_______________. 14.如图,已知AE =CF ,∠A =∠C ,要使△ADF ≌△CBE ,还需添加一个条件______________________(只需写一个).15.某公园门票价格如下表,有27名中学生游公园,则最少应付费______________元.(游客只能在公园16根火柴棒.(用含n 的代数式表示)三.解答题(本大题共有8个小题,共68分)17.(本小题满分6分)计算:02)722(60sin 41122-+︒-+--π(第10题图)AB C DEF(第14题图)4根 12根 24根 n =1 n =2 n =3 (第16题图)18.(本小题满分7分)先化简,后求值:2x 1x +-·1x 11x 2x 4x 222-÷+--,其中x 2-x =0.19.(本小题满分7分)如图,有两个可以自由转动的均匀转盘A 、B ,转盘A 被均匀地分成3等分,每份分别标有1,2,3这三个数字;转盘B 被均匀地分成4等分,每份分别标有4,5,6,7这四个数字.有人为小明,小飞设计了一个游戏,其规则如下:①同时自由转动转盘A 和B ;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘,如果积为偶数,小明胜,否则小飞胜. (1)请你用列表或树形图求出小明胜和小飞胜的概率; (2)游戏公平吗?若不公平,请你设计一个公平的规则.A B (第19题图)20.(本小题满分7分)现将四个全等的直角梯形透明纸片,分别放在方格纸中,方格纸的每个小正方形的边长均为1,并且直角梯形的每个顶点与小正方形的顶点重合.请你仿照例①,按如下要求拼图.要求:①用四个全等的直角梯形,按实际大小拼成符合要求的几何图形;②拼成的几何图形互不重叠,且不留空隙;③拼成的几何图形的各顶点必须与小正方形的顶点重合.21.(本小题满分8分)如图,直线y =x +1与双曲线x2y 交于A 、B 两点,其中A 点在第一象限.C 为x 轴正半轴上一点,且S △ABC =3.(1)求A 、B 、C 三点的坐标; (2)在坐标平面内.....,是否存在点P ,使以A 、B 、C 、P 为顶点的四边形为平行四边形?若存在,请直接..写出点P 的坐标,若不存在,请说明理由.(第20题图)例①:矩形 矩形(不同于例①)平行四边形(非矩形)梯形22.(本小题满分10分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠BAC 的平分线交⊙O 于点D ,过D 点作EF ∥BC 交AB 的延长线于点E ,交AC 的延长线于点F . (1)求证:EF 为⊙O 的切线;(2)若sin ∠ABC =54,CF =1,求⊙O 的半径及EF 的长.23.(本小题满分11分)一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数..,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出) (1)求y 与x 的函数关系式;(第22题图)(2)若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?24.(本小题满分12分)如图①,在平面直角坐标系中,A点坐标为(3,0),B点坐标为(0,4).动点M从点O出发,沿OA方向以每秒1个单位长度的速度向终点A运动;同时,动点N从点A出发沿AB方向5个单位长度的速度向终点B运动.设运动了x秒.以每秒3(1)点N的坐标为(________________,________________);(用含x的代数式表示)(2)当x为何值时,△AMN为等腰三角形?(3)如图②,连结ON得△OMN,△OMN可能为正三角形吗?若不能,点M的运动速度不变,试改变点N的运动速度,使△OMN为正三角形,并求出点N的运动速度和此时x的值.(第24题图)天门市中考题卷 数学试题参照答案及评分意见一、选择题(每小题3分,共36分)1.B 2.C 3.B 4.D 5.A 6.B 7.D 8.B 9.D 10.A 11.C 12.C 二、填空题(每小题4分,共16分)13.1 14.AD=BC 或∠D =∠B 或∠AFD =∠CEB 15.240 16.2n(n+1) 三.解答题(本大题共有8个小题,共68分) 17.(本小题满分6分)解:原式=1|2341|324+⨯-+-- =1321324++--- =4-18.(本小题满分7分)解:∵02=-x x∴0)1(=-x x∴1,021==x x原式=)1)(1()1()2)(2(212-+⋅--+⋅+-x x x x x x x =)1)(1()1()2)(2(212-+⋅--+⋅+-x x x x x x x =)1)(2(+-x x(1)当0=x 时原式=)1)(2(+-x x =2)10)(20(-=+- (2)当1=x 时原式=)1)(2(+-x x =2)11)(21(-=+-19.(本小题满分7分)解:(1)列表法:32128)(==小明胜P 31124)(==小飞飞P (2)∵3132> ∴不公平,小明胜的机会大规则如下:①同时自由转动转盘A 和B ;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相加,如果和为偶数,小明胜,否则小飞胜.或规则如下:把图A 中的数字2改为奇数(比如5)然后按题目中的规则进行比赛:①同时自由转动转盘A 和B ;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘,如果积为偶数,小明胜,否则小飞胜.(方法不唯一,正确即可。
2020年湖北省仙桃市、潜江市.天门市、江汉油田中考数学试卷和答案解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分•)1.(3分)下列各数中,比・2小的数是()D . I - 0.61解析:先计算I・0.61 ,再比较大小.参考答案:解:..1・0.61 = 0.6 ,- 3 < - 2 < - 1 < 0 < I - 0.61 .点拨:本题考查了绝对值的化简及有理数大小的比较.掌握有理数大小的比较方法是解决本题的关健.有理数大小的比较:正数大于0 , 0大于一切负数・两个负数比较大小,绝对值大的反而小.2.(3分)如图是由4个相同的小正方体组成的立体图形,它的俯视图为()解析:从上面看物体所得到的图形即为俯视图,因此选项C的图形符合题意.参考答案:解:俯视图就是从上面看到的图形,因此选项C的图形符合题意,故选:c.点拨:本题考查简单几何体的三视图,主视图、左视图、俯视图实际上就是从正面、左面、上面对该几何体正投影所得到的图形. 3.(3分)我国自主研发的“北斗系统"现已广泛应用于国防、生产和生活等各个领域,多项技术处于国际领先地位,其星载原子钟的精度,已经提升到了每3000000年误差1秒.数3000000用科学记数法表示为()A . 0.3X106B . 3X107C . 3X106D . 30X105解析:科学记数法的表示形式为axl0«的形式,其中l<lal<10r n为整数・确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同・当原数绝对值210时, n是正数;当原数的绝对值< 1时,n是负数・参考答案:解:3000000 = 3X106 ,故选:C.点拨:此题考查了科学记数法的表示方法.科学记数法的表示形式为axion的形式,其中10 , n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EFIIBC , ZB = ZEDF = 90° , ZA = 45° , ZF = 60°,贝!J ZCED的度数是()B C DA . 15°B . 20°C . 25°D . 30°解析:由匕B = ZEDF = 90。
2020年湖北省天门市中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3分)下列各数中,比﹣2小的数是()A.0B.﹣3C.﹣1D.|﹣0.6|2.(3分)如图是由4个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.3.(3分)我国自主研发的“北斗系统”现已广泛应用于国防、生产和生活等各个领域,多项技术处于国际领先地位,其星载原子钟的精度,已经提升到了每3000000年误差1秒.数3000000用科学记数法表示为()A.0.3×106B.3×107C.3×106D.30×1054.(3分)将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°5.(3分)下列说法正确的是()A.为了解人造卫星的设备零件的质量情况,选择抽样调查B.方差是刻画数据波动程度的量C.购买一张体育彩票必中奖,是不可能事件D.掷一枚质地均匀的硬币,正面朝上的概率为16.(3分)下列运算正确的是()A.=±2B.()﹣1=﹣2C.a+2a2=3a3D.(﹣a2)3=﹣a67.(3分)对于一次函数y=x+2,下列说法不正确的是()A.图象经过点(1,3)B.图象与x轴交于点(﹣2,0)C.图象不经过第四象限D.当x>2时,y<48.(3分)一个圆锥的底面半径是4cm,其侧面展开图的圆心角是120°,则圆锥的母线长是()A.8cm B.12cm C.16cm D.24cm9.(3分)关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1B.﹣4C.﹣4或1D.﹣1或410.(3分)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3分)已知正n边形的一个内角为135°,则n的值是.12.(3分)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了场.13.(3分)如图,海中有个小岛A,一艘轮船由西向东航行,在点B处测得小岛A位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D处,测得小岛A在它的北偏西60°方向,此时轮船与小岛的距离AD为海里.14.(3分)有3张看上去无差别的卡片,上面分别写着2,3,4.随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字之和是奇数的概率为.15.(3分)某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为元.16.(3分)如图,已知直线a:y=x,直线b:y=﹣x和点P(1,0),过点P作y轴的平行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为.三、解答题(本大题共8个小题,满分72分.)17.(12分)(1)先化简,再求值:÷,其中a=﹣1.(2)解不等式组,并把它的解集在数轴上表示出来.18.(6分)在平行四边形ABCD中,E为AD的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC上找出一点M,使点M是BC的中点;(2)如图2,在BD上找出一点N,使点N是BD的一个三等分点.19.(7分)5月20日九年级复学啦!为了解学生的体温情况,班主任张老师根据全班学生某天上午的《体温监测记载表》,绘制了如下不完整的频数分布表和扇形统计图.学生体温频数分布表组别温度(℃)频数(人数)甲36.36乙36.4a丙36.520丁36.64请根据以上信息,解答下列问题:(1)频数分布表中a=,该班学生体温的众数是,中位数是;(2)扇形统计图中m=,丁组对应的扇形的圆心角是度;(3)求该班学生的平均体温(结果保留小数点后一位).20.(8分)把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2.(1)直接写出抛物线C2的函数关系式;(2)动点P(a,﹣6)能否在抛物线C2上?请说明理由;(3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1,y2的大小,并说明理由.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D的直线EF交AC于点F,交AB的延长线于点E,且∠BAC=2∠BDE.(1)求证:DF是⊙O的切线;(2)当CF=2,BE=3时,求AF的长.22.(9分)如图,直线AB与反比例函数y=(x>0)的图象交于A,B两点,已知点A的坐标为(6,1),△AOB的面积为8.(1)填空:反比例函数的关系式为;(2)求直线AB的函数关系式;(3)动点P在y轴上运动,当线段P A与PB之差最大时,求点P的坐标.23.(10分)实践操作:第一步:如图1,将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD上的点C′处,点B落在点B'处,得到折痕EF,B'C′交AB于点M,C′F交DE于点N,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA'D的形状是;(2)如图2,线段MC′与ME是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若AC′=2cm,DC'=4cm,求DN:EN的值.24.(12分)小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟,在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段AB表示小华和商店的距离y1(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是米/分钟,妈妈在家装载货物所用时间是分钟,点M的坐标是.(2)直接写出妈妈和商店的距离y2(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;(3)求t为何值时,两人相距360米.2020年湖北省天门市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3分)下列各数中,比﹣2小的数是()A.0B.﹣3C.﹣1D.|﹣0.6|【分析】先计算|﹣0.6|,再比较大小.【解答】解:∵|﹣0.6|=0.6,∴﹣3<﹣2<﹣1<0<|﹣0.6|.故选:B.2.(3分)如图是由4个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.【分析】从上面看物体所得到的图形即为俯视图,因此选项C的图形符合题意.【解答】解:俯视图就是从上面看到的图形,因此选项C的图形符合题意,故选:C.3.(3分)我国自主研发的“北斗系统”现已广泛应用于国防、生产和生活等各个领域,多项技术处于国际领先地位,其星载原子钟的精度,已经提升到了每3000000年误差1秒.数3000000用科学记数法表示为()A.0.3×106B.3×107C.3×106D.30×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:3000000=3×106,故选:C.4.(3分)将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°【分析】由∠B=∠EDF=90°,∠A=45°,∠F=60°,利用三角形内角和定理可得出∠ACB=45°,由EF∥BC,利用“两直线平行,内错角相等”可得出∠EDC的度数,结合三角形外角的性质可得结论.【解答】解:∵∠B=90°,∠A=45°,∴∠ACB=45°.∵∠EDF=90°,∠F=60°,∴∠DEF=30°.∵EF∥BC,∴∠EDC=∠DEF=30°,∴∠CED=∠ACB﹣∠EDC=45°﹣30°=15°.故选:A.5.(3分)下列说法正确的是()A.为了解人造卫星的设备零件的质量情况,选择抽样调查B.方差是刻画数据波动程度的量C.购买一张体育彩票必中奖,是不可能事件D.掷一枚质地均匀的硬币,正面朝上的概率为1【分析】根据普查、抽查,方差,概率的意义逐项进行判断即可.【解答】解:为了解人造卫星的设备零件的质量情况,应选择全面调查,即普查,不宜选择抽样调查,因此选项A不符合题意;方差是刻画数据波动程度的量,反映数据的离散程度,因此选项B符合题意;购买一张体育彩票中奖,是可能的,只是可能性较小,是可能事件,因此选项C不符合题意;掷一枚质地均匀的硬币,正面朝上的概率为,因此选项D不符合题意;故选:B.6.(3分)下列运算正确的是()A.=±2B.()﹣1=﹣2C.a+2a2=3a3D.(﹣a2)3=﹣a6【分析】根据算术平方根、幂的乘方与积的乘方、合并同类项、负整数指数幂分别进行计算,即可判断.【解答】解:A.因为=2,所以A选项错误;B.因为()﹣1=2,所以B选项错误;C.因为a与2a2不是同类项,不能合并,所以C选项错误;D.因为(﹣a2)3=﹣a6,所以D选项正确.故选:D.7.(3分)对于一次函数y=x+2,下列说法不正确的是()A.图象经过点(1,3)B.图象与x轴交于点(﹣2,0)C.图象不经过第四象限D.当x>2时,y<4【分析】根据题目中的函数解析式和一次函数的性质可以判断各个选项中的结论是否成立,从而可以解答本题.【解答】解:∵一次函数y=x+2,∴当x=1时,y=3,∴图象经过点(1,3),故选项A正确;令y=0,解得x=﹣2,∴图象与x轴交于点(﹣2,0),故选项B正确;∵k=1>0,b=2>0,∴不经过第四象限,故选项C正确;∵k=1>0,∴函数值y随x的增大而增大,当x=2时,y=4,∴当x>2时,y>4,故选项D不正确,故选:D.8.(3分)一个圆锥的底面半径是4cm,其侧面展开图的圆心角是120°,则圆锥的母线长是()A.8cm B.12cm C.16cm D.24cm【分析】根据圆锥侧面展开图的实际意义求解即可.【解答】解:圆锥的底面周长为2π×4=8πcm,即为展开图扇形的弧长,由弧长公式得,=8π,解得,R=12,即圆锥的母线长为12cm.故选:B.9.(3分)关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1B.﹣4C.﹣4或1D.﹣1或4【分析】根据方程的根的判别式,得出m的取值范围,然后根据根与系数的关系可得α+β=﹣2(m﹣1),α•β=m2﹣m,结合α2+β2=12即可得出关于m的一元二次方程,解之即可得出结论.【解答】解:∵关于x的方程x2﹣2(m﹣1)x+m2=0有两个实数根,∴△=[2(m﹣1)]2﹣4×1×(m2﹣m)=﹣4m+4≥0,解得:m≤1.∵关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,∴α+β=﹣2(m﹣1),α•β=m2﹣m,∴α2+β2=(α+β)2﹣2α•β=[﹣2(m﹣1)]2﹣2(m2﹣m)=12,即m2﹣3m﹣4=0,解得:m=﹣1或m=4(舍去).故选:A.10.(3分)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个【分析】如图,作AM⊥BD于M,AN⊥EC于N.证明△BAD≌△CAE,利用全等三角形的性质一一判断即可.【解答】解:如图,作AM⊥BD于M,AN⊥EC于N.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴EC=BD,∠BDA=∠AEC,故①正确∵∠DOF=∠AOE,∠DFO=∠EAO=90°,∴BD⊥EC,故②正确,∵△BAD≌△CAE,AM⊥BD,AN⊥EC,∴AM=AN,∴F A平分∠EFB,∴∠AFE=45°,故④正确,若③成立,则∠AEF=∠ABD=∠ADB,推出AB=AD,显然与条件矛盾,故③错误,故选:C.二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3分)已知正n边形的一个内角为135°,则n的值是8.【分析】根据多边形的相邻的内角与外角互为邻补角求出每一个外角的度数,再根据多边形的边数等于外角和除以每一个外角的度数进行计算即可得解.【解答】解:∵正n边形的一个内角为135°,∴正n边形的一个外角为180°﹣135°=45°,∴n=360°÷45°=8.故答案为:8.12.(3分)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了9场.【分析】设该队胜了x场,负了y场,根据:①某队14场比赛;②得到23分;列方程组即可求解.【解答】解:设该队胜了x场,负了y场,依题意有,解得.故该队胜了9场.故答案为:9.13.(3分)如图,海中有个小岛A,一艘轮船由西向东航行,在点B处测得小岛A位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D处,测得小岛A在它的北偏西60°方向,此时轮船与小岛的距离AD为20海里.【分析】如图,过点A作AC⊥BD于点C,根据题意可得,∠BAC=∠ABC=45°,∠ADC=30°,AB =20,再根据锐角三角函数即可求出轮船与小岛的距离AD.【解答】解:如图,过点A作AC⊥BD于点C,根据题意可知:∠BAC=∠ABC=45°,∠ADC=30°,AB=20,在Rt△ABC中,AC=BC=AB•sin45°=20×=10,在Rt△ACD中,∠ADC=30°,∴AD=2AC=20(海里).答:此时轮船与小岛的距离AD为20海里.故答案为:20.14.(3分)有3张看上去无差别的卡片,上面分别写着2,3,4.随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字之和是奇数的概率为.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到的两张卡片上的数字之和为奇数的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次取出的数字之和是奇数的有4种结果,∴两次取出的数字之和是奇数的概率为,故答案为:.15.(3分)某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为70元.【分析】根据题意,可以得到利润和售价之间的函数关系,然后化为顶点式,即可得到当售价为多少元时,利润达到最大值.【解答】解:设每顶头盔的售价为x元,获得的利润为w元,w=(x﹣50)[200+(80﹣x)×20]=﹣20(x﹣70)2+8000,∴当x=70时,w取得最大值,此时w=8000,故答案为:70.16.(3分)如图,已知直线a:y=x,直线b:y=﹣x和点P(1,0),过点P作y轴的平行线交直线a 于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为21010.【分析】点P(1,0),P1在直线y=x上,得到P1(1,1),求得P2的纵坐标=P1的纵坐标=1,得到P2(﹣2,1),即P2的横坐标为﹣2=﹣21,同理,P3的横坐标为﹣2=﹣21,P4的横坐标为4=22,P5=22,P6=﹣23,P7=﹣23,P8=24…,求得P4n=2,于是得到结论.【解答】解:∵点P(1,0),P1在直线y=x上,∴P1(1,1),∵P1P2∥x轴,∴P2的纵坐标=P1的纵坐标=1,∵P2在直线y=﹣x上,∴1=﹣x,∴x=﹣2,∴P2(﹣2,1),即P2的横坐标为﹣2=﹣21,同理,P3的横坐标为﹣2=﹣21,P4的横坐标为4=22,P5=22,P6=﹣23,P7=﹣23,P8=24…,∴P4n=2,∴P2020的横坐标为2=21010,故答案为:21010.三、解答题(本大题共8个小题,满分72分.)17.(12分)(1)先化简,再求值:÷,其中a=﹣1.(2)解不等式组,并把它的解集在数轴上表示出来.【分析】(1)先把除法变成乘法,算乘法,最后代入求出即可;(2)先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:(1)原式=•=,当a=﹣1时,原式==2;(2),∵解不等式①得:x>﹣2,解不等式②得:x≤4,∴不等式组的解集是:﹣2<x≤4,在数轴上表示为:.18.(6分)在平行四边形ABCD中,E为AD的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC上找出一点M,使点M是BC的中点;(2)如图2,在BD上找出一点N,使点N是BD的一个三等分点.【分析】(1)连接AC和BD,它们的交点为O,延长EO并延长交AD于M,则M点为所作;(2)连接CE交BD于点N,则N点为所作.【解答】解:(1)如图1,M点就是所求作的点:(2)如图2,点N就是所求作的点:19.(7分)5月20日九年级复学啦!为了解学生的体温情况,班主任张老师根据全班学生某天上午的《体温监测记载表》,绘制了如下不完整的频数分布表和扇形统计图.学生体温频数分布表组别温度(℃)频数(人数)甲36.36乙36.4a丙36.520丁36.64请根据以上信息,解答下列问题:(1)频数分布表中a=10,该班学生体温的众数是36.5,中位数是36.5;(2)扇形统计图中m=15,丁组对应的扇形的圆心角是36度;(3)求该班学生的平均体温(结果保留小数点后一位).【分析】(1)根据丙组的人数和所占的百分比求出总人数,再用总人数乘以乙组所占的百分比,求出a 的值;再根据众数与中位数的定义求解;(2)用甲组的人数除以总人数得出甲组所占百分比,求出m的值;用360°丁组所占百分比,即可求出丁组对应的扇形圆心角的度数;(3)利用加权平均数的公式计算即可.【解答】解:(1)20÷50%=40(人),a=40×25%=10;36.5出现了20次,次数最多,所以众数是36.5;40个数据按从小到大的顺序排列,其中第20、21个数据都是36.5,所以中位数是(36.5+36.5)÷2=36.5.故答案为:10,36.5,36.5;(2)m%=×100%=15%,m=15;360°×=36°.故答案为:15,36;(3)该班学生的平均体温为:=36.455≈36.5(℃).20.(8分)把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2.(1)直接写出抛物线C2的函数关系式;(2)动点P(a,﹣6)能否在抛物线C2上?请说明理由;(3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1,y2的大小,并说明理由.【分析】(1)根据二次函数图象左加右减,上加下减的平移规律进行求解;(2)根据二次函数的最小值即可判断;(3)根据二次函数的性质可以求得y1与y2的大小.【解答】解:(1)∵y=x2+2x+3=(x+1)2+2,∴把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2:y=(x+1﹣4)2+2﹣5,即y=(x﹣3)2﹣3,∴抛物线C2的函数关系式为:y=(x﹣3)2﹣3.(2)动点P(a,﹣6)不在抛物线C2上,理由如下:∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,∴函数的最小值为﹣3,∵﹣6<﹣3,∴动点P(a,﹣6)不在抛物线C2上;(3)∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,∴抛物线的开口向上,对称轴为x=3,∴当x<3时,y随x的增大而减小,∵点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0<3,∴y1>y2.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D的直线EF交AC于点F,交AB的延长线于点E,且∠BAC=2∠BDE.(1)求证:DF是⊙O的切线;(2)当CF=2,BE=3时,求AF的长.【分析】(1)连接OD,AD,根据切线的判定即可求证.(2)先证明△EOD∽△EAF,设OD=x,根据相似三角形的性质列出关于x的方程从而可求出答案.【解答】(1)证明:连接OD,AD,∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴∠BAC=2∠BAD,∵∠BAC=2∠BDE,∴∠BDE=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∵∠ADO+∠ODB=90°,∴∠BDE+∠ODB=90°,∴∠ODE=90°,即DF⊥OD,∵OD是⊙O的半径,∴DF是⊙O的切线.(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵BO=AO,∴OD∥AC,∴△EOD∽△EAF,∴,设OD=x,∵CF=2,BE=3,∴OA=OB=x,AF=AC﹣CF=2x﹣2,∴EO=x+3,EA=2x+3,∴=,解得x=6,经检验,x=6是分式方程的解,∴AF=2x﹣2=10.22.(9分)如图,直线AB与反比例函数y=(x>0)的图象交于A,B两点,已知点A的坐标为(6,1),△AOB的面积为8.(1)填空:反比例函数的关系式为y=;(2)求直线AB的函数关系式;(3)动点P在y轴上运动,当线段P A与PB之差最大时,求点P的坐标.【分析】(1)将点A坐标(6,1)代入反比例函数解析式y=,求出k的值即可;(2)过点A作AC⊥x轴于点C,过B作BD⊥y轴于D,延长CA,DB交于点E,则四边形ODEC是矩形,设B(m,n),根据△AOB的面积为8,得3n﹣m=8,得方程3n2﹣8n﹣3=0,解出可得B的坐标,利用待定系数法可得AB的解析式;(3)如图,根据“三角形两边之差小于第三边可知:当点P为直线AB与y轴的交点时,P A﹣PB有最大值是AB,可解答.【解答】解:(1)将点A坐标(6,1)代入反比例函数解析式y=,得k=1×6=6,则y=,故答案为:y=;(2)过点A作AC⊥x轴于点C,过B作BD⊥y轴于D,延长CA,DB交于点E,则四边形ODEC是矩形,设B(m,n),∴mn=6,∴BE=DE﹣BD=6﹣m,AE=CE﹣AC=n﹣1,∴S△ABE==,∵A、B两点均在反比例函数y=(x>0)的图象上,∴S△BOD=S△AOC==3,∴S△AOB=S矩形ODEC﹣S△AOC﹣S△BOD﹣S△ABE=6n﹣3﹣3﹣=3n﹣m,∵△AOB的面积为8,∴3n﹣m=8,∴m=6n﹣16,∵mn=6,∴3n2﹣8n﹣3=0,解得:n=3或﹣(舍),∴m=2,∴B(2,3),设直线AB的解析式为:y=kx+b,则,解得:,∴直线AB的解析式为:y=﹣x+4;(3)如图,根据“三角形两边之差小于第三边可知:当点P为直线AB与y轴的交点时,P A﹣PB有最大值是AB,把x=0代入y=﹣x+4中,得:y=4,∴P(0,4).23.(10分)实践操作:第一步:如图1,将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD上的点C′处,点B落在点B'处,得到折痕EF,B'C′交AB于点M,C′F交DE于点N,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA'D的形状是正方形;(2)如图2,线段MC′与ME是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若AC′=2cm,DC'=4cm,求DN:EN的值.【分析】(1)由折叠性质得AD=AD′,AE=A′E,∠ADE=∠A′DE,再根据平行线的性质和等腰三角形的判定得到四边形AEA′D是菱形,进而结合内角为直角条件得四边形AEA′D为正方形;(2)连接C′E,证明Rt△EC′A≌Rt△CEB′,得∠C′EA=∠EC′B′,便可得结论;(3)设DF=xcm,则FC′=FC=(8﹣x)cm,由勾股定理求出x的值,延长BA、FC′交于点G,求得AG,再证明△DNF∽△ENG,便可求得结果.【解答】解:(1)∵ABCD是矩形,∴∠A=∠ADC=90°,∵将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,∴AD=AD′,AE=A′E,∠ADE=∠A′DE=45°,∴∵AB∥CD,∴∠AED=∠A′DE=∠ADE,∴AD=AD′,∴AD=AE=A′E=A′D,∴四边形AEA′D是菱形,∵∠A=90°,∴四边形AEA′D是正方形.故答案为:正方形;(2)MC′=ME.证明:如图1,连接C′E,由(1)知,AD=AE,∵四边形ABCD是矩形,∴AD=BC,∠EAC′=∠B=90°,由折叠知,B′C′=BC,∠B=∠B′,∴AE=B′C′,∠EAC′=∠B′,又EC′=C′E,∴Rt△EC′A≌Rt△CEB′(HL),∴∠C′EA=∠EC′B′,∴MC′=ME;(3)∵Rt△EC′A≌Rt△CEB′,∴AC′=B′E,由折叠知,B′E=BD,∴AC′=BE,∵AC′=2cm,DC′=4cm,∴AB=CD=2+4+2=8(cm),设DF=xcm,则FC′=FC=(8﹣x)cm,∵DC′2+DF2=FC′2,∴42+x2=(8﹣x)2,解得,x=3,即DF=3cm,如图2,延长BA、FC′交于点G,则∠AC′G=∠DC′F,∴tan∠AC′G=tan∠DC′F=,∴,∴,∵DF∥EG,∴△DNF∽△ENG,∴.24.(12分)小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟,在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段AB表示小华和商店的距离y1(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是120米/分钟,妈妈在家装载货物所用时间是5分钟,点M的坐标是(20,1200).(2)直接写出妈妈和商店的距离y2(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;(3)求t为何值时,两人相距360米.【分析】(1)根据图象即可求出答案.(2)根据时间范围列出函数关系式即可(3)根据两人的运动情况分类讨论,列出相应的方程即可求出答案.【解答】解:(1)妈妈骑车的速度为120米/分钟,妈妈在家装载货物时间为5分钟,点M的坐标为(20,1200).故答案为:120,5,(20,1200).(2),其图象如图所示,(3)由题意可知:小华速度为60米/分钟,妈妈速度为120米/分钟,①相遇前,依题意有60t+120t+360=1800,解得t=8分钟,②相遇后,依题意有,60t+120t﹣360=1800,解得t=12分钟.③依题意,当t=20分钟时,妈妈从家里出发开始追赶小华,此时小华距商店为1800﹣20×60=600米,只需10分钟,即t=30分钟,小华到达商店.而此时妈妈距离商店为1800﹣10×120=600米>360米,∴120(t﹣5)+360=1800×2,解得t=32分钟,∴t=8,12或32分钟时,两人相距360米。
湖北省天门市中考数学试卷—解析版一、选择题(本大题共10个小题,每小题3分,满分30分)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.1、(2011•江汉区)的倒数是()A、B、﹣3C、3D、考点:倒数。
专题:计算题。
分析:根据倒数的定义,互为倒数的两数乘积为1,﹣×(﹣3)=1.解答:解:根据倒数的定义得:﹣×(﹣3)=1,因此倒数是﹣﹣3.故选B.点评:此题考查的是倒数,关键是要明确倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2、(2011•江汉区)如图所示,该几何体的俯视图是()A、B、C、D、考点:简单组合体的三视图。
专题:几何图形问题。
分析:根据俯视图是从上面看到的图形判定则可.解答:解:从上面看,是中间一个正方形,两边两个矩形.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3、(2011•江汉区)第六次人口普查的标准时间是2010年11月1日零时.普查登记的大陆31个省、自治区、直辖市和现役军人的人口共1 339 724 852人.这个数用科学记数法表示为(保留三个有效数字)()A、1.33×1010B、1.34×1010C、1.33×109D、1.34×109考点:科学记数法与有效数字。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 048 576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:1339724852=1.339724852×109≈1.34×109.故选D.点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.4、(2011•江汉区)某不等式组的解集在数轴上表示如图,则这个不等式组可能是()A、B、C、D、考点:在数轴上表示不等式的解集。
2020年天门市中考试卷初中数学数学试卷第一卷(选择题 共36分)一.选择题(本大题共有12个小题,每题3分,共36分)1.43-的倒数是〔 〕. A 、43 B 、34- C 、34 D 、43- 2.一个几何体的三视图如下图,那么那个几何体是〔 〕.3.关于x 的一元二次方程(m -1)x 2+x +m 2-1=0有一根为0,那么m 的值为〔 〕.A 、1B 、-1C 、1或-1D 、21 4.初三(1)班10名同学体育测试成绩如下表,那么这10名同学体育测试成绩的众数和中位数分不是〔 〕.A 、38,36B 、38,38C 、36,37D 、38,375.平均地向一个容器注水,最后把容器注满,在注水过程中,水面高度h 随时刻t 的变化规律如下图(图中OABC 为一折线),那个容器的形状是图中〔 〕.6.如图,a ∥b ,∠1=105°,∠2=140°,那么∠3的度数是〔 〕.A 、75°B 、65°C 、55°D 、50°7.以下命题中,真命题是〔 〕.A 、一组对边平行且有一组邻边相等的四边形是平行四边形B 、顺次连结四边形各边中点所得到的四边形是矩形C 、等边三角形既是轴对称图形又是中心对称图形D 、对角线互相垂直平分的四边形是菱形8.如图,为了测量河两案A 、B 两点的距离,在与AB 垂直的方向点C 处测得AC =a , ∠ACB =α,那么AB 等于〔 〕.A 、a ·sin αB 、a ·tan αC 、a ·cos αD 、 tan a 9.将分不标有数字1,2,3,4的四张卡片洗匀后,背面朝上,放在桌面上,随机抽取一张(不放回),接着再随机抽取一张,恰好两张卡片上的数字相邻的概率为〔 〕.A 、51B 、41C 、31D 、21 10.设计一个商标图案如图中阴影部分,矩形ABCD 中,AB =2BC ,且AB =8cm ,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F ,那么商标图案的面积等于〔 〕.A 、(4π+8)cm 2B 、(4π+16)cm 2C 、(3π+8)cm 2D 、(3π+16)cm 211.二次函数y =ax 2+bx +c(a ≠0)的图象如下图,以下结论:①abc >0;②2a +b <0;③a -b +c <0;④a +c >0,其中正确结论的个数为〔 〕.A 、4个B 、3个C 、2个D 、1个12.如图,在平面直角坐标系中,OABC 是正方形,点A 的坐标是(4,0),点P 为边AB 上一点,∠CPB =60°,沿CP 折叠正方形,折叠后,点B 落在平面内点B ’处,那么B ’点的坐标为〔 〕.A 、(2,32)B 、(23,32-)C 、(2,324-)D 、(23,324-) 第二卷(非选择题 共84分)二.填空题(本大题有4个小题,每题4分,共16分)13.不等式组⎩⎨⎧--++112m x n m x <>的解集为-1<x <2,那么(m +n)2018=_______________.14.如图,AE =CF ,∠A =∠C ,要使△ADF ≌△CBE ,还需添加一个条件___________ ___________(只需写一个).15.某公园门票价格如下表,有27名中学生游公园,那么最少应对费______________元.(游客只能在公园售票处购票)购票张数1~29张 30~60张 60张以上 每张票的价格 10元 8元 6元16.如图是由火柴棒搭成的几何图案,那么第n 个图案中有__________________根火柴棒.(用含n 的代数式表示)三.解答题(本大题共有8个小题,共68分)17.(本小题总分值6分)运算:02)722(60sin 41122-+︒-+--π 18.(本小题总分值7分)先化简,后求值:21+-x x ·11124222-÷+--x x x x ,其中x 2-x =0. 19.(本小题总分值7分)如图,有两个能够自由转动的平均转盘A 、B ,转盘A 被平均地分成3等分,每份分不标有1,2,3这三个数字;转盘B 被平均地分成4等分,每份分不标有4,5,6,7这四个数字.有人为小明,小飞设计了一个游戏,其规那么如下:①同时自由转动转盘A 和B ;②转盘停止后,指针各指向一个数字(假如指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘,假如积为偶数,小明胜,否那么小飞胜.(1)请你用列表或树形图求出小明胜和小飞胜的概率;(2)游戏公平吗?假设不公平,请你设计一个公平的规那么.20.(本小题总分值7分)现将四个全等的直角梯形透亮纸片,分不放在方格纸中,方格纸的每个小正方形的边长均为1,同时直角梯形的每个顶点与小正方形的顶点重合.请你仿惯例①,按如下要求拼图.要求:①用四个全等的直角梯形,按实际大小拼成符合要求的几何图形;②拼成的几何图形互不重叠,且不留间隙;③拼成的几何图形的各顶点必须与小正方形的顶点重合.21.(本小题总分值8分)如图,直线y =x +1与双曲线x y 2交于A 、B 两点,其中A 点在第一象限.C 为x 轴正半轴上一点,且S △ABC =3.(1)求A 、B 、C 三点的坐标;(2)在坐标平面内.....,是否存在点P ,使以A 、B 、C 、P 为顶点的四边形为平行四边形?假设存在,请直截了当....写出点P 的坐标,假设不存在,请讲明理由.22.(本小题总分值10分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠BAC 的平分线交⊙O 于点D ,过D 点作EF ∥BC 交AB 的延长线于点E ,交AC 的延长线于点F .(1)求证:EF 为⊙O 的切线;(2)假设sin ∠ABC =54,CF =1,求⊙O 的半径及EF 的长. 23.(本小题总分值11分)一快餐店试销某种套餐,试销一段时刻后发觉,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).假设每份售价不超过10元,每天可销售400份;假设每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数..,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出)(1)求y 与x 的函数关系式;(2)假设每份套餐售价不超过10元,要使该店日净收入许多于800元,那么每份售价最少不低于多少元?(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?现在日净收入为多少?24.(本小题总分值12分)如图①,在平面直角坐标系中,A 点坐标为(3,0),B 点坐标为 (0,4).动点M 从点O 动身,沿OA 方向以每秒1个单位长度的速度向终点A 运动;同时,动点N 从点A 动身沿AB 方向以每秒35个单位长度的速度向终点B 运动.设运动了x 秒.(1)点N 的坐标为(________________,________________);(用含x 的代数式表示)(2)当x 为何值时,△AMN 为等腰三角形?(3)如图②,连结ON得△OMN,△OMN可能为正三角形吗?假设不能,点M的运动速度不变,试改变点N的运动速度,使△OMN为正三角形,并求出点N的运动速度和现在x的值.。
2020年湖北省天门市中考数学试卷副标题题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.下列各数中,比−2小的数是()A. 0B. −3C. −1D. |−0.6|2.如图是由4个相同的小正方体组成的立体图形,它的俯视图为()A. B. C. D.3.我国自主研发的“北斗系统”现已广泛应用于国防、生产和生活等各个领域,多项技术处于国际领先地位,其星载原子钟的精度,已经提升到了每3000000年误差1秒.数3000000用科学记数法表示为()A. 0.3×106B. 3×107C. 3×106D. 30×1054.将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF//BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A. 15°B. 20°C. 25°D. 30°5.下列说法正确的是()A. 为了解人造卫星的设备零件的质量情况,选择抽样调查B. 方差是刻画数据波动程度的量C. 购买一张体育彩票必中奖,是不可能事件D. 掷一枚质地均匀的硬币,正面朝上的概率为16.下列运算正确的是()A. √4=±2B. (12)−1=−2 C. a+2a2=3a3 D. (−a2)3=−a67.对于一次函数y=x+2,下列说法不正确的是()A. 图象经过点(1,3)B. 图象与x轴交于点(−2,0)C. 图象不经过第四象限D. 当x>2时,y<48.一个圆锥的底面半径是4cm,其侧面展开图的圆心角是120°,则圆锥的母线长是()A. 8cmB. 12cmC. 16cmD. 24cm9.关于x的方程x2+2(m−1)x+m2−m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A. −1B. −4C. −4或1D. −1或410.如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)11.已知正n边形的一个内角为135°,则n的值是______.12.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了______场.13.如图,海中有个小岛A,一艘轮船由西向东航行,在点B处测得小岛A位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D处,测得小岛A在它的北偏西60°方向,此时轮船与小岛的距离AD为______海里.14.有3张看上去无差别的卡片,上面分别写着2,3,4.随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字之和是奇数的概率为______.15.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为______元.16.如图,已知直线a:y=x,直线b:y=−12x和点P(1,0),过点P作y轴的平行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为______.三、解答题(本大题共8小题,共72.0分)17.(1)先化简,再求值:a2−4a+4a2−2a÷a2−42a,其中a=−1.(2)解不等式组{3x+2>x−2x−33≤7−53x,并把它的解集在数轴上表示出来.18.在平行四边形ABCD中,E为AD的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC上找出一点M,使点M是BC的中点;(2)如图2,在BD上找出一点N,使点N是BD的一个三等分点.19.5月20日九年级复学啦!为了解学生的体温情况,班主任张老师根据全班学生某天上午的《体温监测记载表》,绘制了如下不完整的频数分布表和扇形统计图.学生体温频数分布表组别温度(℃)频数(人数)甲36.36乙36.4a丙36.520丁36.64(1)频数分布表中a=______,该班学生体温的众数是______,中位数是______;(2)扇形统计图中m=______,丁组对应的扇形的圆心角是______度;(3)求该班学生的平均体温(结果保留小数点后一位).20.把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2.(1)直接写出抛物线C2的函数关系式;(2)动点P(a,−6)能否在抛物线C2上?请说明理由;(3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1,y2的大小,并说明理由.21.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D的直线EF交AC于点F,交AB的延长线于点E,且∠BAC=2∠BDE.(1)求证:DF是⊙O的切线;(2)当CF=2,BE=3时,求AF的长.22.如图,直线AB与反比例函数y=kx(x>0)的图象交于A,B两点,已知点A的坐标为(6,1),△AOB的面积为8.(1)填空:反比例函数的关系式为______;(2)求直线AB的函数关系式;(3)动点P在y轴上运动,当线段PA与PB之差最大时,求点P的坐标.23.实践操作:第一步:如图1,将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A′处,得到折痕DE,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD上的点C′处,点B落在点B′处,得到折痕EF,B′C′交AB于点M,C′F交DE于点N,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA′D的形状是______;(2)如图2,线段MC′与ME是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若AC′=2cm,DC′=4cm,求DN:EN的值.24.小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟,在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段AB表示小华和商店的距离y1(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是______米/分钟,妈妈在家装载货物所用时间是______分钟,点M的坐标是______.(2)直接写出妈妈和商店的距离y2(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;(3)求t为何值时,两人相距360米.答案和解析1.【答案】B【解析】解:∵|−0.6|=0.6,∴−3<−2<−1<0<|−0.6|.故选:B.先计算|−0.6|,再比较大小.本题考查了绝对值的化简及有理数大小的比较.掌握有理数大小的比较方法是解决本题的关键.有理数大小的比较:正数大于0,0大于一切负数.两个负数比较大小,绝对值大的反而小.2.【答案】C【解析】解:俯视图就是从上面看到的图形,因此选项C的图形符合题意,故选:C.从上面看物体所得到的图形即为俯视图,因此选项C的图形符合题意.本题考查简单几何体的三视图,主视图、左视图、俯视图实际上就是从正面、左面、上面对该几何体正投影所得到的图形.3.【答案】C【解析】解:3000000=3×106,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:∵∠B=90°,∠A=45°,∴∠ACB=45°.∵∠EDF=90°,∠F=60°,∴∠DEF=30°.∵EF//BC,∴∠EDC=∠DEF=30°,∴∠CED=∠ACB−∠EDC=45°−30°=15°.故选:A.由∠B=∠EDF=90°,∠A=45°,∠F=60°,利用三角形内角和定理可得出∠ACB=45°,由EF//BC,利用“两直线平行,内错角相等”可得出∠EDC的度数,结合三角形外角的性质可得结论.本题考查了三角形内角和定理和平行线的性质,牢记“两直线平行,内错角相等”是解题的关键.5.【答案】B【解析】解:为了解人造卫星的设备零件的质量情况,应选择全面调查,即普查,不宜选择抽样调查,因此选项A不符合题意;方差是刻画数据波动程度的量,反映数据的离散程度,因此选项B符合题意;购买一张体育彩票中奖,是可能的,只是可能性较小,是可能事件,因此选项C不符合题意;掷一枚质地均匀的硬币,正面朝上的概率为12,因此选项D不符合题意;故选:B.根据普查、抽查,方差,概率的意义逐项进行判断即可.本题考查普查、抽查,方差,概率的意义,理解各个概念的意义是正确判断的前提.6.【答案】D【解析】解:A.因为√4=2,所以A选项错误;B.因为(12)−1=2,所以B选项错误;C.因为a与2a2不是同类项,不能合并,所以C选项错误;D.因为(−a2)3=−a6,所以D选项正确.故选:D.根据算术平方根、幂的乘方与积的乘方、合并同类项、负整数指数幂分别进行计算,即可判断.本题考查了幂的乘方与积的乘方、算术平方根、合并同类项、负整数指数幂,解决本题的关键是准确掌握以上知识.7.【答案】D【解析】解:∵一次函数y=x+2,∴当x=1时,y=3,∴图象经过点(1,3),故选项A正确;令y=0,解得x=−2,∴图象与x轴交于点(−2,0),故选项B正确;∵k=1>0,b=2>0,∴不经过第四象限,故选项C正确;∵k=1>0,∴函数值y随x的增大而增大,当x=2时,y=4,∴当x>2时,y>4,故选项D不正确,故选:D.根据题目中的函数解析式和一次函数的性质可以判断各个选项中的结论是否成立,从而可以解答本题.本题考查一次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.8.【答案】B【解析】解:圆锥的底面周长为2π×4=8πcm,即为展开图扇形的弧长,由弧长公式得,120×π×R180=8π,解得,R=12,即圆锥的母线长为12cm.故选:B.根据圆锥侧面展开图的实际意义求解即可.本题考查圆锥的侧面展开图,明确展开图扇形的各个部分与圆锥的关系是正确计算的前提.9.【答案】A【解析】解:∵关于x的方程x2−2(m−1)x+m2=0有两个实数根,∴△=[2(m−1)]2−4×1×(m2−m)=−4m+4≥0,解得:m≤1.∵关于x的方程x2+2(m−1)x+m2−m=0有两个实数根α,β,∴α+β=−2(m−1),α⋅β=m2−m,∴α2+β2=(α+β)2−2α⋅β=[−2(m−1)]2−2(m2−m)=12,即m2−3m−4=0,解得:m=−1或m=4(舍去).故选:A.根据方程的根的判别式,得出m的取值范围,然后根据根与系数的关系可得α+β=−2(m−1),α⋅β= m2−m,结合α2+β2=12即可得出关于m的一元二次方程,解之即可得出结论.本题考查了根与系数的关系、根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系得出关于m的一元二次方程.10.【答案】C【解析】解:如图,作AM⊥BD于M,AN⊥EC于N.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴EC=BD,∠BDA=∠AEC,故①正确∵∠DOF=∠AOE,∠DFO=∠EAO=90°,∴BD⊥EC,故②正确,∵△BAD≌△CAE,AM⊥BD,AN⊥EC,∴AM=AN,∴FA平分∠EFB,∴∠AFE=45°,故④正确,若③成立,则∠AEF=∠ABD=∠ADB,推出AB=AD,显然与条件矛盾,故③错误,故选:C.如图,作AM⊥BD于M,AN⊥EC于N.证明△BAD≌△CAE,利用全等三角形的性质一一判断即可.本题考查全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.【答案】8【解析】解:∵正n边形的一个内角为135°,∴正n边形的一个外角为180°−135°=45°,∴n=360°÷45°=8.故答案为:8.根据多边形的相邻的内角与外角互为邻补角求出每一个外角的度数,再根据多边形的边数等于外角和除以每一个外角的度数进行计算即可得解.本题考查了多边形的外角,利用多边形的边数等于外角和除以每一个外角的度数是常用的方法,求出多边形的每一个外角的度数是解题的关键.12.【答案】9【解析】解:设该队胜了x场,负了y场,依题意有{x+y=142x+y=23,解得{x=9y=5.故该队胜了9场.故答案为:9.设该队胜了x场,负了y场,根据:①某队14场比赛;②得到23分;列方程组即可求解.本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.13.【答案】20√2【解析】解:如图,过点A作AC⊥BD于点C,根据题意可知:∠BAC=∠ABC=45°,∠ADC=30°,AB=20,在Rt△ABC中,AC=BC=AB⋅sin45°=20×√22=10√2,在Rt△ACD中,∠ADC=30°,∴AD=2AC=20√2(海里).答:此时轮船与小岛的距离AD为20√2海里.故答案为:20√2.如图,过点A作AC⊥BD于点C,根据题意可得,∠BAC=∠ABC=45°,∠ADC=30°,AB=20,再根据锐角三角函数即可求出轮船与小岛的距离AD.本题考查了解直角三角形的应用−方向角问题,解决本题的关键是掌握方向角定义.14.【答案】49【解析】解:画树状图得:∵共有9种等可能的结果,两次取出的数字之和是奇数的有4种结果,∴两次取出的数字之和是奇数的概率为49,故答案为:49.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到的两张卡片上的数字之和为奇数的情况,再利用概率公式即可求得答案.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率. 15.【答案】70【解析】解:设每顶头盔的售价为x 元,获得的利润为w 元, w =(x −50)[200+(80−x)×20]=−20(x −70)2+8000, ∴当x =70时,w 取得最大值,此时w =8000, 故答案为:70.根据题意,可以得到利润和售价之间的函数关系,然后化为顶点式,即可得到当售价为多少元时,利润达到最大值.本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.16.【答案】22010【解析】解:∵点P(1,0),P 1在直线y =x 上, ∴P 1(1,1), ∵P 1P 2//x 轴,∴P 2的纵坐标=P 1的纵坐标=1, ∵P 2在直线y =−12x 上, ∴1=−12x ,∴x =−2,∴P 2(−2,1),即P 2的横坐标为−2=−21,同理,P 3的横坐标为−2=−21,P 4的横坐标为4=22,P 5=22,P 6=−23,P 7=−23,P 8=24…, ∴P 4n =212n ,∴P 2020的横坐标为212×2020=21010,故答案为:21010.点P(1,0),P 1在直线y =x 上,得到P 1(1,1),求得P 2的纵坐标=P 1的纵坐标=1,得到P 2(−2,1),即P 2的横坐标为−2=−21,同理,P 3的横坐标为−2=−21,P 4的横坐标为4=22,P 5=22,P 6=−23,P 7=−23,P 8=24…,求得P 4n =212n ,于是得到结论.本题考查了一次函数图象上点的坐标特征,规律型:点的坐标,正确的作出规律是解题的关键.17.【答案】解:(1)原式=(a−2)2a(a−2)⋅2a(a+2)(a−2)=2a+2,当a =−1时,原式=2−1+2=2;(2){3x +2>x −2①x−33≤7−53x②, ∵解不等式①得:x >−2,解不等式②得:x ≤4,∴不等式组的解集是:−2<x ≤4,在数轴上表示为:.【解析】(1)先把除法变成乘法,算乘法,最后代入求出即可;(2)先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.本题考查了分式的混合运算和求值,解一元一次不等式组和在数轴上表示不等式组的解集等知识点,能正确根据分式的运算法则进行化简是解(1)的关键,能求出不等式组的解集是解(2)的关键. 18.【答案】解:(1)如图1,F 点就是所求作的点: (2)如图2,点N 就是所求作的点:【解析】(1)连接AC 和BD ,它们的交点为O ,延长EO 并延长交AD 于F ,则F 点为所作; (2)连接CE 交BD 于点N ,则N 点为所作.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定与性质. 19.【答案】10 36.5 36.5 15 36【解析】解:(1)20÷50%=40(人),a =40×25%=10; 36.5出现了20次,次数最多,所以众数是36.5; 40个数据按从小到大的顺序排列,其中第20、21个数据都是36.5,所以中位数是(36.5+36.5)÷2=36.5. 故答案为:10,36.5,36.5; (2)m%=640×100%=15%,m =15;360°×440=36°. 故答案为:15,36;(3)该班学生的平均体温为:36.3×6+36.4×10+36.5×20+36.6×440=36.455≈36.5(℃).(1)根据丙组的人数和所占的百分比求出总人数,再用总人数乘以乙组所占的百分比,求出a 的值;再根据众数与中位数的定义求解;(2)用甲组的人数除以总人数得出甲组所占百分比,求出m 的值;用360°丁组所占百分比,即可求出丁组对应的扇形圆心角的度数;(3)利用加权平均数的公式计算即可.此题考查了频率分布表,扇形统计图,众数与中位数的定义,读懂统计图表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.20.【答案】解:(1)∵y =x 2+2x +3=(x +1)2+2, ∴把抛物线C 1:y =x 2+2x +3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C 2:y =(x +1−4)2+2−5,即y =(x −3)2−3,∴抛物线C 2的函数关系式为:y =(x −3)2−3.(2)动点P(a,−6)不在抛物线C2上,理由如下:∵抛物线C2的函数关系式为:y=(x−3)2−3,∴函数的最小值为−3,∵−6<−3,∵动点P(a,−6)不在抛物线C2上;(3)∵抛物线C2的函数关系式为:y=(x−3)2−3,∴抛物线的开口向上,对称轴为x=3,∴当x<3时,y随x的增大而减小,∵点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0<3,∴y1>y2.【解析】(1)根据二次函数图象左加右减,上加下减的平移规律进行求解;(2)根据二次函数的最小值即可判断;(3)根据二次函数的性质可以求得y1与y2的大小.本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答;也考查函数图象的平移的规律.21.【答案】解:(1)连接OD,AD,∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴∠BAC=2∠BAD,∵∠BAC=2∠BDE,∴∠BDE=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∵∠ADO+∠ODB=90°,∴∠BDE+∠ODB=90°,∴∠ODE=90°,即DF⊥OD,∵OD是⊙O的半径,∴DF是⊙O的切线.(2)∵AB=AC,AD⊥BC,∴BD=CD,∵BO=AO,∴OD//AC,∴△EOD∽△EAF,∴ODAF =EOEA,设OD=x,∵CF=2,BE=3,∴OA=OB=x,AF=AC−CF=2x−2,∴EO=x+3,EA=2x+3,∴x2x−2=x+32x+3,解得x=6,经检验,x=6是分式方程的解,∴AF=2x−2=10.【解析】(1)连接OD,AD,根据切线的判定即可求证.(2)先证明△EOD∽△EAF,设OD=x,根据相似三角形的性质列出关于x的方程从而可求出答案.本题考查相圆的综合问题,涉及切线的判定,相似三角形的性质与判定,解方程等知识,需要学生灵活运用所学知识.22.【答案】y=6x【解析】解:(1)解:(1)将点A坐标(6,1)代入反比例函数解析式y=kx,得k=1×6=6,则y=6x,故答案为:y=6x;(2)过点A作AC⊥x轴于点C,过B作BD⊥y轴于D,延长CA,DB交于点E,则四边形ODEC是矩形,设B(m,n),∴mn=6,∴BE=DE−BD=6−m,AE=CE−AC=n−1,∴S△ABE=12AE⋅BE=12(n−1)(6−m),∵A、B两点均在反比例函数y=kx(x>0)的图象上,∴S△BOD=S△AOC=12×6×1=3,∴S△AOB=S矩形ODEC−S△AOC−S△BOD−S△ABE=6n−3−3−12(n−1)(6−m)=3n−12m,∵△AOB的面积为8,∴3n−12m=8,∴m=6n−16,∵mn=6,∴3n2−8n−3=0,解得:n=3或−13(舍),∴m=2,∴B(2,3),设直线AB的解析式为:y=kx+b,则{6k+b=12k+b=3,解得:{k=−12b=4,∴直线AB的解析式为:y=−12x+4;(3)如图,根据“三角形两这边之差小于第三边可知:当点P为直线AB与y轴的交点时,PA−PB有最大值是AB,把x=0代入y=−12x+4中,得:y=4,∴P(0,4).(1)将点A坐标(6,1)代入反比例函数解析式y=kx,求出k的值即可;(2)过点A作AC⊥x轴于点C,过B作BD⊥y轴于D,延长CA,DB交于点E,则四边形ODEC是矩形,设B(m,n),根据△AOB的面积为8,得3n−12m=8,得方程3n2−8n−3=0,解出可得B的坐标,利用待定系数法可得AB的解析式;(3)如图,根据“三角形两这边之差小于第三边可知:当点P为直线AB与y轴的交点时,PA−PB有最大值是AB,可解答.本题考查了反比例函数与一次函数的交点问题,反比例函数图象上点的坐标特征,利用待定系数法求反比例函数和一次函数的解析式,难度适中,利用数形结合是解题的关键.23.【答案】正方形【解析】解:(1)∵ABCD是矩形,∴∠A=∠ADC=90°,∵将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A′处,得到折痕DE,∴AD=AD′,AE=A′E,∠ADE=∠A′DE=45°,∴∵AB//CD,∴∠AED=∠A′DE=∠ADE,∴AD=AD′,∴AD=AE=A′E=A′D,∴四边形AEA′D是菱形,∵∠A=90°,∴四边形AEA′D是正方形.故答案为:正方形;(2)MC′=ME.证明:如图1,连接C′E,由(1)知,AD=AE,∵四边形ABCD是矩形,∴AD=BC,∠EAC′=∠B=90°,由折叠知,B′C′=BC,∠B=∠B′,∴AE=B′C′,∠EAC′=∠B′,又EC′=C′E,∴Rt△EC′A≌Rt△CEB′(HL),∴∠C′EA=∠EC′B′,∴MC′=ME;(3)∵Rt△EC′A≌Rt△CEB′,∴AC′=B′E,由折叠知,B′E=BD,∴AC′=BE,∵AC′=2cm,DC′=4cm,∴AB=CD=2+4+2=8(cm),设DF=xcm,则FC′=FC=(8−x)cm,∵DC′2+DF2=FC′2,∴42+x2=(8−x)2,解得,x=3,即DF=3cm,如图2,延长BA、FC′交于点G,则∠AC′G=∠DC′F,∴tan∠AC′G=tan∠DC′F=AGAC′=DFDC′=34,∴AG=32cm,∴EG=32+6=152cm,∵DF//EG,∴△DNF∽△ENG,∴DNEN=DFEG=3152=25.(1)由折叠性质得AD=AD′,AE=A′E,∠ADE=∠A′DE,再根据平行线的性质和等腰三角形的判定得到四边形AEA′D是菱形,进而结合内角为直角条件得四边形AEA′D为正方形;(2)连接C′E,证明Rt△EC′A≌Rt△CEB′,得∠C′EA=∠EC′B′,便可得结论;(3)设DF=xcm,则FC′=FC=(8−x)cm,由勾股定理求出x的值,延长BA、FC′交于点G,求得AG,再证明△DNF∽△ENG,便可求得结果.本题主要考查了矩形的性质,正方形的性质与判定,等腰三角形的判定,全等三角形的性质与判定,相似三角形的性质与判定,第(2)题关键在于证明三角形全等,第(3)题关键证明相似三角形.24.【答案】120 5 (20,1200)【解析】解:(1)妈妈骑车的速度为120米/分钟,妈妈在家装载货物时间为5分钟,点M的坐标为(20,1200).(2)y2={120t(0≤t<15)1800(15≤t<20)−120t+4200(20≤t≤35),其图象如图所示,(3)由题意可知:小华速度为60米/分钟,妈妈速度为120米/分钟,①相遇前,依题意有60t+120t+360=1800,解得t=8分钟,②相遇后,依题意有,60t+120t−360=1800,解得t=12分钟.③依题意,当t=20分钟时,妈妈从家里出发开始追赶小华,此时小华距商店为1800−20×60=600米,只需10分钟,即t=30分钟,小华到达商店.而此时妈妈距离商店为1800−10×120=600米>360米,∴120(t−5)+360=1800×2,解得t=32分钟,∴t=8,12或32分钟时,两人相距360米(1)根据图象即可求出答案.(2)根据时间范围列出函数关系式即可(3)根据两人的运动情况分类讨论,列出相应的方程即可求出答案.本题考查一次函数,解题的关键是正确找出题中的等量关系,本题属于基础中等.。
2020年湖北省仙桃市、潜江市、天门市、江汉油田中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3分)下列各数中,比﹣2小的数是()A.0B.﹣3C.﹣1D.|﹣0.6| 2.(3分)如图是由4个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.3.(3分)我国自主研发的“北斗系统”现已广泛应用于国防、生产和生活等各个领域,多项技术处于国际领先地位,其星载原子钟的精度,已经提升到了每3000000年误差1秒.数3000000用科学记数法表示为()A.0.3×106B.3×107C.3×106D.30×105 4.(3分)将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°5.(3分)下列说法正确的是()A.为了解人造卫星的设备零件的质量情况,选择抽样调查B.方差是刻画数据波动程度的量C.购买一张体育彩票必中奖,是不可能事件D.掷一枚质地均匀的硬币,正面朝上的概率为16.(3分)下列运算正确的是()A.=±2B.()﹣1=﹣2C.a+2a2=3a3D.(﹣a2)3=﹣a67.(3分)对于一次函数y=x+2,下列说法不正确的是()A.图象经过点(1,3)B.图象与x轴交于点(﹣2,0)C.图象不经过第四象限D.当x>2时,y<48.(3分)一个圆锥的底面半径是4cm,其侧面展开图的圆心角是120°,则圆锥的母线长是()A.8cm B.12cm C.16cm D.24cm 9.(3分)关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1B.﹣4C.﹣4或1D.﹣1或4 10.(3分)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3分)已知正n边形的一个内角为135°,则n的值是.12.(3分)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了场.13.(3分)如图,海中有个小岛A,一艘轮船由西向东航行,在点B 处测得小岛A位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D处,测得小岛A在它的北偏西60°方向,此时轮船与小岛的距离AD为海里.14.(3分)有3张看上去无差别的卡片,上面分别写着2,3,4.随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字之和是奇数的概率为.15.(3分)某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为元.16.(3分)如图,已知直线a:y=x,直线b:y=﹣x和点P(1,0),过点P作y轴的平行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为.三、解答题(本大题共8个小题,满分72分.)17.(12分)(1)先化简,再求值:÷,其中a=﹣1.(2)解不等式组,并把它的解集在数轴上表示出来.18.(6分)在平行四边形ABCD中,E为AD的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC上找出一点M,使点M是BC的中点;(2)如图2,在BD上找出一点N,使点N是BD的一个三等分点.19.(7分)5月20日九年级复学啦!为了解学生的体温情况,班主任张老师根据全班学生某天上午的《体温监测记载表》,绘制了如下不完整的频数分布表和扇形统计图.学生体温频数分布表组别温度(℃)频数(人数)甲36.36乙36.4a丙36.520丁36.64请根据以上信息,解答下列问题:(1)频数分布表中a=,该班学生体温的众数是,中位数是;(2)扇形统计图中m=,丁组对应的扇形的圆心角是度;(3)求该班学生的平均体温(结果保留小数点后一位).20.(8分)把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2.(1)直接写出抛物线C2的函数关系式;(2)动点P(a,﹣6)能否在抛物线C2上?请说明理由;(3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1,y2的大小,并说明理由.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D的直线EF交AC于点F,交AB的延长线于点E,且∠BAC=2∠BDE.(1)求证:DF是⊙O的切线;(2)当CF=2,BE=3时,求AF的长.22.(9分)如图,直线AB与反比例函数y=(x>0)的图象交于A,B两点,已知点A的坐标为(6,1),△AOB的面积为8.(1)填空:反比例函数的关系式为;(2)求直线AB的函数关系式;(3)动点P在y轴上运动,当线段PA与PB之差最大时,求点P 的坐标.23.(10分)实践操作:第一步:如图1,将矩形纸片ABCD沿过点D的直线折叠,使点A 落在CD上的点A'处,得到折痕DE,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD上的点C′处,点B落在点B'处,得到折痕EF,B'C′交AB于点M,C′F交DE于点N,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA'D的形状是;(2)如图2,线段MC′与ME是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若AC′=2cm,DC'=4cm,求DN:EN的值.24.(12分)小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟,在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段AB表示小华和商店的距离y1(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是米/分钟,妈妈在家装载货物所用时间是分钟,点M的坐标是.(2)直接写出妈妈和商店的距离y2(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;(3)求t为何值时,两人相距360米.答案一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.参考答案:解:∵|﹣0.6|=0.6,∴﹣3<﹣2<﹣1<0<|﹣0.6|.故选:B.2.参考答案:解:俯视图就是从上面看到的图形,因此选项C的图形符合题意,故选:C.3.参考答案:解:3000000=3×106,故选:C.4.参考答案:解:∵∠B=90°,∠A=45°,∴∠ACB=45°.∵∠EDF=90°,∠F=60°,∴∠DEF=30°.∵EF∥BC,∴∠EDC=∠DEF=30°,∴∠CED=∠ACB﹣∠EDC=45°﹣30°=15°.故选:A.5.参考答案:解:为了解人造卫星的设备零件的质量情况,应选择全面调查,即普查,不宜选择抽样调查,因此选项A不符合题意;方差是刻画数据波动程度的量,反映数据的离散程度,因此选项B 符合题意;购买一张体育彩票中奖,是可能的,只是可能性较小,是可能事件,因此选项C不符合题意;掷一枚质地均匀的硬币,正面朝上的概率为,因此选项D不符合题意;故选:B.6.参考答案:解:A.因为=2,所以A选项错误;B.因为()﹣1=2,所以B选项错误;C.因为a与2a2不是同类项,不能合并,所以C选项错误;D.因为(﹣a2)3=﹣a6,所以D选项正确.故选:D.7.参考答案:解:∵一次函数y=x+2,∴当x=1时,y=3,∴图象经过点(1,3),故选项A正确;令y=0,解得x=﹣2,∴图象与x轴交于点(﹣2,0),故选项B正确;∵k=1>0,b=2>0,∴不经过第四象限,故选项C正确;∵k=1>0,∴函数值y随x的增大而增大,当x=2时,y=4,∴当x>2时,y>4,故选项D不正确,故选:D.8.参考答案:解:圆锥的底面周长为2π×4=8πcm,即为展开图扇形的弧长,由弧长公式得,=8π,解得,R=12,即圆锥的母线长为12cm.故选:B.9.参考答案:解:∵关于x的方程x2﹣2(m﹣1)x+m2=0有两个实数根,∴△=[2(m﹣1)]2﹣4×1×(m2﹣m)=﹣4m+4≥0,解得:m≤1.∵关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,∴α+β=﹣2(m﹣1),α•β=m2﹣m,∴α2+β2=(α+β)2﹣2α•β=[﹣2(m﹣1)]2﹣2(m2﹣m)=12,即m2﹣3m﹣4=0,解得:m=﹣1或m=4(舍去).故选:A.10.参考答案:解:如图,作AM⊥BD于M,AN⊥EC于N.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴EC=BD,∠BDA=∠AEC,故①正确∵∠DOF=∠AOE,∠DFO=∠EAO=90°,∴BD⊥EC,故②正确,∵△BAD≌△CAE,AM⊥BD,AN⊥EC,∴AM=AN,∴FA平分∠EFB,∴∠AFE=45°,故④正确,若③成立,则∠AEF=∠ABD=∠ADB,推出AB=AD,显然与条件矛盾,故③错误,故选:C.二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.参考答案:解:∵正n边形的一个内角为135°,∴正n边形的一个外角为180°﹣135°=45°,∴n=360°÷45°=8.故答案为:8.12.参考答案:解:设该队胜了x场,负了y场,依题意有,解得.故该队胜了9场.故答案为:9.13.参考答案:解:如图,过点A作AC⊥BD于点C,根据题意可知:∠BAC=∠ABC=45°,∠ADC=30°,AB=20,在Rt△ABC中,AC=BC=AB•sin45°=20×=10,在Rt△ACD中,∠ADC=30°,∴AD=2AC=20(海里).答:此时轮船与小岛的距离AD为20海里.故答案为:20.14.参考答案:解:画树状图得:∵共有9种等可能的结果,两次取出的数字之和是奇数的有4种结果,∴两次取出的数字之和是奇数的概率为,故答案为:.15.参考答案:解:设每顶头盔的售价为x元,获得的利润为w元,w=(x﹣50)[200+(80﹣x)×20]=﹣20(x﹣70)2+8000,∴当x=70时,w取得最大值,此时w=8000,故答案为:70.16.参考答案:解:∵点P(1,0),P1在直线y=x上,∴P1(1,1),∵P1P2∥x轴,∴P2的纵坐标=P1的纵坐标=1,∵P2在直线y=﹣x上,∴1=﹣x,∴x=﹣2,∴P2(﹣2,1),即P2的横坐标为﹣2=﹣21,同理,P3的横坐标为﹣2=﹣21,P4的横坐标为4=22,P5=22,P6=﹣23,P7=﹣23,P8=24…,∴P4n=2,∴P2020的横坐标为2=21010,故答案为:21010.三、解答题(本大题共8个小题,满分72分.)17.参考答案:解:(1)原式=•=,当a=﹣1时,原式==2;(2),∵解不等式①得:x>﹣2,解不等式②得:x≤4,∴不等式组的解集是:﹣2<x≤4,在数轴上表示为:.18.参考答案:解:(1)如图1,M点就是所求作的点:(2)如图2,点N就是所求作的点:19.参考答案:解:(1)20÷50%=40(人),a=40×25%=10;36.5出现了20次,次数最多,所以众数是36.5;40个数据按从小到大的顺序排列,其中第20、21个数据都是36.5,所以中位数是(36.5+36.5)÷2=36.5.故答案为:10,36.5,36.5;(2)m%=×100%=15%,m=15;360°×=36°.故答案为:15,36;(3)该班学生的平均体温为:=36.455≈36.5(℃).20.参考答案:解:(1)∵y=x2+2x+3=(x+1)2+2,∴把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2:y=(x+1﹣4)2+2﹣5,即y=(x ﹣3)2﹣3,∴抛物线C2的函数关系式为:y=(x﹣3)2﹣3.(2)动点P(a,﹣6)不在抛物线C2上,理由如下:∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,∴函数的最小值为﹣3,∵﹣6<﹣3,∴动点P(a,﹣6)不在抛物线C2上;(3)∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,∴抛物线的开口向上,对称轴为x=3,∴当x<3时,y随x的增大而减小,∵点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0<3,∴y1>y2.21.参考答案:(1)证明:连接OD,AD,∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴∠BAC=2∠BAD,∵∠BAC=2∠BDE,∴∠BDE=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∵∠ADO+∠ODB=90°,∴∠BDE+∠ODB=90°,∴∠ODE=90°,即DF⊥OD,∵OD是⊙O的半径,∴DF是⊙O的切线.(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵BO=AO,∴OD∥AC,∴△EOD∽△EAF,∴,设OD=x,∵CF=2,BE=3,∴OA=OB=x,AF=AC﹣CF=2x﹣2,∴EO=x+3,EA=2x+3,∴=,解得x=6,经检验,x=6是分式方程的解,∴AF=2x﹣2=10.22.参考答案:解:(1)将点A坐标(6,1)代入反比例函数解析式y=,得k=1×6=6,则y=,故答案为:y=;(2)过点A作AC⊥x轴于点C,过B作BD⊥y轴于D,延长CA,DB交于点E,则四边形ODEC是矩形,设B(m,n),∴mn=6,∴BE=DE﹣BD=6﹣m,AE=CE﹣AC=n﹣1,∴S△ABE==,∵A、B两点均在反比例函数y=(x>0)的图象上,∴S△BOD=S△AOC==3,∴S△AOB=S矩形ODEC﹣S△AOC﹣S△BOD﹣S△ABE=6n﹣3﹣3﹣=3n﹣m,∵△AOB的面积为8,∴3n﹣m=8,∴m=6n﹣16,∵mn=6,∴3n2﹣8n﹣3=0,解得:n=3或﹣(舍),∴m=2,∴B(2,3),设直线AB的解析式为:y=kx+b,则,解得:,∴直线AB的解析式为:y=﹣x+4;(3)如图,根据“三角形两边之差小于第三边可知:当点P为直线AB与y轴的交点时,PA﹣PB有最大值是AB,把x=0代入y=﹣x+4中,得:y=4,∴P(0,4).23.参考答案:解:(1)∵ABCD是矩形,∴∠A=∠ADC=90°,∵将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,∴AD=AD′,AE=A′E,∠ADE=∠A′DE=45°,∴∵AB∥CD,∴∠AED=∠A′DE=∠ADE,∴AD=AD′,∴AD=AE=A′E=A′D,∴四边形AEA′D是菱形,∵∠A=90°,∴四边形AEA′D是正方形.故答案为:正方形;(2)MC′=ME.证明:如图1,连接C′E,由(1)知,AD=AE,∵四边形ABCD是矩形,∴AD=BC,∠EAC′=∠B=90°,由折叠知,B′C′=BC,∠B=∠B′,∴AE=B′C′,∠EAC′=∠B′,又EC′=C′E,∴Rt△EC′A≌Rt△CEB′(HL),∴∠C′EA=∠EC′B′,∴MC′=ME;(3)∵Rt△EC′A≌Rt△CEB′,∴AC′=B′E,由折叠知,B′E=BD,∴AC′=BE,∵AC′=2cm,DC′=4cm,∴AB=CD=2+4+2=8(cm),设DF=xcm,则FC′=FC=(8﹣x)cm,∵DC′2+DF2=FC′2,∴42+x2=(8﹣x)2,解得,x=3,即DF=3cm,如图2,延长BA、FC′交于点G,则∠AC′G=∠DC′F,∴tan∠AC′G=tan∠DC′F=,∴,∴,∵DF∥EG,∴△DNF∽△ENG,∴.24.参考答案:解:(1)妈妈骑车的速度为120米/分钟,妈妈在家装载货物时间为5分钟,点M的坐标为(20,1200).故答案为:120,5,(20,1200).(2),其图象如图所示,(3)由题意可知:小华速度为60米/分钟,妈妈速度为120米/分钟,①相遇前,依题意有60t+120t+360=1800,解得t=8分钟,②相遇后,依题意有,60t+120t﹣360=1800,解得t=12分钟.③依题意,当t=20分钟时,妈妈从家里出发开始追赶小华,此时小华距商店为1800﹣20×60=600米,只需10分钟,即t=30分钟,小华到达商店.而此时妈妈距离商店为1800﹣10×120=600米>360米,∴120(t﹣5)+360=1800×2,解得t=32分钟,∴t=8,12或32分钟时,两人相距360米。
2020年湖北省天门市中考数学试卷(考试时间:120分钟满分:120分)一、选择题(本大题共10个小题,每小题3分,满分30分)1.下列各数中,比﹣2小的数是()A.0 B.﹣3 C.﹣1 D.|﹣0.6|2.如图是由4个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.3.我国自主研发的“北斗系统”现已广泛应用于国防、生产和生活等各个领域,多项技术处于国际领先地位,其星载原子钟的精度,已经提升到了每3000000年误差1秒.数3000000用科学记数法表示为()A.0.3×106B.3×107C.3×106D.30×1054.将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°5.下列说法正确的是()A.为了解人造卫星的设备零件的质量情况,选择抽样调查B.方差是刻画数据波动程度的量C.购买一张体育彩票必中奖,是不可能事件D.掷一枚质地均匀的硬币,正面朝上的概率为16.下列运算正确的是()A.=±2 B.()﹣1=﹣2 C.a+2a2=3a3D.(﹣a2)3=﹣a67.对于一次函数y=x+2,下列说法不正确的是()A.图象经过点(1,3)B.图象与x轴交于点(﹣2,0)C.图象不经过第四象限D.当x>2时,y<48.一个圆锥的底面半径是4cm,其侧面展开图的圆心角是120°,则圆锥的母线长是()A.8cm B.12cm C.16cm D.24cm9.关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1 B.﹣4 C.﹣4或1 D.﹣1或410.如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题共6个小题,每小题3分,满分18分)11.已知正n边形的一个内角为135°,则n的值是.12.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了场.13.如图,海中有个小岛A,一艘轮船由西向东航行,在点B处测得小岛A位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D处,测得小岛A在它的北偏西60°方向,此时轮船与小岛的距离AD为海里.14.有3张看上去无差别的卡片,上面分别写着2,3,4.随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字之和是奇数的概率为.15.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为元.16.如图,已知直线a:y=x,直线b:y=﹣x和点P(1,0),过点P作y轴的平行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为.三、解答题(本大题共8个小题,满分72分.)17.(12分)(1)先化简,再求值:÷,其中a=﹣1.(2)解不等式组,并把它的解集在数轴上表示出来.18.(6分)在平行四边形ABCD中,E为AD的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC上找出一点M,使点M是BC的中点;(2)如图2,在BD上找出一点N,使点N是BD的一个三等分点.19.(7分)5月20日九年级复学啦!为了解学生的体温情况,班主任张老师根据全班学生某天上午的《体温监测记载表》,绘制了如下不完整的频数分布表和扇形统计图.学生体温频数分布表组别温度(℃)频数(人数)甲36.3 6乙36.4 a丙36.5 20丁36.6 4请根据以上信息,解答下列问题:(1)频数分布表中a=,该班学生体温的众数是,中位数是;(2)扇形统计图中m=,丁组对应的扇形的圆心角是度;(3)求该班学生的平均体温(结果保留小数点后一位).20.(8分)把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2.(1)直接写出抛物线C2的函数关系式;(2)动点P(a,﹣6)能否在抛物线C2上?请说明理由;(3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1,y2的大小,并说明理由.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D的直线EF交AC于点F,交AB的延长线于点E,且∠BAC=2∠BDE.(1)求证:DF是⊙O的切线;(2)当CF=2,BE=3时,求AF的长.22.(9分)如图,直线AB与反比例函数y=(x>0)的图象交于A,B两点,已知点A的坐标为(6,1),△AOB的面积为8.(1)填空:反比例函数的关系式为;(2)求直线AB的函数关系式;(3)动点P在y轴上运动,当线段PA与PB之差最大时,求点P的坐标.23.(10分)实践操作:第一步:如图1,将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD上的点C′处,点B落在点B'处,得到折痕EF,B'C′交AB于点M,C′F交DE于点N,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA'D的形状是;(2)如图2,线段MC′与ME是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若AC′=2cm,DC'=4cm,求DN:EN的值.24.(12分)小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟,在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t (分钟)的函数关系的图象;图2中线段AB表示小华和商店的距离y1(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是米/分钟,妈妈在家装载货物所用时间是分钟,点M的坐标是.(2)直接写出妈妈和商店的距离y2(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;(3)求t为何值时,两人相距360米.参考答案与试题解析一、选择题1.【解答】解:∵|﹣0.6|=0.6,∴﹣3<﹣2<﹣1<0<|﹣0.6|.故选:B.2.【解答】解:俯视图就是从上面看到的图形,因此选项C的图形符合题意,故选:C.3.【解答】解:3000000=3×106,故选:C.4.【解答】解:∵∠B=90°,∠A=45°,∴∠ACB=45°.∵∠EDF=90°,∠F=60°,∴∠DEF=30°.∵EF∥BC,∴∠EDC=∠DEF=30°,∴∠CED=∠ACB﹣∠EDC=45°﹣30°=15°.故选:A.5.【解答】解:为了解人造卫星的设备零件的质量情况,应选择全面调查,即普查,不宜选择抽样调查,因此选项A不符合题意;方差是刻画数据波动程度的量,反映数据的离散程度,因此选项B符合题意;购买一张体育彩票中奖,是可能的,只是可能性较小,是可能事件,因此选项C不符合题意;掷一枚质地均匀的硬币,正面朝上的概率为,因此选项D不符合题意;故选:B.6.【解答】解:A.因为=2,所以A选项错误;B.因为()﹣1=2,所以B选项错误;C.因为a与2a2不是同类项,不能合并,所以C选项错误;D.因为(﹣a2)3=﹣a6,所以D选项正确.故选:D.7.【解答】解:∵一次函数y=x+2,∴当x=1时,y=3,∴图象经过点(1,3),故选项A正确;令y=0,解得x=﹣2,∴图象与x轴交于点(﹣2,0),故选项B正确;∵k=1>0,b=2>0,∴不经过第四象限,故选项C正确;∵k=1>0,∴函数值y随x的增大而增大,当x=2时,y=4,∴当x>2时,y>4,故选项D不正确,故选:D.8.【解答】解:圆锥的底面周长为2π×4=8πcm,即为展开图扇形的弧长,由弧长公式得,=8π,解得,R=12,即圆锥的母线长为12cm.故选:B.9.【解答】解:∵关于x的方程x2﹣2(m﹣1)x+m2=0有两个实数根,∴△=[2(m﹣1)]2﹣4×1×(m2﹣m)=﹣4m+4≥0,解得:m≤1.∵关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,∴α+β=﹣2(m﹣1),α•β=m2﹣m,∴α2+β2=(α+β)2﹣2α•β=[﹣2(m﹣1)]2﹣2(m2﹣m)=12,即m2﹣3m﹣4=0,解得:m=﹣1或m=4(舍去).故选:A.10.【解答】解:如图,作AM⊥BD于M,AN⊥EC于N.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴EC=BD,∠BDA=∠AEC,故①正确∵∠DOF=∠AOE,∠DFO=∠EAO=90°,∴BD⊥EC,故②正确,∵△BAD≌△CAE,AM⊥BD,AN⊥EC,∴AM=AN,∴FA平分∠EFB,∴∠AFE=45°,故④正确,若③成立,则∠AEF=∠ABD=∠ADB,推出AB=AD,显然与条件矛盾,故③错误,故选:C.二、填空题11.【解答】解:∵正n边形的一个内角为135°,∴正n边形的一个外角为180°﹣135°=45°,∴n=360°÷45°=8.故答案为:8.12.【解答】解:设该队胜了x场,负了y场,依题意有,解得.故该队胜了9场.故答案为:9.13.【解答】解:如图,过点A作AC⊥BD于点C,根据题意可知:∠BAC=∠ABC=45°,∠ADC=30°,AB=20,在Rt△ABC中,AC=BC=AB•sin45°=20×=10,在Rt△ACD中,∠ADC=30°,∴AD=2AC=20(海里).答:此时轮船与小岛的距离AD为20海里.故答案为:20.14.【解答】解:画树状图得:∵共有9种等可能的结果,两次取出的数字之和是奇数的有4种结果,∴两次取出的数字之和是奇数的概率为,故答案为:.15.【解答】解:设每顶头盔的售价为x元,获得的利润为w元,w=(x﹣50)[200+(80﹣x)×20]=﹣20(x﹣70)2+8000,∴当x=70时,w取得最大值,此时w=8000,故答案为:70.16.【解答】解:∵点P(1,0),P1在直线y=x上,∴P1(1,1),∵P1P2∥x轴,∴P2的纵坐标=P1的纵坐标=1,∵P2在直线y=﹣x上,∴1=﹣x,∴x=﹣2,∴P2(﹣2,1),即P2的横坐标为﹣2=﹣21,同理,P3的横坐标为﹣2=﹣21,P4的横坐标为4=22,P5=22,P6=﹣23,P7=﹣23,P8=24…,∴P4n=2,∴P2020的横坐标为2=21010,故答案为:21010.三、解答题17.【解答】解:(1)原式=•=,当a=﹣1时,原式==2;(2),∵解不等式①得:x>﹣2,解不等式②得:x≤4,∴不等式组的解集是:﹣2<x≤4,在数轴上表示为:.18.【解答】解:(1)如图1,F点就是所求作的点:(2)如图2,点N就是所求作的点:19.【解答】解:(1)20÷50%=40(人),a=40×25%=10;36.5出现了20次,次数最多,所以众数是36.5;40个数据按从小到大的顺序排列,其中第20、21个数据都是36.5,所以中位数是(36.5+36.5)÷2=36.5.故答案为:10,36.5,36.5;(2)m%=×100%=15%,m=15;360°×=36°.故答案为:15,36;(3)该班学生的平均体温为:=36.455≈36.5(℃).20.【解答】解:(1)∵y=x2+2x+3=(x+1)2+2,∴把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2:y=(x+1﹣4)2+2﹣5,即y=(x﹣3)2﹣3,∴抛物线C2的函数关系式为:y=(x﹣3)2﹣3.(2)动点P(a,﹣6)不在抛物线C2上,理由如下:∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,∴函数的最小值为﹣3,∵﹣6<﹣3,∵动点P(a,﹣6)不在抛物线C2上;(3)∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,∴抛物线的开口向上,对称轴为x=3,∴当x<3时,y随x的增大而减小,∵点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0<3,∴y1>y2.21.【解答】解:(1)连接OD,AD,∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴∠BAC=2∠BAD,∵∠BAC=2∠BDE,∴∠BDE=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∵∠ADO+∠ODB=90°,∴∠BDE+∠ODB=90°,∴∠ODE=90°,即DF⊥OD,∵OD是⊙O的半径,∴DF是⊙O的切线.(2)∵AB=AC,AD⊥BC,∴BD=CD,∵BO=AO,∴OD∥AC,∴△EOD∽△EAF,∴,设OD=x,∵CF=2,BE=3,∴OA=OB=x,AF=AC﹣CF=2x﹣2,∴EO=x+3,EA=2x+3,∴=,解得x=6,经检验,x=6是分式方程的解,∴AF=2x﹣2=10.22.【解答】解:(1)解:(1)将点A坐标(6,1)代入反比例函数解析式y=,得k=1×6=6,则y=,故答案为:y=;(2)过点A作AC⊥x轴于点C,过B作BD⊥y轴于D,延长CA,DB交于点E,则四边形ODEC是矩形,设B(m,n),∴mn=6,∴BE=DE﹣BD=6﹣m,AE=CE﹣AC=n﹣1,∴S△ABE==,∵A、B两点均在反比例函数y=(x>0)的图象上,∴S△BOD=S△AOC==3,∴S△AOB=S矩形ODEC﹣S△AOC﹣S△BOD﹣S△ABE=6n﹣3﹣3﹣=3n﹣m,∵△AOB的面积为8,∴3n﹣m=8,∴m=6n﹣16,∵mn=6,∴3n2﹣8n﹣3=0,解得:n=3或﹣(舍),∴m=2,∴B(2,3),设直线AB的解析式为:y=kx+b,则,解得:,∴直线AB的解析式为:y=﹣x+4;(3)如图,根据“三角形两这边之差小于第三边可知:当点P为直线AB与y轴的交点时,PA﹣PB有最大值是AB,把x=0代入y=﹣x+4中,得:y=4,∴P(0,4).23.【解答】解:(1)∵ABCD是矩形,∴∠A=∠ADC=90°,∵将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,∴AD=AD′,AE=A′E,∠ADE=∠A′DE=45°,∴∵AB∥CD,∴∠AED=∠A′DE=∠ADE,∴AD=AD′,∴AD=AE=A′E=A′D,∴四边形AEA′D是菱形,∵∠A=90°,∴四边形AEA′D是正方形.故答案为:正方形;(2)MC′=ME.证明:如图1,连接C′E,由(1)知,AD=AE,∵四边形ABCD是矩形,∴AD=BC,∠EAC′=∠B=90°,由折叠知,B′C′=BC,∠B=∠B′,∴AE=B′C′,∠EAC′=∠B′,又EC′=C′E,∴Rt△EC′A≌Rt△CEB′(HL),∴∠C′EA=∠EC′B′,∴MC′=ME;(3)∵Rt△EC′A≌Rt△CEB′,∴AC′=B′E,由折叠知,B′E=BD,∴AC′=BE,∵AC′=2cm,DC′=4cm,∴AB=CD=2+4+2=8(cm),设DF=xcm,则FC′=FC=(8﹣x)cm,∵DC′2+DF2=FC′2,∴42+x2=(8﹣x)2,解得,x=3,即DF=3cm,如图2,延长BA、FC′交于点G,则∠AC′G=∠DC′F,∴tan∠AC′G=tan∠DC′F=,∴,∴,∵DF∥EG,∴△DNF∽△ENG,∴.24.【解答】解:(1)妈妈骑车的速度为120米/分钟,妈妈在家装载货物时间为5分钟,点M的坐标为(20,1200).(2),其图象如图所示,(3)由题意可知:小华速度为60米/分钟,妈妈速度为120米/分钟,①相遇前,依题意有60t+120t+360=1800,解得t=8分钟,②相遇后,依题意有,60t+120t﹣360=1800,解得t=12分钟.③依题意,当t=20分钟时,妈妈从家里出发开始追赶小华,此时小华距商店为1800﹣20×60=600米,只需10分钟,即t=30分钟,小华到达商店.而此时妈妈距离商店为1800﹣10×120=600米>360米,∴120(t﹣5)+360=1800×2,解得t=32分钟,∴t=8,12或32分钟时,两人相距360米。