高三数学古典概型3
- 格式:ppt
- 大小:750.50 KB
- 文档页数:41
人教版高中数学必修三第三章概率§1.4古典概型(ClassicalProbability)§1.4 古典概型(Classical Probability)一、排列与组合公式的复习1. 两大计数原理:乘法原理,加法原理(简单介绍)。
2. 排列、组合的定义及计算公式(1)排列:())( ),1()2)(1(!! n r r n n n n r n n A r n ≤+---=-= ,特例,全排列!n A n n =。
(2)组合: )( ,!)1()2)(1(!n r r r n n n n r A r n C r n r n≤+---==???? ??= 特例,1,0==-n r n n r n C C C 。
3. 从n 个不同的球中摸取r 个球,(1)有放回计序(重复排列):rn 种取法;(2)无放回种取法;不计序(组合):种取法;计序(排列):r n r n C A 二、古典概型(等可能概型)(Classical probability)1. 古典概型“概型”是指某种概率模型。
“古典概型”是一种最简单、最直观的概率模型。
它具有下述特征:(1)样本空间的元素(基本事件)只有有限个,不妨设为n 个,记为{}n e e e S ,,,21 =;(2)每个基本事件出现的可能性是相等的,即有{}{}{})()()(21n e P e P e P === 。
称这种数学模型为古典概型(Classical probability)或等可能概型。
它在概率论中具有非常重要的地位,一方面它比较简单,既直观,又容易理解,另一方面它概括了许多实际内容,有很广泛的应用。
2. 等可能概型中事件概率的计算:设在古典概型中,试验E 共有n 个基本事件,事件A 包含了k 个基本事件,则事件A 的概率为基本事件总数的有利事件数中的基本事件总数中所含的基本事件数A S A n k A P ===)(. (A 中所含的基本事件数,习惯上常常称为是A 的有利事件数),不难验证,上述的概率)(?P 的确具有非负性、规范性和有限可加性.)(【注】讲课时可以简单证明这个公式)求解古典概率问题,一般要做好三方面的工作:一是判明问题性质,分辨所解的问题,是不是古典概率问题.如果问题所及的试验,具有以下两个基本特征:(1)试验的样本空间的元素只有有限个;(2)试验中每个样本点出现的可能性相同.那么,我们就可断定它是一个古典概率问题.二是掌握古典概率的计算公式.如果样本空间包含的样本点的总数为n ,事件A 包含的样本点数(即A 的有利场合的数目)为k ,那么事件A 的概率是 P(A)=n k =样本点总数包含的样本点数事件A =样本点总数的有利场合数A . 三是根据公式要求,确定n 和k 的数值. 这是解题的关键性一步,计算方法灵活多变,没有一个固定的模式. 古典概率一种解法大体都是围绕n 和k 的计算而展开的.三、几类基本问题:抛硬币、掷骰(t óu)子、摸球、取数等随机试验,在概率问题的研究中,有着十分重要的意义. 一方面,这些随机试验,是人们从大量的随机现象中筛选出来的理想化的概率模型.它们的内容生动形象,结构清楚明确,富有直观性和典型性,便于深入浅出地反映事物的本质,揭示事物的规律. 另一方面,这种模型化的处理方法,思想活泼,应用广泛,具有极大的普遍性,不少复杂问题的解决,常常可以归结为某种简单的模型. 因此,有目的地考察并掌握若干常见的概率模型,有助于我们举一反三,触类旁通,丰富解题的技能和技巧,从根本上提高解答概率题的能力.本部分主要讨论古典概率中的五类基本问题(摸球问题、分球入盒问题、随机取数问题、抽签问题和分组问题),给出它们的一般解法,指出它们的典型意义,介绍它们的常见应用.例1(摸球问题)一袋中有8个大小形状相同的球,其中5个黑色球,三个白色球。
名,各年级男、女生人数如下表:0.18例题: 一般地,如果事件 ,,, 两两互斥(彼此互斥),那么事件“ ”发生(是指事件 ,,, 中至少有一个发生)的概率,等于这 个事件发生的概率和,即(3)对立事件的概率:若事件 与事件 互为对立事件,则 为必然事件,.高考不提分,赔付1万元,关注快乐学了解详情。
A 1A 2⋯A n ∪∪⋯∪A 1A 2A n A 1A 2⋯A n n P (∪∪⋯∪)=P ()+P ()+⋯+P ().A 1A 2A n A 1A 2A n AB A ∪B P (A ∪B )=1 盒子里有 个红球, 个白球,现从中任取 个球,设事件 ,事件,事件 ,事件.(1)事件 与 、是什么样的运算关系?(2)事件 与的交事件是什么事件?解:(1)对于事件 ,可能的结果为 个红球 个白球,或 个红球 个白球,故 .(2)对于事件 ,可能的结果为 个红球 个白球, 个红球 个白球,个均为红球,故 .643A ={3个球中有1个红球,2个白球}B ={3个球中有2个红球,1个白球}C ={3个球中至少有1个红球}D ={3个球中既有红球又有白球}D A B C A D 1221D =A ∪B C 12213C ∩A =A 判断下列给出的每对事件是否为互斥事件,是否为对立事件,并说明理由.从 张扑克牌(红桃、黑桃、方块、梅花的牌面数字都是从 到 )中任意抽取 张.(1)“抽出红桃”与“抽出黑桃”;(2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌的牌面数字为 的倍数”与“抽出的牌的牌面数字大于 ”.解:(1)是互斥事件,不是对立事件.从 张扑克牌中任意抽取 张,“抽出红桃”和“抽出黑桃”是不可能同时发生的,所以是互斥事件.由于可能抽出方块或者梅花,因此不能保证其中必有一个发生,所以二者不是对立事件.(2)既是互斥事件,又是对立事件.从 张扑克牌中任意抽取 张,“抽取红色牌”与“抽取黑色牌”不可能同时发生,且其中必有一个发生,所以它们既是互斥事件,又是对立事件.(3)不是互斥事件,也不是对立事件.从 张扑克牌中任意抽取 张,“抽出的牌的牌面数字为 的倍数”与“抽出的牌的数字大于 ”这两个事件可能同时发生,如抽出的牌的牌面数字为 ,因此二者不是互斥事件,当然也不可能是对立事件.401101594014014015910某人去开会,他乘火车、轮船、汽车、飞机去的概率分别为 ,,,.(1)求他乘火车或乘飞机去的概率;(2)求他不乘轮船去的概率;(3)请问他可能乘何种交通工具去的概率为 ?解:(1)记“他乘火车去”为事件 ,“他乘轮船去”为事件 ,“他乘汽车去”为事件 ,“他乘飞机去”为事件 ,这四个事件不可能同时发生,故它们彼此互斥.所以(2)设他不乘轮船去的概率为 ,则(3)由于故他有可能乘火车或乘轮船去,也有可能乘汽车或乘飞机去.0.30.20.10.40.5A 1A 2A 3A 4P (∪)=P ()+P ()=0.3+0.4=0.7.A 1A 4A 1A 4P P =1−P ()=1−0.2=0.8.A 20.3+0.2=0.5,0.1+0.4=0.5,。