导数中的分类讨论,这样分,不会错!
- 格式:docx
- 大小:63.23 KB
- 文档页数:5
导数中分类讨论的三种常见类型高中数学中,分类讨论思想是解决含有参数的复杂数学问题的重要途径,而所谓分类讨论,就是当问题所给的研究对象不能进行统一的研究处理时,对研究对象按照某种标准进行分类,然后对每一类的对象进行分别的研究并得出结论,最后综合各类的研究结果对问题进行整体的解释.几乎所有的高中生都对分类讨论思想有所了解,而能正确运用分类讨论思想解决问题的不到一半,不能运用分类讨论思想解决具体问题的主要原因是对于一个复杂的数学问题不知道该不该去分类以及如何进行合理的分类,下面根据导数中3种比较常见的分类讨论类型谈谈导数中如何把握对参数的分类讨论. 1.导函数根的大小比较实例1:求函数()321132a f x x x ax a -=+--,x R ∈的单调区间.分析:对于三次或三次以上的函数求单调区间,基本上都是用求导法,所以对函数()321132a f x x x ax a -=+--进行求导可以得到导函数()()'21f x x a x a =+--,观察可知导函数可以因式分解为()()()()'211f x x a x a x a x =+--=-+,由此可知方程()'0f x =有两个实根1x a =,21x =-,由于a 的围未知,要讨论函数()321132a f x x x ax a -=+--的单调性,需要讨论两个根的大小,所以这里分1a <-,1a =-,1a >-三种情况进行讨论:当1a <-时,()f x ,()'f x 随x 的变化情况如下:所以,函数()f x 的单调递增区间为(),a -∞和()1,-+∞,单调递减区间为(),1a -. 当1a =-时, ()'0f x ≥在R 上恒成立,所以函数()f x 的单调递增区间为(),-∞+∞,没有单调递减区间.当1a >-时,()f x ,()'f x 随x 的变化情况如下:所以,函数()f x 的单调递增区间为(),1-∞-和(),a +∞,单调递减区间为()1,a -. 综上所述,当1a <-时,函数()f x 的单调递增区间为(),a -∞和()1,-+∞,单调递减区间为(),1a -;当1a =-时,函数()f x 的单调递增区间为(),-∞+∞,没有单调递减区间; 当1a >-时,函数()f x 的单调递增区间为(),1-∞-和(),a +∞,单调递减区间为()1,a -.点评:这道题之所以要分情况讨论,是因为导函数两个根的大小不确定,而两根的大小又会影响到原函数的单调区间,而由于a R ∈,所以要分1a <-,1a =-,1a >-三种情况,这里注意不能漏了1a =-的情况. 2.导函数的根的存在性讨论实例2:求函数()32f x x ax x =++的单调区间分析:这道题跟实例1一样,可以用求导法讨论单调区间,对函数()32f x x ax x =++进行求导可以得到导函数()'2321f x x ax =++,观察可以发现,该导函数无法因式分解,故无法确定方程23210x ax ++=是否有实根,因此首先得考虑一下方程是否有解,所以我们可以求出根判别式2412a ∆=-,若24120a ∆=-<即a <<23210x ax ++=没有实根,即()'0f x > 在R 上恒成立,所以()f x 在R 上单调递增;若24120a ∆=-=即a =,方程23210x ax ++=有两个相等的实根123ax x ==-,即()'0f x ≥在R 上恒成立,所以()f x 在R 上单调递增;若24120a ∆=->即a a <>,则方程23210x ax ++=有两个不同实根,由求根公式可解得1x =,2x =12x x <此时()f x ,()'f x 随x 的变化情况如下:综上所述,当a ≤≤()f x 的单调递增区间为(),-∞+∞,没有单调递减区间;当a a <>时,()f x 的单调递增区间为⎛-∞ ⎝⎭和⎫+∞⎪⎪⎝⎭,单调递减区间为⎝⎭点评:实例2和实例1都是求三次函数的单调区间,但是两道题分类讨论的情况不一样,实例2主要是因为导函数所对应的方程根的情况未知,所以需要讨论根的存在性问题,而实例1是因为导函数所对应的方程可以因式分解,所以可以确定方程的根肯定是存在的,因此不用再讨论,而需要讨论的是求出来两个根的大小关系,实例2则相反,实例2在方程有两个不同实根的情况下求出来的两根大小已知,所以不用再讨论。
导数中如何分类讨论在微分学中,导数是一个非常重要的概念,描述了函数在其中一点的变化率。
导数的分类讨论主要有以下几种情况:1.右导数和左导数:对于函数在其中一点的导数来说,如果左极限和右极限都存在且相等,则这个导数称为右导数和左导数。
如果左右导数相等,则称为函数在这一点处可导。
否则,函数在这一点处不可导。
2.一阶导数:函数的一阶导数描述的是函数的瞬时变化率,也就是在特定点的切线斜率。
如果函数在其中一点可导,则这一点的一阶导数存在。
通过函数的一阶导数,可以推断出函数的增减性、极值点和拐点等信息。
3.高阶导数:函数的高阶导数描述的是函数的瞬时变化率的变化率,即变化率的二阶或更高阶的导数。
高阶导数主要用于研究曲线的弯曲程度、拐弯点等。
如果函数的一阶导数存在,且一阶导数也再次可导,则可以得到函数的二阶导数。
以此类推,得到三阶导数、四阶导数,依此类推。
4.导数的连续性:对于函数的导数,我们可以考虑导数本身在其中一区间上的连续性。
如果导数在其中一区间上连续,则称该函数在该区间处可导。
连续导数的函数是很常见的类型,如多项式函数、三角函数等。
但也有一些函数在一些点处的导数不连续,如绝对值函数在零点处。
5.可导函数的性质:对于可导函数而言,还有一些特殊的性质可以讨论。
例如,连续函数的定义域上的导函数在整个区间上是无穷可微的。
光滑函数是指具有任意阶导数的函数。
对于光滑函数而言,它的导数在整个定义域上是无穷可微的。
在实际问题中,导数的分类讨论可以帮助我们更好地理解函数的性质和行为。
通过分析导数的分类情况,可以确定函数的增减性、极值点和拐点等重要信息,从而为更深入的研究函数提供了基础。
同时,导数的分类讨论也有助于我们理解函数之间的关系和运算法则,如链式法则、乘积法则和商法则等。
综上所述,导数的分类讨论在微分学中是非常重要的。
对函数的导数进行分类讨论,可以帮助我们更好地理解函数的性质和行为,并进一步研究更复杂的数学问题。
导数习题题型十七:含参数导数问题的分类讨论问题含参数导数问题的分类讨论问题1.求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。
★已知函数ax x a x x f 2)2(2131)(23++-=(a 〉0),求函数的单调区间)2)((2)2()(--=++-='x a x a x a x x f ★★例1 已知函数x a xax x f ln )2(2)(+--=(a 〉0)求函数的单调区间 222))(2(2)2()(x a x x x a x a x x f --=++-='★★★例3已知函数()()22211ax a f x x R x -+=∈+,其中a R ∈。
(Ⅰ)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。
解:(Ⅰ)当1a =时,曲线()y f x =在点()()2,2f 处的切线方程为032256=-+y x 。
(Ⅱ)由于0a ≠,所以()()12)1(222+-+='x x a x f ,由()'0f x =,得121,x x a a=-=。
这两个实根都在定()()()()()()22'2222122122111a x a x a x x ax a a f x x x ⎛⎫--+ ⎪+--+⎝⎭==++义域R 内,但不知它们之间 的大小。
因此,需对参数a 的取值分0a >和0a <两种情况进行讨论。
(1)当0a >时,则12x x <.易得()f x 在区间1,a ⎛⎫-∞- ⎪⎝⎭,(),a +∞内为减函数,在区间1,a a ⎛⎫- ⎪⎝⎭为增函数。
故函数()f x 在11x a =-处取得极小值21f a a ⎛⎫-=- ⎪⎝⎭;函数()f x 在2x a =处取得极大值()1f a =。
帮你归纳总结五导数中常见的分类讨论在导数的学习中,我们经常会遇到各种不同的函数和问题,为了更好地理解和解决这些问题,我们需要进行分类讨论。
下面将介绍导数中常见的五种分类讨论,并探讨每种分类讨论的应用。
一、基本函数的导数基本函数是指一些常见的函数,如常数函数、幂函数、指数函数、对数函数、三角函数等。
对于这些函数,我们可以通过公式或运用基本性质来求导数。
例如,对于常数函数f(x) = c,其导数为f'(x) = 0;对于幂函数f(x) = x^n,其中n为常数,其导数为f'(x) = nx^(n-1)。
基本函数的导数可以通过记忆公式或基本性质来求解,这是导数求解中最基础的分类讨论。
二、复合函数的导数复合函数是指由两个或多个函数相互组合而成的函数。
对于复合函数的导数求解,我们可以运用链式法则。
链式法则指出,若y=f(g(x)),其中f(u)和g(x)分别是两个可导函数,则复合函数y的导数可以表示为y'=f'(g(x))*g'(x)。
通过链式法则的应用,我们可以将复合函数的导数求解转化为求两个基本函数的导数,从而简化导数的计算。
三、隐函数的导数隐函数是指由一个关系式所定义的函数,其自变量和因变量的关系并不明显。
对于隐函数的导数求解,我们可以运用隐函数求导法。
隐函数求导法是一种通过求全微分和利用导数的定义来求解隐函数的导数的方法。
具体而言,我们可以将隐函数的方程两边求导,并利用导数的表示推导出隐函数的导数表达式。
隐函数的导数求解不仅可以帮助我们理解隐函数的性质,还可以解决一些与隐函数相关的问题。
四、参数方程的导数参数方程是指用参数的形式表示的函数。
对于参数方程的导数求解,我们可以运用参数方程的求导法。
参数方程的求导法是一种通过将参数作为自变量,并利用导数的定义和基本性质来求解参数方程的导数的方法。
具体而言,我们可以将参数方程中的每个参数视为独立的变量,然后对每个参数分别求导得到参数方程对应的导数表达式。
导数中的分类讨论问题分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.” 一、参数引起的分类讨论例1.:已知函数1)1(ln )(2+-+=x p x p x f , 当0>p 时,讨论函数)(x f 的单调性。
练习1:已知函数()ln(1)(1)1f x x k x =---+,求函数()f x 的单调区间;二、判别式引起的分类讨论例2:已知函数2()ln f x x x a x =-+,()a R ∈,讨论()f x 在定义域上的单调性。
三、二次函数对称轴与给定区间引起的分类讨论 例3:已知函数322()233f x x ax x ,令()ln(1)3()g x x f x ,若()g x 在1(,)2-+∞上单调递增,求实数a 的取值范围.四、二项系数引起的分类讨论例4.已知函数2()(1)ln 1f x a x ax =+++. (1)讨论函数()f x 的单调性;(2)设a ≤-2,求证:对任意x 1,x 2∈(0,+∞),|f (x 1)-f (x 2)|≥4|x 1-x 2|.三、针对性练习1.已知函数)0(3ln )(≠∈--=a R a ax x a x f 且 .(Ⅰ)求函数)(x f 的单调区间;(Ⅱ)当2=a 时,设函数32)2()(-+--=xep x p x h ,若在区间],1[e 上至少存在一个0x ,使得)()(00x f x h >成立,试求实数p 的取值范围.2.已知函数))(1ln()(2R a x a ax x x f ∈---=,求函数)(x f 的单调区间;3.若函数x xx x f ln 2)(++=,求函数)(x f 的极值点。
导数中分类讨论的三种常见类型高中数学中,分类讨论思想是解决含有参数的复杂数学问题的重要途径,而所谓分类讨论,就是当问题所给的研究对象不能进行统一的研究处理时,对研究对象按照某种标准进行分类,然后对每一类的对象进行分别的研究并得出结论,最后综合各类的研究结果对问题进行整体的解释.几乎所有的高中生都对分类讨论思想有所了解,而能正确运用分类讨论思想解决问题的不到一半,不能运用分类讨论思想解决具体问题的主要原因是对于一个复杂的数学问题不知道该不该去分类以及如何进行合理的分类,下面根据导数中3种比较常见的分类讨论类型谈谈导数中如何把握对参数的分类讨论.类型一:导函数根的大小比较实例1:求函数()321132a f x x x ax a -=+--,x R ∈的单调区间.分析:对于三次或三次以上的函数求单调区间,基本上都是用求导法,所以对函数()321132a f x x x ax a -=+--进行求导可以得到导函数()()'21f x x a x a =+--,观察可知导函数可以因式分解为()()()()'211f x x a x a x a x =+--=-+,由此可知方程()'0f x =有两个实根1x a =,21x =-,由于a 的范围未知,要讨论函数()321132a f x x x ax a -=+--的单调性,需要讨论两个根的大小,所以这里分1a <-,1a =-,1a >-三种情况进行讨论:当1a <-时,()f x ,()'f x 随x 的变化情况如下:x (),a -∞a(),1a --1()1,-+∞()'f x +0_0+()f x 单调递增极大值单调递减极小值单调递增所以,函数()f x 的单调递增区间为(),a -∞和()1,-+∞,单调递减区间为(),1a -.当1a =-时,()'0f x ≥在R 上恒成立,所以函数()f x 的单调递增区间为(),-∞+∞,没有单调递减区间.当1a >-时,()f x ,()'f x 随x 的变化情况如下:x (),1-∞--1()1,a -a(),a +∞()'f x +0_0+()f x 单调递增极大值单调递减极小值单调递增所以,函数()f x 的单调递增区间为(),1-∞-和(),a +∞,单调递减区间为()1,a -.综上所述,当1a <-时,函数()f x 的单调递增区间为(),a -∞和()1,-+∞,单调递减区间为(),1a -;当1a =-时,函数()f x 的单调递增区间为(),-∞+∞,没有单调递减区间;当1a >-时,函数()f x 的单调递增区间为(),1-∞-和(),a +∞,单调递减区间为()1,a -.点评:这道题之所以要分情况讨论,是因为导函数两个根的大小不确定,而两根的大小又会影响到原函数的单调区间,而由于a R ∈,所以要分1a <-,1a =-,1a >-三种情况,这里注意不能漏了1a =-的情况.类型二:导函数的根的存在性讨论实例2:求函数()32f x x ax x =++的单调区间分析:这道题跟实例1一样,可以用求导法讨论单调区间,对函数()32f x x ax x =++进行求导可以得到导函数()'2321f x x ax =++,观察可以发现,该导函数无法因式分解,故无法确定方程23210x ax ++=是否有实根,因此首先得考虑一下方程是否有解,所以我们可以求出根判别式2412a ∆=-,若24120a ∆=-<即a <<23210x ax ++=没有实根,即()'0f x >在R 上恒成立,所以()f x 在R 上单调递增;若24120a ∆=-=即a =,方程23210x ax ++=有两个相等的实根123ax x ==-,即()'0f x ≥在R 上恒成立,所以()f x 在R 上单调递增;若24120a ∆=->即a a <>,则方程23210x ax ++=有两个不同实根,由求根公式可解得13a x --=,23a x -+=,显然12x x <此时()f x ,()'f x 随x 的变化情况如下:x ()1,x -∞1x ()12,x x 2x ()2,x +∞()'f x +0_0+()f x 单调递增极大值单调递减极小值单调递增综上所述,当a ≤≤时,()f x 的单调递增区间为(),-∞+∞,没有单调递减区间;当a a <>时,()f x 的单调递增区间为,3a ⎛---∞ ⎪⎝⎭和,3a ⎛⎫-++∞ ⎪ ⎪⎝⎭,单调递减区间为,33a a ⎛---+ ⎝⎭点评:实例2和实例1都是求三次函数的单调区间,但是两道题分类讨论的情况不一样,实例2主要是因为导函数所对应的方程根的情况未知,所以需要讨论根的存在性问题,而实例1是因为导函数所对应的方程可以因式分解,所以可以确定方程的根肯定是存在的,因此不用再讨论,而需要讨论的是求出来两个根的大小关系,实例2则相反,实例2在方程有两个不同实根的情况下求出来的两根大小已知,所以不用再讨论。
在高考中导数问题常见的分类讨论(一)热点透析由于导数内容对大学数学与中学数学的衔接具有重大的作用,所以自从导数进入高考后,立即得到普遍地重视,在全国各地的数学高考试卷中占有相当重的份额,许多试题放在较后的位置,且有一定的难度..分类讨论是中学数学的一种解题思想,如何正确地对某一问题进行正确地分类讨论,这就要求大家平时就要有一种全局的观点,同时要有不遗不漏的观点。
只有这样在解题时才能做到有的放矢。
下面我想通过对导数类题的解答的分析,来揭示如何水道渠成顺理推舟进行分类讨论。
(二)知识回顾1.函数的单调性在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y =f(x)在这个区间内单调递减.2.函数的极值(1)判断f(x0)是极值的方法一般地,当函数f(x)在点x0处连续时,①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程f′(x)=0的根;③检查f′(x)在方程f′(x)=0的根的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.(三)疑难解释1.可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.2.f′(x)>0在(a,b)上成立是f(x)在(a,b)上单调递增的充分条件.3.对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件.附件:当堂过手训练(快练五分钟,稳准建奇功!)1. 若函数f (x )=x +ax +1在x =1处取极值,则a =________.答案 3解析 f ′(x )=2x 2+2x -x 2-a (x +1)2=x 2+2x -a(x +1)2.因为f (x )在x =1处取极值,所以1是f ′(x )=0的根,将x =1代入得a =3.2. 函数f (x )=x 3+ax -2在(1,+∞)上是增函数,则实数a 的取值范围是________.答案 [-3,+∞)解析 f ′(x )=3x 2+a ,f ′(x )在区间(1,+∞)上是增函数,则f ′(x )=3x 2+a ≥0在(1,+∞)上恒成立,即a ≥-3x 2在(1,+∞)上恒成立.∴a ≥-3.3. 如图是y =f (x )导数的图象,对于下列四个判断:①f (x )在[-2,-1]上是增函数; ②x =-1是f (x )的极小值点;③f (x )在[-1,2]上是增函数,在[2,4]上是减函数; ④x =3是f (x )的极小值点.其中正确的判断是________.(填序号) 答案 ②③解析 ①∵f ′(x )在[-2,-1]上是小于等于0的, ∴f (x )在[-2,-1]上是减函数;②∵f ′(-1)=0且在x =0两侧的导数值为左负右正, ∴x =-1是f (x )的极小值点; ③对, ④不对,由于f ′(3)≠0.4. 设函数g (x )=x (x 2-1),则g (x )在区间[0,1]上的最小值为( )A .-1B .0C .-239D.33答案 C解析 g (x )=x 3-x ,由g ′(x )=3x 2-1=0,解得x 1=33,x 2=-33(舍去). 当x 变化时,g ′(x )与g (x )的变化情况如下表:所以当x 5. (2011·辽宁)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)答案 B解析 设m (x )=f (x )-(2x +4),∵m ′(x )=f ′(x )-2>0,∴m (x )在R 上是增函数.∵m (-1)=f (-1)-(-2+4)=0,∴m (x )>0的解集为{x |x >-1},即f (x )>2x +4的解集为(-1,+∞). 二、高频考点专题链接题型一. 需对导数为零的点与定义域或给定的区间的相对位置关系讨论的问题。
导数中如何分类讨论在微积分中,导数是描述函数变化率的概念。
导数的分类讨论是指讨论导数的种类和性质。
导数的分类讨论有助于我们更好地理解函数的性质和行为。
下面将对导数的分类讨论进行详细说明。
一、正导数与负导数:导数可以是正的、负的或者为零。
当导数大于零时,函数在给定点上的增长速度较快;当导数小于零时,函数在给定点上的减少速度较快;当导数等于零时,函数在给定点上取极值(极大值或极小值)。
二、单调增与单调减:在函数的一些区间上,如果导数恒大于零,则称函数在该区间上是单调增函数;如果导数恒小于零,则称函数在该区间上是单调减函数。
单调增与单调减性质可以帮助我们判断函数的增减性。
三、振荡与单调性:函数振荡是指在一些区间上函数的导数同时正负转换,即导数既大于零又小于零。
振荡的函数不具有单调性。
四、极大值与极小值:当函数在特定点附近,首先增长再减小时,该点称为函数的极大值点;当函数在特定点附近,首先减小再增长时,该点称为函数的极小值点。
通过导数的正负及变化可以判断函数的极值点。
五、凹函数与凸函数:凹函数指在函数图像上方的一切点处,引过该点的任一切线段都位于曲线图像的上方;凸函数指在函数图像下方的一切点处,引过该点的任一切线段都位于曲线图像的下方。
我们可以通过导数的正负以及二阶导数的正负来判断函数是凹函数还是凸函数。
当导数恒大于零且二阶导数恒大于零,函数是凹函数;当导数恒小于零且二阶导数恒小于零,函数是凸函数。
六、导函数的连续性:导函数的连续性是指导函数在一些区间上是连续的。
如果导函数在一些区间上连续,则函数在该区间上具有连续性;如果导函数在一些点上不连续,则函数在该点上不具有连续性。
导函数的连续性与函数的连续性密切相关。
根据连续函数的定义,如果导函数在一些点上连续,则函数在该点上连续;如果导函数在一些点上不连续,则函数在该点上不连续。
七、高阶导数:高阶导数是指对函数的导数进行多次求导。
一阶导数是函数的变化率,二阶导数是一阶导数的变化率,以此类推。
类型二:导数单调性专题类型1。
导数不含参。
类型2.导数含参。
类型3:要求二次导 求单调性一般步骤:(1) 第一步:写出定义域,一般有()0ln >⇒x x(2) 第二步:求导,(注意有常数的求导)若有分母则通分。
一般分母都比0大,故去死若无分母,因式分解(提公因式,十字相乘法)或求根(观察分子)判断导函数是否含参,再进行讨论(按恒成立与两个由为分界)(3) 第三步由()()⎩⎨⎧≤≥解出是减区间解出是增区间00x f x f(4) 下结论类型一:导函数不含参:()()()⎪⎩⎪⎨⎧-+=--++=++=21223,22,,x x e m e x f x x c bx ax x f x b kx x f 如指数型如:二次型如:一次型对于这类型的题,直接由导函数大于0,小于0即可(除非恒成立) 例题1求函数()()x e x x f 3-=的单调递增区间 解:()()()23'-=-+=x e e x e x f x x x 由()()202'>⇒>-=x x e x f x 所以函数在区间()+∞,2单调递增 由()()202'<⇒<-=x x e x f x所以函数在区间()2,∞-单调递减例题2:求函数()()2211x e x x f x --=的单调区间解:()()()()x e e x e x xe e x f x x x x x +-=-+-=-+-=11111'由()()()01011'>-<⇒>+-=x x x e x f x 或所以函数在区间(][)∞+-∞-,和01,单调递增由()()()01011'<<-⇒<+-=x x e x f x 所以函数在区间()0,1-单调递减 例题3:求函数()xxx f ln =的单调区间例题4:已知函数()()()R k kx e x x f x ∈--=21 (1)若1=k 时,求函数()x f 的单调区间例题5.(2010·新课标全国文,21)设函数f (x )=x (e x -1)-ax 2.(1)若a =错误!,求f (x )的单调区间;例题6:已知函数()()112++-=x e ax x f x (1)若0=a ,求函数()x f 的单调区间7。
导数中含参数问题该如何进行分类讨论
一、导函数是二次函数或者类二次函数形式的
注意题目中为什么没有对最高次的参数是否为零进行单独讨论?因为分子部分符号相同,很容易判断a 非负状态下的单调性,切记,切记。
二、导函数不是二次函数和类二次函数形式
能因式分解的先分解,之后求根,注意所求的根在所给出的定义域有没有意义,如果两个根中有一个或两个含有参数,则需要对比两根的大小关系,最后如果原函数有定义域,还需判断极值点和定义域端点处的位置关系。
三、最高次项系数含有参数,对该系数分类讨论
四、根的个数不确定时,对判别式Δ分类
五、两根大小不确定时,对两根大小分类讨论
六、不确定根是否在定义域内时,对根与定义域端点值的大小分类讨论
七、复杂问题,按顺序分类讨论。
导数中分类讨论的三种常见类型高中数学中,分类讨论思想是解决含有参数的复杂数学问题的重要途径,而所谓分类讨论,就是当问题所给的研究对象不能进行统一的研究处理时,对研究对象按照某种标准进行分类,然后对每一类的对象进行分别的研究并得出结论,最后综合各类的研究结果对问题进行整体的解释•几乎所有的高中生都对分类讨论思想有所了解,而能正确运用分类讨论思想解决问题的不到一半,不能运用分类讨论思想解决具体问题的主要原因是对于一个复杂的数学问题不知道该不该去分类以及如何进行合理的分类,下面根据导数中3种比较常见的分类讨论类型谈谈导数中如何把握对参数的分类讨论1. 导函数根的大小比较实例1:求函数f x 3x3子“ ax a,x R的单调区间-分析:对于三次或三次以上的函数求单调区间,基本上都是用求导法,所以对函数 f x 1 3x 1 a 2xax a进行求导可以得到导函数3 21 f x x2 1 a x a ,观察可知导函数可以因式分解为1 f x x2 1 a x a x a x 1 ,由此可知方程f'x 0有两个实根x1 a,x21,由于a的范围未知,要讨论函数f x 1 x3 - - x2ax a的3 2单调性,需要讨论两个根的大小,所以这里分a 1,a 1,a 1三种情况进行讨论:当a 1时,f x,f' x随x的变化情况如下:所以,函数f x的单调递增区间为,a和1,,单调递减区间为a, 1 当a 1时,f' x 0在R上恒成立,所以函数f x的单调递增区间为,,没有单调递减区间•当a 1时,f x,f' x随x的变化情况如下:所以,函数f x 的单调递增区间为 ,1和a,,单调递减区间为1,a .综上所述,当a 1时,函数f x 的单调递增区间为a, 1 ;当a 1时,函数f x 的单调递增区间为 当a 1时,函数f x 的单调递增区间为1,a .点评:这道题之所以要分情况讨论,是因为导函数两个根的大小不确定,而两 根的大小又会影响到原函数的单调区间,而由于 a R ,所以要分a 1, a 1,a 1三种情况,这里注意不能漏了 a 1的情况. 2. 导函数的根的存在性讨论实例2:求函数f x x 3ax 2x 的单调区间分析:这道题跟实例1 一样,可以用求导法讨论单调区间,对函数 f x x 3ax 2x 进行求导可以得到导函数 f ' x 3x 22ax 1,观察可以发 现,该导函数无法因式分解,故无法确定方程3x 22ax 1 0是否有实根,因此首先得考虑一下方程是否有解,所以我们可以求出根判别式 4a 2 12,若4a 2 12 0即 3 a 3,方程3x 2 2ax 1 0没有实根,即f ' x 0在R 上恒成立,所以f x 在R 上单调递增; 若 4a 2 12 0即a . 3,方程3x 2 2ax 1 0有两个相等的实根x 1 x 2 -,即f ' x 0在R 上恒成立,所以f x 在R 上单调递增; 3 若4a 212 0即a■^或a -3,则方程3x 22ax 1 0有两个不同实根,,a 和1,,单调递减区间为,没有单调递减区间;1和a,,单调递减区间为由求根公式可解得X i 亠a 3, X 2—a 3,显然X i X 233此时f x ,f ' X 随X 的变化情况如下:综上所述,当.3 a ,3时,f X 的单调递增区间为 ,,没有单调递减区间;当a x 3或a ,3时,f x 的单调递增区间为,一a a 3和3点评:实例2和实例1都是求三次函数的单调区间,但是两道题分类讨论的情 况不一样,实例2主要是因为导函数所对应的方程根的情况未知,所以需要讨 论根的存在性问题,而实例1是因为导函数所对应的方程可以因式分解,所以 可以确定方程的根肯定是存在的,因此不用再讨论,而需要讨论的是求出来两 个根的大小关系,实例2则相反,实例2在方程有两个不同实根的情况下求出 来的两根大小已知,所以不用再讨论。
完整版)导数的综合大题及其分类.导数在高考中是一个经常出现的热点,考题难度比较大,多数情况下作为压轴题出现。
命题的主要热点包括利用导数研究函数的单调性、极值、最值,不等式,方程的根以及恒成立问题等。
这些题目体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用。
题型一:利用导数研究函数的单调性、极值与最值这类题目的难点在于分类讨论,包括函数单调性和极值、最值综合问题。
1.单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,将函数定义域分段,在各段上讨论导数的符号。
如果不能确定导数等于零的点的相对位置,还需要对导数等于零的点的位置关系进行讨论。
2.极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点。
3.最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的。
在极值和区间端点函数值中最大的为最大值,最小的为最小值。
例题:已知函数f(x)=x-,g(x)=alnx(a∈R)。
x1.当a≥-2时,求F(x)=f(x)-g(x)的单调区间;2.设h(x)=f(x)+g(x),且h(x)有两个极值点为x1,x2,其中h(x1)=h(x2),求a的值。
审题程序]1.在定义域内,依据F′(x)=0的情况对F′(x)的符号进行讨论;2.整合讨论结果,确定单调区间;3.建立x1、x2及a间的关系及取值范围;4.通过代换转化为关于x1(或x2)的函数,求出最小值。
规范解答]1.由题意得F(x)=x-x/(x2-ax+1)-alnx,其定义域为(0,+∞)。
则F′(x)=(x2-ax+1)-x(2ax-2)/(x2-ax+1)2.令m(x)=x2-ax+1,则Δ=a2-4.①当-2≤a≤2时,Δ≤0,从而F′(x)≥0,所以F(x)的单调递增区间为(0,+∞);②当a>2时,Δ>0,设F′(x)=0的两根为x1=(a+√(a2-4))/2,x2=(a-√(a2-4))/2,求h(x1)-h(x2)的最小值。
导数中的分类讨论,这样分,不会错!
小数老师说
导数里的分类讨论是同学们最头疼的点,其实在小数老师看来,导数题目不难,关键是要找准分类讨论的标准,然后计算能力过关就OK了,这个假期小数老师会通过几道例题分别给大家讲解一下这个知识点,希望能让绝大多数同学都能拿到满分!
分析
这道题显然是一道典型的利用导数求函数极值的题目,函数也是比较中规中矩的三次函数,因此,只要是基础知识扎实,这道题的难度不大!但是对于分类讨论部分,很多同学分类不清晰,再加上导数里面有参数a还有自变量x,同学们很容易会出现错误,下面,跟着小数老师一起看看,怎么分类才能拿满分?!
一般小数老师会根据求导后需要讨论的那部分解析式进行分类,比如,一次函数型,二次函数能分解因式型,二次函数不能分解因式型,能转化为一次或二次函数型,等,其中前三类是基础类型,同学们务必要掌握好,今天这道题属于二次函数能分解因式型。
解析
(1)对于求极值或者求单调性的题目,第一步是求导并求函数定义域(是原函数的定义域,而不是导函数的定义域哦)所以
接下来,观察导函数,会发现导函数可以是一个二次函数型的(一定不能直接说是二次函数,因为a的范围不确定),再回到条件里,可以看到a>0,所以就是属于二次函数,还是能分解因式的,所以继续往下,
我们知道,求函数的极值,一般是令导函数为0,求出根,然后判断函数在区间上的单调性,得到极值,
所以,令,即ax(ax-2)=0,所以,
由于a>0,所以x2>x1,所以可以得到
x (-∞,0)0 (0,2/a)2/a (2/a,
+∞)
f‘(x)+ 0 —0 +
f(x) 递增极大值递减极小值递增注意:第一问由于限制了条件a>0,所以不需要讨论,只要比较一下两根的关系即可,难度不是很大!
(2)第二问与第一问的区别在于两点:一是a的范围放大了,二是函数的定义域变小了,这样一来难度就有点增大了,我们从上面求出的导函数开始,
由于a的范围扩大了,对于这个导函数,形式上是二次函数,但其实不一定,因为二次项系数是a^2,所以第一步要先考虑a=0时,此时f’(x)=0,所以此时f(x)是常函数,不存在极值;
当a不等于0时,导函数为二次函数型的,
由(1)得,两根为
,
接下来由于a的范围不定,再加上定义域是[-1,1],必须要分类讨论了,那么应该怎么分类呢?
小数老师送你一个法宝,数轴,请看图:
这个图上三个点分别是定义域的两个端点,以及根x1,对于根x2,此时无法确定位置,但是我们要分类讨论了,通过数轴我们可以看到x2可以有以下几种情况了,
x2≤-1,
-1<><>
0<><>
X2≥1
共四种情况,接下来,我们就这四种情况进行讨论,
①当x2≤-1,即-2≤a<>导函数的大体图像为
通过图像列表可得
x [-1,0)0 (0,1]
f’(x)- 0 +
f(x) 递减极小值递增
②当-1<><>,即a<>导函数的大体图像为
通过图像列表为
2/a (2/a,0)0 (0,1]
x [-
1,2/a)
f’(x)+ 0 - 0 +
f(x) 递增极大值递减极小值递增
③当0<><>,即a>2时,导函数的大体图像为:
通过图像列表为
2/a (2/a,1]
x [-1,0) 0 (0,
2/a,)
f’(x)+ 0 - 0 +
f(x) 递增极大值递减极小值递增
④当X2≥1,即0<>≤2时,导函数的大体图像为:
通过图像列表为
x [-1,0)0 (0,1] f’(x)+ 0 -
f(x) 递增极大值递减
最后注意:刚才小数老师画的数轴与导函数的简图,不要出现在答题纸上,那仅仅是帮助你解题的一个工具而已哦,答题格式可以是列表,可以是描述,但是最后都不要忘了综上所述,把所有的情况都说明白,今天小数老师的目标是让大家会分类讨论,所以这题没有写标准答案,同学们自己要注意哈!。