转基因技术的名词解释_主要分类_技术原理
- 格式:docx
- 大小:19.28 KB
- 文档页数:5
转基因技术编辑转基因即转基因技术。
转基因技术(Genetically Modified,简称GM),是指运用科学手段,从某种生物体基因组中提取所需要的目的基因,或者人工合成指定序列的基因片段,将其转入另一种生物中,使与另一种生物的基因组进行重组,再从重组体中进行数代的人工选育,从而获得具有特定的遗传性状个体的技术。
该技术可以使重组生物增加人们所期望的新性状,培育出新品种。
转基因技术的理论基础来源于分子生物学。
人们常说的"遗传工程"、"基因工程"、"遗传转化"均为转基因的同义词(但如今人们对改变原有动植物性状的技术称为转基因技术(狭义),将对微生物的操作称为遗传工程技术(狭义)。
经转基因技术修饰的生物体在媒体上常被称为"遗传修饰过的生物体"(Genetically modified organism,简称GMO)。
目录1发展历史2基本技术过程3分类人工转基因植物转基因动物转基因微生物基因重组自然转基因4转基因技术产物转基因生物转基因食品5技术特点组合原理植物动物6与杂交的区别种基根杂交技术植物杂交杂交畜牧7转基因技术现状转基因食品技术应用商业化8媒体报道9转基因植物转化方法农杆菌介导转化花粉管通道法核显微注射法基因枪法精子介导法核移植转基因法体细胞核移植法10影响减少温室气体排量疑问对环境系统对生态物种动物试验11社会学者批评转基因标识法案12相关事件动物异常事件转基因水稻争议巴西坚果事件普斯泰事件转基因玉米事件俄转基因食品事件广西迪卡玉米事件转基因大米试验实验鼠致癌事件猕猴喂养实验律师申请公开遭拒13批准作物一览1发展历史1974年,波兰遗传学家斯吉巴尔斯基(Waclaw Szybalski)称基因重组技术为合成生物学概念,1978年,诺贝尔医生奖颁给发现DNA限制酶的纳森斯(Daniel Nathans)、亚伯(Werner Arber)与史密斯(Hamilton Smith)时,斯吉巴尔斯基在《基因》期刊中写道:限制酶将带领我们进入合成生物学的新时代。
转基因技术的原理及其应用1. 转基因技术的基本原理转基因技术,又称基因工程技术,是一种通过人为方式将外源基因导入目标生物体内,使其产生新的性状或改变原有性状的技术。
其基本原理包括以下几个步骤:1.1 选择外源基因转基因技术首先需要从其他生物中选择具有所需性状的外源基因。
外源基因可以来自于同一物种的不同个体,也可以来自于不同物种。
1.2 构建基因载体基因载体是将外源基因运输到目标生物体内的工具。
常用的基因载体包括质粒、病毒和人工染色体等。
在构建基因载体时,需要将目标基因与适当的启动子、终止子和其他调控元件组合在一起。
1.3 导入基因载体导入基因载体可以通过多种方法实现,例如化学法、生物法和物理法等。
其中,常用的方法包括转化、感染和基因枪等。
导入基因载体后,目标生物体会将外源基因整合到自身的基因组中。
1.4 检测与筛选转基因生物体一旦产生,需要经过一系列的检测和筛选,以确认外源基因的存在和功能。
常用的筛选方法包括PCR、Southern印迹和克隆等。
只有通过筛选后,具有所需性状的转基因生物体才能继续应用。
2. 转基因技术的应用转基因技术在农业、医疗和环境保护等领域具有广泛的应用。
以下列举了几个常见的应用领域:2.1 农业领域转基因农作物是转基因技术在农业领域最主要的应用之一。
通过引入抗虫、抗病、耐旱或耐盐等基因,转基因农作物能够提高产量和抗逆能力,减少对农药和化肥的依赖,从而实现可持续发展。
目前,转基因大豆、转基因玉米和转基因棉花等已经在全球范围内种植并广泛应用。
2.2 医疗领域转基因技术在医疗领域的应用主要体现在基因治疗和基因诊断两个方面。
基因治疗是利用转基因技术将具有治疗效果的基因导入人体细胞中,用于治疗一些遗传性疾病或其他疾病。
而基因诊断则是利用转基因技术检测人体细胞中的基因变异,用于疾病的早期诊断和风险评估。
2.3 环境保护领域转基因技术在环境保护领域的应用主要包括重金属污染修复、水体污染治理和生态修复等方面。
Genetically Modified——转基因,简称GM。
是指运用科学手段从某种生物体中提取所需要的基因,将其转入另一种生物中,使与另一种生物的基因进行重组,再从结果中进行数代的人工选育,从而获得特定的具有变异遗传性状的物质。
与杂交不同,该技术利用转基因技术可以创造新染色体,改变动植物性状,培育新品种,具有更大的随机性、不确定性。
也可以利用其它生物体培育出期望的生物制品,用于医药、食品等方面。
[1]转基因分类转基因按照途径可分为人工转基因和自然转基因,按照对象可分为植物转基因和动物转基因。
人工转基因将人工分离和修饰过的基因导入到生物体基因组中,由于导入基因的表达,引起生物体的性状的可遗传的修饰,这一技术称之为转基因技术(Transgene technology)。
人们常说的“遗传工程”、“基因工程”、“遗传转化”均为转基因的同义词。
经转基因技术修饰的生物体在媒体上常被称为“遗传修饰过的生物体”(Genetically modified organism,简称GMO)。
自然转基因不是人为导向的,自然界里动物或植物自主形成的转基因。
植物转基因植物转基因是基因组中含有外源基因的植物。
它可通过原生质体融合、细胞重组、遗传物质转移、染色体工程技术获得,有可能改变植物的某些遗传特性,培育高产、优质、抗病毒、抗虫、抗寒、抗旱、抗涝、抗盐碱、抗除草剂等的作物新品种。
而且可用转基因植物或离体培养的细胞,来生产外源基因的表达产物,如人的生长素、胰岛素、干扰素、白介素2、表皮生长因子、乙型肝炎疫苗等基因已在转基因植物中得到表达。
动物转基因动物转基因就是基因组中含有外源基因的动物。
它是按照预先的设计,通过细胞融合、细胞重组、遗传物质转移、染色体工程和基因工程技术将外源基因导入精子、卵细胞或受精卵,再以生殖工程技术,有可能育成转基因动物。
通过生长素基因、多产基因、促卵素基因、高泌乳量基因、瘦肉型基因、角蛋白基因、抗寄生虫基因、抗病毒基因等基因转移,可能育成生长周期短,产仔、生蛋多和泌乳量高,转基因超级鼠比普通老鼠大约一倍。
转基因技术转基因产品(GMOs)是通过基因重组技术获得的基因改良生物及其加工产品。
对转基因产品,用转基因产品定性检测方法(qualitative detection)对样品中转基因成分进行检测,以判定该样品是否为转基因产品。
实时荧光PCR法是目前最有发展前途的定量检测方法,也是目前最适合出入境检验检疫的检测技术之一。
所谓实时荧光定量PCR技术,是指在PCR反应体系中加入荧光集团,利用荧光信号积累,实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。
该方法可以有效提高检测的准确性和灵敏度。
它既能做定性检测,加入标准品也能做定量检测。
酶联检测方法,应称作酶联免疫吸附测定,是把抗原及抗体的免疫反应和酶的高效催化反应有机地结合而发展起来的,用酶作为标记物或指示剂进行抗原或抗体定性和定量测定的综合技术。
试纸条检测方法也是转基因产品抗血清检测方法。
这两种方法是中国与美国谷物化学家协会(AACC)联合研究的。
中方主要承担转基因玉米和大豆两个品种的抗血清特异性、灵敏度以及定量检测的研究内容。
目前,这两种方法已上升为ISO标准,即将发布。
其技术创新点为:研究制定了《基因检验实验室技术要求》,建立了我国口岸系统转基因产品检测实验室体系。
建立了转基因产品的亲和诱捕技术,较好解决了DNA提取的技术难点,该方法特别适用于食品和饲料等多组分样品。
建立了精炼植物油和深加工食品中核酸的提取方法。
针对食用油脂中DNA含量极低、破坏严重的特点,建立了食用油脂中DNA提取方法。
建立了边界序列的测定方法和转基因作物品系鉴定方法,首次测定出番茄棉花边界序列。
对转基因的检测不仅能检测种类,而且还能检测品系,如对基因玉米、马铃薯、大豆等都能进行鉴定。
行设计了实时荧光PCR定量(性)检测引物32对和相对应的探针,建立了转基因产品实时荧光PCR定量(性)检测方法,该方法能检测目前国内外已报道的主要商品化转基因品种。
建立了转基因产品的基因芯片检测方法。
转基因技术原理
转基因技术是一种基因工程技术,主要目的是将不同种类的生物体中的基因组合起来,将一种生物体的基因转移到另一种生物体中,从而创造出具有新特征的生物体。
转基因技术的原理主要涉及三个方面:选择基因、剪切基因和转移基因。
首先,在选择基因时,科学家需要确定需要转移的基因,并且将其从原生物体中剥离出来。
这个过程需要使用一些工具,比如PCR技术和酶切剂等。
然后,在剪切基因的过程中,科学家需要使用酶切剂来切开被选择的基因。
这个过程可以将基因剪切成较小的片段。
科学家可以利用这些较小的片段来进行下一步的操作。
最后,在转移基因的过程中,科学家需要将被剪切好的基因片段与目标生物体的基因组进行组合。
这个过程可以利用一些工具,比如质粒和基因枪等。
这些工具可以帮助科学家将基因片段导入到目标生物体中,并将其整合到目标生物体的基因组中。
总之,转基因技术的原理是将不同种类生物体的基因组合起来,以创造出具有新特征的生物体。
这个过程涉及选择基因、剪切基因和转移基因三个方面。
转基因
技术已经被广泛应用于农业、医药和环保等领域,但也受到了一些争议和质疑。
转基因技术的基本原理和应用随着生物科技的不断发展,转基因技术已经成为了农业领域中的一项重要技术,对许多植物品种的改良起到了重要作用。
那么,究竟什么是转基因技术呢?它有哪些基本原理和应用呢?接下来,我们将详细介绍一下这方面的知识。
一、转基因技术的基本原理转基因技术,顾名思义,就是将外源基因转移到目标生物体内,使其产生新的基因组成。
其主要原理就是利用“基因克隆”技术,将外源基因通过人工手段插入到目标基因组的某个特定位置上,从而改变其遗传特征。
具体而言,转基因技术主要包括以下步骤:1. 基因的克隆:首先,需要从源生物中提取出需要的DNA(脱氧核糖核酸)序列,利用PCR(聚合酶链反应)技术将其扩增至足够的数量,然后将其插入到质粒(一种环形DNA分子)中。
2. 基因的传递:接下来,将质粒注入到植物的幼芽或细胞中,并利用特定的物理或化学方法促使其转染到细胞内部。
随着时间的推移,质粒会整合到目标细胞的基因组中,并产生新的遗传特征。
3. 遗传特征的评估:最后,需要评估新的遗传特征是否真正得到了改变。
通常情况下,需要通过PCR、Southern印迹、Western印迹等方法进行鉴定,以确保其具有所需的基因组成。
二、转基因技术的应用1. 农业领域中的应用转基因技术在农业领域中的应用非常广泛,主要包括以下几个方面:(1)基因修饰的农作物:通过对植物基因组的改良,可以使其具有更好的耐旱、耐寒、抗虫等特征,从而增加其产量和品质。
例如,转基因玉米和转基因大豆就比传统品种更具有耐病抗虫的能力,以及更高的产量和质量。
(2)新品种的培育:利用转基因技术,可以在较短时间内培育出更加适应环境的新品种,也可以改良对人体有益的植物,如改良大米、小麦等谷类作物,使其更加富含营养成分,从而提高人类的健康水平。
2. 医学领域中的应用除了在农业领域中的应用之外,转基因技术还具有重要的医学应用价值。
例如,目前已经有越来越多的医学研究机构正尝试使用转基因技术来改良疫苗和治疗方法,以更好地保护人类健康。
植物转基因技术的原理和方法
植物转基因技术是一种利用分子生物学手段将外源基因导入植物细胞内,使其具有新的性状的技术。
转基因技术的原理是通过将外源基因导入植物细胞内,使得这些基因能够在植物细胞内正常表达,从而实现对植物性状的改良。
转基因技术的方法主要包括以下几个步骤:首先,利用现代分子生物学技术,将需要导入植物细胞内的外源基因与载体DNA连接起来,形成转基因载体。
其次,将转基因载体导入到植物细胞内,使其与植物细胞内的DNA发生重组,从而使外源基因被整合到植物细胞内。
最后,通过筛选和鉴定,确定已经被整合外源基因的植物细胞,并进行培养和繁殖。
转基因技术应用广泛,可以用于改良植物的品质、抗病性、耐旱性等性状。
在农业生产中,转基因技术可以提高作物的产量和品质,减少使用农药和化肥的数量,从而减少对环境的污染。
同时,转基因技术也可以用于生物医药领域,生产一些高价值的药物和医疗用品。
然而,转基因技术也存在一些争议和风险。
一些人担心转基因作物可能会对生态环境造成负面影响,并可能对人类健康产生潜在风险。
因此,在使用转基因技术时,需要进行严格的安全评估和监管。
同时,为了保护消费者的知情权和选择权,一些国家和地区还规定了
转基因食品的强制标识。
植物转基因技术是一种强大的生物技术手段,具有广泛的应用前景。
同时,也需要充分考虑其潜在的风险和影响,采取相应的安全措施和监管措施,确保其合理、安全地应用。
转基因技术原理
转基因技术,又称基因工程技术,是一种通过修改生物体基因组来获取新的遗传性状的方法。
它基于人工改变生物体的遗传信息,将外源基因导入目标生物体的基因组内,使其具有特定的性状或表达特定的基因产物。
转基因技术主要包括基因克隆、基因传递和基因表达三个主要步骤。
首先,基因克隆是转基因技术的核心步骤之一。
通过基因克隆方法,可以将感兴趣的外源基因从一个生物体中克隆出来。
这通常通过PCR扩增、限制性内切酶切割和连接DNA片段等技术实现。
得到的外源基因片段被插入到载体DNA上,从而形
成了重组DNA分子。
其次,基因传递是将重组DNA分子导入目标生物体的过程。
常用的基因传递方法包括农杆菌介导转化、舍门子贝思菌介导转化、基因枪方法等。
这些方法使得外源基因能够被插入目标生物体的染色体中,并得以稳定的遗传到后代。
最后,基因表达是指外源基因在目标生物体中得以转录和翻译,从而产生基因产物的过程。
由于不同生物体的转录和翻译机制存在差异,因此在转基因过程中需要考虑到基因的转录效率和翻译后修饰等因素。
为了使外源基因能够高效表达,常使用启动子和终止子等调控序列进行基因表达的调控。
总之,转基因技术通过基因克隆、基因传递和基因表达等步骤,使人们能够将外源基因导入目标生物体的基因组中,从而创造出具有特定性状或生产特定产物的转基因生物体。
这一技术在
农业、医药等领域具有广阔的应用前景,但也面临一些伦理和安全问题,需要进行充分的风险评估和监管。
转基因技术的原理转基因技术是一种常用于改良作物、生物制品和生命体的创新技术。
它通过改变生物体的遗传物质(DNA)来创造新的性状或增强现有性状。
转基因技术的原理基于两个关键步骤:基因分离和基因重组。
基因分离是转基因技术的第一步。
科学家会从一个生物体中分离出感兴趣的基因。
这个过程需要使用酶来切割DNA分子,将目标基因从整个染色体中分离出来。
基因分离通常需要在专门的实验室中进行,并且需要遵循一系列的实验操作步骤。
在分离基因的过程中,科学家会选择和标记目标基因,以便在后续的研究中更容易识别和操作。
基因重组是转基因技术的关键步骤之一。
在基因重组中,科学家将目标基因插入到一个载体DNA中,这个载体DNA一般是细菌或酵母等微生物的遗传物质。
然后,这个载体DNA被转移到目标生物体中,使得目标基因能够在目标生物体中进行表达。
基因重组可以通过多种方法实现,其中最常用的是利用特殊的酶称为限制性内切酶来切割DNA。
限制性内切酶可以识别和切割DNA分子中的特定序列。
如果目标基因和载体DNA都被相同的限制性内切酶切割,它们可以通过互相连接来重组。
这个过程通常需要使用DNA连接酶来连接DNA分子,生成一个重组DNA分子。
完成基因重组后,科学家需要将这个重组DNA转移到目标生物体中。
这个过程通常称为转染。
转染可以通过多种方法实现,包括通过细菌感染、载体颗粒注射和基因枪等技术。
这种转染过程能够使得目标基因稳定地插入到目标生物体的染色体中。
一旦转染完成,目标基因就被整合到了目标生物体的遗传物质中,并且能够在目标生物体中进行表达。
这样,目标生物体就会表现出与被转移基因性状相关的变化。
转基因技术的原理基于基因分离和基因重组这两个关键步骤。
通过这种技术,科学家能够将不同物种的基因组合到一起,创造出新的生物体或改变现有生物体的性状。
这项技术在农业、医学和生物制药等领域中具有广泛应用和潜力,为人类带来了许多机会和挑战。
转基因技术在食品中的应用徐飞洋技术原理:转基因即将人工分离、修饰后的DNA、基因导入生物细胞基因组,在导入基因表达的影响下,原有生物体的性状也会发生变化。
转基因技术是指将一种生物的优良基因利用基因重组原理整合到另一种生物的基因组里,从而使获得优良基因的生物的基因得到改善并能进行表达和遗传,进而使生物获得优良性状如抗虫性、抗逆性、抗倒伏、抗盐碱性等。
基本技术过程:(1)从生物有机体复杂的基因组中,分离出带有目的的基因的DNA片段;或者人工合成目的基因。
(2)在体外,将带有目的基因的DNA片段连接到能够自我复制并具有选择标记的载体分子上,形成重组DNA分子。
(3)将重组DNA分子引入到受体细胞(亦称宿主细胞或寄主细胞)。
(4)带有重组体的细胞扩增,获得大量的细胞繁殖体。
(5)从大量的细胞繁殖群体中,筛选出具有重组DNA分子的细胞克隆。
(6)将选出的细胞克隆的目的基因进一步研究分析,并设法使之实现功能蛋白的表达。
技术应用:1、改良食品加工的原料乳牛是产奶的母牛,为了提高其产奶量,又不影响奶的质量,采用转基因技术生产出牛的生长激素(Bovine Somatotropin,BST),并注射到母牛体内,便可达到提高母牛产奶量的目的。
为了提高猪的瘦肉含量或降低猪的脂肪含量,则采用基因重组(Recombinant)的猪生长激素,并注射到猪体内,便可使猪瘦肉型化,有利于改善肉食品质。
转基因技术生产的动物生长激素(Porcine Somatotropin,PST)对加速动物的生长,改善饲养动物的效率及改变畜产动物及鱼类的营养品质等方面都具有广阔的应用前景。
植物性食品原料也可用转基因技术改良。
如转基因技术改造过的马铃薯比一般马铃薯含有较高的固形物含量,大豆、芥花菜经转基因技术改造后其植物油组成中含较高比例的不饱和脂肪酸,可提高食用油的品质。
2、改良微生物菌种性能由于把具有优良性能的酶基因转移至该菌中,使该菌含有的麦芽糖透性酶及麦芽糖酶的含量比普通面包酵母高,面包加工中产生CO2的量也较高,最终制造出膨发性能良好、松软可口的面包产品。
转基因技术的原理转基因技术是一种通过改变生物体的遗传信息来获得特定性状的技术,它是现代生物技术的重要组成部分。
转基因技术的原理主要包括基因克隆、基因导入和基因表达三个基本步骤。
首先,基因克隆是指从一个生物体中获得目标基因,并将其进行复制。
这一步骤通常是通过PCR技术或者其他基因克隆技术来实现的。
通过这一步骤,科学家们可以获得他们感兴趣的基因,并将其进行后续的操作。
其次,基因导入是指将获得的目标基因导入到另一个生物体中。
这一步骤通常是通过载体DNA或者病毒载体来实现的。
科学家们将目标基因与载体DNA结合,然后将其导入到目标生物体的细胞中。
在细胞内,目标基因会被插入到生物体的染色体中,并成为其遗传信息的一部分。
最后,基因表达是指在目标生物体中使导入的基因表达出目标蛋白质。
这一步骤通常是通过转录和翻译过程来实现的。
一旦目标基因被导入到生物体的染色体中,它就会参与到生物体的基因表达过程中,从而使目标蛋白质得以表达出来。
通过以上三个基本步骤,转基因技术可以实现对生物体特定性状的改变。
例如,科学家们可以通过转基因技术来增加作物的抗病性、抗虫性和耐逆境能力,从而提高作物的产量和质量。
此外,转基因技术还可以用于生产药物、改良家畜和提高微生物的发酵能力等方面。
总的来说,转基因技术的原理是通过基因克隆、基因导入和基因表达三个基本步骤来实现对生物体特定性状的改变。
这一技术已经在农业、医药和工业等领域发挥着重要作用,为人类社会的发展做出了重要贡献。
随着科学技术的不断进步,相信转基因技术将会在未来发挥更加重要的作用,为人类社会的可持续发展提供更多的可能性。
转基因基础知识转基因生物,又称改性活生物体、遗传饰变生物,常见英文缩写为GMOs (Genetically Modified Organisms)。
1. 有关转基因的几个定义转基因技术:指用人工分离和修饰过的外源基因导入生物体的基因组中,从而使生物体的遗传性状发生改变的技术,包括外源基因的克隆、表达载体构建、重组DNA导入受体细胞,受体细胞的筛选以及目的基因的检测和表达等。
转基因生物是指利用基因技术改良的生物体,即为了达到特定的目的而将DNA进行人为改造的生物,包括转基因微生物、转基因植物和转基因动物,目前批准商业化生产的转基因产品主要是转因基植物及其加工品转基因食品是以转基因生物为直接食品或为原料加工生产的产品,它可以是活体的,也可以是非活体的。
生活中最常见的几种转基因食品包括:大豆及以大豆为原料的制品如豆腐、豆油等,玉米,大米,西红柿,土豆等。
2. 转基因产品的类型按转基因的功能大致可以分为5类。
1.增产型。
农作物增产与其生长分化、肥料、抗逆、抗虫害等因素密切相关,故可转移或修饰相关的基因达到增产效果。
2.控熟型。
通过转移或修饰与控制成熟期有关的基因可以使转基因生物成熟期延迟或提前,以适应市场需求。
最典型的例子是延熟速度慢,不易腐烂,好贮存。
3.高营养型。
许多粮食作物缺少人体必需的氨基酸,为了改变这种状况,可以从改造种子贮藏蛋白质基因入手,使其表达的蛋白质具有合理的氨基酸组成。
现已培育成功的有转基因玉米、土豆和菜豆等。
4.保健型。
通过转移病原体抗原基因或毒素基因至粮食作物或果树中,人们吃了这些粮食和水果,相当于在补充营养的同时服用了疫苗,起到预防疾病的作用。
有的转基因食物可防止动脉粥样硬化和骨质疏松。
一些防病因子也可由转基因牛羊奶得到。
5.新品种型。
通过不同品种间的基因重组可形成新品种,由其获得的转基因食品可能在品质、口味和色香方面具有新的特点。
3. 转基因技术与传统技术的关系转基因技术与传统技术其本质都是通过获得优良基因进行遗传改良。
转基因技术名词解释转基因技术,又常被称为转基因或基因工程,是指把一个生物体的基因片段搬移到另一个生物体身上,使得被搬移基因片段具有新的表达能力,从而改变搬移基因片段的结果,从而获得特殊、新的生物特性的一种技术。
这项技术的新型生物是指以这种转基因技术改良或替换了原来的遗传物质(DNA)的生物体。
与其他技术相比,转基因技术的优势在于,它能够准确度的改变基因的表达,能够快速的调整遗传物质的结构,从而产生特定的生物特征。
转基因技术也正在改变着世界。
它已经被广泛应用在美容、农业、医药、食品和其他领域,影响着我们的每一天。
转基因是一种利用现代生物技术操纵原核生物基因的技术,它能够把一种有用的基因放入另一种生物体中。
它可以使放入的基因变得更强大或更易于控制,有时还可以将一种基因放入另一种基因中,形成一种新的基因。
转基因既可以用于植物,也可以用于动物和微生物,从而促进了基因赋能技术的发展,能够为人类带来诸多益处。
转基因技术使研究者能够快速准确地改变基因表达,从而活化/抑制特定基因,调节生物体的性状。
这类技术可用于改良农作物和家畜,使它们拥有抗逆性和抗病性,提高农作物生产率和营养质量,同时减少土地利用,也能够用于治疗或预防疾病,从而促进人类健康。
转基因技术实际上是一个复杂而多功能的技术系统,它可以使转基因有机体能够拥有新的特性,并具有特殊和有益的功能,从而为人类带来许多好处,但也可能带来不好的结果,所以在转基因技术的运用方面要非常小心谨慎。
总之,转基因技术是一种关键的生物技术,它为人类带来了诸多益处,但也存在风险,所以应该慎重地运用。
它可以解决一些重大挑战,但也可能带来新的社会问题,应该进一步深入研究,以期望在转基因技术利用上获得最大效益。
生物技术中的转基因技术转基因技术是一种在生物体中引入外源基因的方法,以改变其遗传特性。
这项技术在生物技术领域中扮演着重要的角色,被广泛应用于农业、医学和环境保护等领域。
然而,转基因技术也引发了一系列的争议和讨论。
一、转基因技术的定义和原理转基因技术是通过将外源基因导入目标生物体的染色体中,使其表达外源基因产物。
这项技术的原理基于基因的DNA序列可以在不同生物体之间传递和表达的事实。
通过将具有特定功能的基因导入目标生物体,转基因技术可以改变其遗传特性,使其获得新的性状或功能。
二、转基因技术在农业中的应用转基因技术在农业领域中的应用广泛而深远。
通过转基因技术,科学家们可以将具有抗虫、抗病或耐逆性的基因导入农作物中,提高其产量和抗性。
例如,转基因玉米可以抵抗玉米螟的侵袭,转基因大豆可以抗除草剂,这些转基因作物为农业生产带来了巨大的好处。
然而,转基因技术也引发了一些争议。
一些人担心转基因作物可能对人类健康产生不良影响,或对生态系统造成破坏。
因此,转基因作物的安全性和环境影响一直是公众关注的焦点。
三、转基因技术在医学中的应用除了农业领域,转基因技术在医学领域也有着广泛的应用。
通过转基因技术,科学家们可以生产出大量的重组蛋白和药物。
例如,转基因细菌可以被用于大规模生产人类胰岛素,这对于糖尿病患者来说是非常重要的。
此外,转基因技术还可以用于基因治疗。
基因治疗是一种通过向患者体内导入正常基因来治疗遗传性疾病的方法。
通过转基因技术,科学家们可以将正常的基因导入患者体内,以修复或替代受损的基因,从而治疗疾病。
然而,转基因技术在医学领域的应用也面临着一些挑战。
例如,基因治疗的安全性和有效性仍然存在一定的争议和风险。
此外,转基因药物的研发和生产也需要严格的监管和评估。
四、转基因技术在环境保护中的应用转基因技术在环境保护领域也有着潜力和应用价值。
通过转基因技术,科学家们可以改变某些生物体的遗传特性,使其具有清除有害物质或修复环境的能力。
转基因的方法和原理在当今科技迅速发展的时代,转基因技术已经成为了一个备受关注的领域。
它不仅在农业、医学等领域有着广泛的应用,也引发了众多的讨论和争议。
那么,转基因到底是怎么一回事呢?让我们一起来了解一下转基因的方法和原理。
转基因技术,简单来说,就是将一种生物的基因转移到另一种生物的基因组中,从而赋予后者新的性状或特征。
这就像是给一个生物体进行了一场“基因改造手术”,让它拥有了原本没有的能力或特性。
要实现转基因,首先得有基因这个“原材料”。
基因是控制生物性状的基本遗传单位,它们就像是一个个小的指令代码,决定着生物体的外貌、生长发育、对环境的适应能力等。
科学家们要做的第一步,就是找到他们想要转移的特定基因。
找到目标基因后,接下来就是把它从原来的生物体中提取出来。
这可不是一件容易的事情,需要用到一系列复杂的生物技术手段。
常用的方法有从细胞中提取 DNA ,然后通过特定的酶将包含目标基因的片段切割下来。
有了目标基因,还得有个“运输工具”把它送到受体生物的细胞中去。
这个“运输工具”通常被称为载体。
常见的载体有质粒、病毒等。
以质粒为例,科学家们会对质粒进行改造,让它能够携带目标基因并且能够在受体细胞中稳定存在和复制。
把目标基因连接到载体上后,就形成了一个重组的 DNA 分子。
然后,通过一些方法,比如物理方法(如电击、显微注射等)、化学方法(如使用化学试剂促进基因进入细胞),将这个重组的 DNA 分子导入到受体细胞中。
受体细胞可以是植物细胞、动物细胞或者微生物细胞。
以植物细胞为例,常用的转基因方法有农杆菌介导法。
农杆菌是一种在自然界中存在的细菌,它能够将自己的一部分 DNA 转移到植物细胞中。
科学家们利用农杆菌的这个特性,将含有目标基因的载体导入农杆菌,然后让农杆菌感染植物细胞,从而实现基因的转移。
在动物细胞中,常用的转基因方法有显微注射法。
这种方法是使用非常细小的针头,将重组的 DNA 分子直接注射到受精卵的细胞核中,然后将这些经过处理的受精卵移植到雌性动物的子宫内,让其发育成个体。
转基因知识点总结一、转基因技术的原理转基因技术是通过将外源基因导入目标生物体的染色体中,使其表现新的特性或功能。
这个过程包括以下几个步骤:基因的识别、克隆、导入、筛选和鉴定。
1. 基因的识别首先,科学家们需要从外部环境中寻找到与目标特性相关的基因。
这个基因可能来源于其他生物体,也可以是由人工合成的。
一旦找到了合适的基因,就需要对其进行分离和纯化,以便进一步的操作。
2. 基因的克隆接下来,科学家们需要复制这个基因,以便在后续的实验中进行操作。
这个过程通常通过PCR(聚合酶链式反应)或者其他克隆技术来实现。
一旦得到了足够多的基因拷贝,就可以进行下一步的操作。
3. 基因的导入在得到了目标基因的大量拷贝之后,科学家们需要找到一种途径将其导入到目标生物体的染色体中。
这个过程通常通过质粒导入、病毒感染、基因枪法等技术来实现。
一旦成功地将基因导入到目标生物体中,就需要进行后续的筛选和鉴定。
4. 基因的筛选和鉴定一旦将外源基因导入到目标生物体的染色体中,就需要进行筛选和鉴定,以确认目标基因已经被成功导入并发挥了预期的功能。
这个过程通常通过PCR、Southernblotting、Northernblotting等技术来实现。
一旦确认了目标基因已经被成功导入并表现了预期的功能,就可以进行后续的实验。
二、转基因技术的应用转基因技术在农业、医学、工业等领域都有着广泛的应用。
在农业领域,转基因作物可以抗病虫害、耐逆境、提高产量、改良品质等方面有着显著的优势;在医学领域,转基因技术可以用于治疗疾病、生产药物、疫苗等方面;在工业领域,转基因微生物可以生产生物燃料、化工产品等。
总的来说,转基因技术为人类的生产生活带来了诸多益处,同时也带来了一些新的问题和挑战。
1. 农业转基因作物可以抗病虫害、耐逆境、提高产量、改良品质等方面有着显著的优势。
比如,转基因水稻可以抗虫、耐盐碱、提高产量;转基因玉米可以抗虫、耐除草剂、提高产量;转基因大豆可以抗除草剂、提高产量等。
转基因技术的名词解释_主要分类_技术原理
转基因技术的名词解释
转基因技术的理论基础来源于进化论衍生来的分子生物学。
基因片段的来源可以是提取特定生物体基因组中所需要的目的基因,也可以是人工合成指定序列的DNA片段。
DNA片段被转入特定生物中,与其本身的基因组进行重组,再从重组体中进行数代的人工选育,从而获得具有稳定表现特定的遗传性状的个体。
该技术可以使重组生物增加人们所期望的新性状,培育出新品种。
转基因技术的主要分类
转基因过程按照途径可分为人工转基因和自然转基因,按照对象可分为植物转基因技术、动物转基因技术和微生物基因重组技术。
人工转基因
将人工分离和修饰过的基因导入到生物体基因组中,由于导入基因的表达,引起生物体的性状的可遗传的修饰,这一技术称之为转基因技术(Transgene technology)。
人们常说的“遗传工程”、“基因工程”、“遗传转化”均为转基因的同义词。
如今,改变动植物性状的人工技术往往被称为转基因技术(狭义),而对微生物的操作则一般被称为遗传工程技术(狭义)。
经转基因技术修饰的生物体在媒体上常被称为“遗传修饰过的生物体”(Genetically modified organism,简称GMO)。
自然转基因
不是人为导向的,自然界里动物、植物或微生物自主形成的转基因现象,例如慢病毒载体里的乙型肝炎病毒DNA整合到人精子细胞染色体上、噬菌体将自己DNA的插入到溶源细胞DNA上,农杆菌和花椰菜花叶病毒(CMV)等。
植物转基因
植物转基因是基因组中含有外源基因的植物。
它可通过原生质体融合、细胞重组、遗传物质转移、染色体工程技术获得,有可能改变植物的某些遗传特性,培育高产、优质、抗病毒、抗虫、抗寒、抗旱、
抗涝、抗盐碱、抗除草剂等的作物新品种,如玉米稻、北极鳄梨、转基因三倍体毛白杨。
而且可用转基因植物或离体培养的细胞,来生产外源基因的表达产物,如人的生长激素、胰岛素、干扰素、白介素2、表皮生长因子、乙型肝炎疫苗等基因已在转基因植物中得到表达。
动物转基因
动物转基因就是基因组中含有外源基因的动物。
它是按照预先的设计,通过细胞融合、细胞重组、遗传物质转移、染色体工程和基因工程技术将外源基因导入精子、卵细胞或受精卵,再以生殖工程技术,有可能育成转基因动物。
通过生长素基因、多产基因、促卵素基因、高泌乳量基因、瘦肉型基因、角蛋白基因、抗寄生虫基因、抗病毒基因等基因转移,可能育成生长周期短,产仔、生蛋多和泌乳量高,转基因超级鼠比普通老鼠大约一倍。
生产的肉类、皮毛品质与加工性能好,并具有抗病性,已在牛、羊、猪、鸡、鱼等家养动物中取得一定成果。
但由于转基因动物受遗传镶嵌性和杂合性的影响,其有性生殖后代变异较大,难以形成稳定遗传的转基因品系。
因而,尝试将外源基因导入线粒体,再送入受精卵中,由于线粒体的细胞质遗传,其有性后代可能全都是转基因个体,从而解决这一问题。
微生物重组
在所有转基因技术中,以微生物基因重组技术应用最为宽泛和常见。
与动植物不同的是,微生物重组技术通常需要用到专门的重组基因载体——质粒。
质粒是一种细胞质遗传因子,因此具有不稳定的遗传特性。
但相比于动植物,微生物重组技术具有周期短、效果显著、控制性强的特点,因而广泛应用于生物医药和酶制剂行业。
经过多年的理论奠基,现已在微生物领域中开发出酵母表达系统、大肠杆菌表达系统和丝状真菌表达系统,其中毕赤酵母表达系统和大肠杆菌表达系统最受欢迎,具有表达效率高(外源蛋白占细胞总蛋白的10%至40%)、生产成本低的特点,一般常见的诸如胰岛素、白细胞介素、α-高温淀粉酶、重组人p53腺病毒注射液、啤酒酵母乙肝疫苗、抗生素、
饲料用木聚糖酶、壳聚糖酶等都由这两种表达系统生产的。
转基因技术的技术原理
转基因技术的原理是将人工分离和修饰过的优质基因,导入到生物体基因组中,从而达到改造生物的目的。
由于导入基因的表达,引起生物体的性状,可遗传的修饰改变,这一技术称之为人工转基因技术(Transgene technology)。
人工转基因技术就是把一个生物体的基因转移到另一个生物体DNA中的生物技术。
具有不确定性。
常用的方法和工具包括显微注射、基因枪、电破法、脂质体等。
转基因最初用于研究基因的功能,即把外源基因导入受体生物体基因组内(一般为模式生物,如拟南芥或斑马鱼等),观察生物体表现出的性状,达到揭示基因功能的目的。
植物
转基因植物是基因组中含有外源基因的植物。
通过原生质体融合、细胞重组、遗传物质转移、染色体工程技术获得,改变植物的某些遗传特性,培育优质新品种,或生产外源基因的表达产物,如胰岛素等。
在过去的二十年里,随着分子生物学各领域的不断发展,植物基因的分离、基因工程载体的构建、细胞的基因转化、转化细胞的组织培养、植株再生及外源基因表达的检测等各项技术日趋成熟和完善,有关植物基因工程的研究日新月异,许多以前根本不可能的基因转化工作在越来越多的植物上获得成功。
研究转基因植物的主要目的是提高多肽或工业用酶的产量,改善食品质量,提高农作物对虫害及病原体的抵抗力。
常规的药用蛋白大部分是利用生化的方法提取或微生物发酵获得的,这类活性物质一般在活细胞中含量甚微,且提取过程复杂,成本高,远远满足不了社会的需要。
应用转基因植物来生产这些药用蛋白,包括疫苗、抗体、干扰素等细胞因子,可以利用植物大田栽种的方式大量生产,大幅度降低生产成本,提高产量,还可以获得常规手段无法获得的药物。
利用植物来生产疫苗的最大优点是他可以作为食品直接口服。
通过各种植物转基因技术将多台疫苗基因转入植物,从而得到表达多肽疫苗的转基因植物。
随着抗体基因工程能将抗体基因(从小的活性单位
到完整抗体的重、轻链基因)从单抗杂交瘤中分离出来,人们就开始想办法利用转基因植物来表达这些抗体。
1989年Hiatt将鼠杂交瘤细胞产生的抗体基因转入烟草细胞获得了植物抗体,并且发现植物抗体具有杂交瘤来源抗体同样的抗原结合能力,既有功能性。
在这之后,全长抗体、单域抗体和单链抗体在转基因植物中均获得成功表达。
用植物抗体进行局部免疫治疗将是一个引人瞩目的领域,应用高亲和性抗体进行局部治疗可以治愈龋齿及其它一些常见病。
植物转基因可获得更多的新品种,蔬菜,水果,花卉都能够在保留其优良品质的情况下优化。
动物
人工转基因动物就是基因组中含有外源基因的动物。
它是按照预先的设计,融合重组细胞、遗传物质转移、染色体工程和基因工程技术将外源基因导入精子、卵细胞或受精卵,再以生殖工程技术,有可能育成转基因动物。
通过生长素基因、多产基因、促卵素基因、高泌乳量基因、瘦肉精基因、角蛋白基因、抗寄生虫基因、抗病毒基因等基因转移,可能育成优良的可养殖品种。
基因动物是指用实验导入的方法将外源基因在染色体基因内稳定整合并能稳定表达的一类动物。
1974年,Jaenisch应用显微注射法,在世界上首次成功地获得了SV40DNA转基因小鼠。
其后,Costantini将兔-珠蛋白基因注入小鼠的受精卵,使受精卵发育成小鼠,表达出了兔β-珠蛋白;Palmiter等把大鼠的生长激素基因导人小鼠受精卵内,获得“超级”小鼠;Church获得了首例转基因牛。
到目前为止,人们已经成功地获得了转基因鼠、鸡、山羊、猪、绵羊、牛、蛙以及多种转基因鱼。
还可将转基因动物作为生物工厂(Biofactories),包括,乳腺生物反应器和输卵管生物反应器等,如以转基因小鼠生产凝血因子IX、组织型血纤维溶酶原激活因子(t-PA)、白细胞介素2、α1-抗胰蛋白酶,以转基因绵羊生产人的α1-抗胰蛋白酶,以转基因山羊、奶牛生产LAt-PA,以转基因猪生产人血红蛋白等,这些基因产品具有高效、优
质、廉价与相应的人体蛋白具有同样的生物活性,且多随乳汁分泌,便于分离纯化,基于系统生物学的发展,转基因系统生物技术-合成生物学成为不仅单基因而且多基因乃至基因组设计、合成与转基因的新一代生物技术。
但由于人工转基因动物,它们受遗传镶嵌性和杂合性的影响,其有性生殖后代变异较大,难以形成稳定遗传的转基因品系。
因而,尝试从受体动物细胞中分离出线粒体,以外源基因对其进行离体转化,再将人工转基因线粒体导入受精卵,所发育成的人工转基因动物,雌性个体外培养的卵细胞与任一雄性个体交配或体外人工受精,由于线粒体的细胞质遗传,其有性后代可能全都是人工转基因个体。