北师大版-数学-八年级上册-八年级数学下册5.4 分式方程(三)—分式方程应用题 教案
- 格式:doc
- 大小:60.50 KB
- 文档页数:6
北师大版数学八年级下册《分式方程的应用》教案一. 教材分析北师大版数学八年级下册《分式方程的应用》这一章节主要让学生掌握分式方程的解法及其应用。
在此之前,学生已经学习了分式的基本概念、性质和运算,为本节课的学习打下了基础。
本节课的内容分为两个部分:一是分式方程的解法,二是分式方程在实际问题中的应用。
通过学习,学生能够掌握解分式方程的方法,并能够将分式方程应用于解决实际问题。
二. 学情分析八年级的学生已经具备了一定的数学基础,对分式的概念和性质有一定的了解。
但是,学生在解分式方程方面可能还存在一定的困难,特别是对于如何正确地去分母、化简方程等方面。
因此,在教学过程中,教师需要关注学生的学习情况,及时进行引导和解答。
三. 教学目标1.理解分式方程的概念,掌握解分式方程的方法。
2.能够将分式方程应用于解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.掌握解分式方程的方法,特别是如何正确地去分母、化简方程。
2.将分式方程应用于实际问题,提高解决问题的能力。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究分式方程的解法。
2.通过小组合作,让学生在讨论中解决问题,提高团队合作能力。
3.利用多媒体辅助教学,直观地展示分式方程的解法过程。
六. 教学准备1.准备相关的教学课件和教案。
2.准备一些实际问题,用于引导学生应用分式方程解决问题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,引导学生思考如何用数学方法解决这些问题。
从而引出本节课的主题——分式方程的应用。
2.呈现(10分钟)教师通过讲解和示例,向学生介绍分式方程的概念和解法。
讲解过程中,重点强调如何去分母、化简方程。
同时,让学生跟随教师一起动手解题,加深对解题方法的理解。
3.操练(10分钟)学生分组讨论,共同解决一些分式方程问题。
教师在旁边进行指导,解答学生的疑问。
此环节旨在让学生在实际操作中掌握解分式方程的方法。
北师大版数学八年级下册5.4《分式方程的概念及列分式方程》(第1课时)教案一. 教材分析《分式方程的概念及列分式方程》是北师大版数学八年级下册第5.4节的内容。
本节课主要让学生掌握分式方程的概念,学会如何列分式方程,并能够解简单的分式方程。
这一内容是学生学习了分式运算和一元一次方程的基础上进行的,为后续解决实际问题打下基础。
二. 学情分析学生在八年级上学期已经学习了分式的概念、分式的运算以及一元一次方程的解法,对于分式的基本概念和运算规则有一定的了解。
但部分学生在分式运算中还存在一定的困难,对于分式方程的理解和应用还需要加强。
此外,学生对于实际问题的解决能力有待提高。
三. 教学目标1.了解分式方程的概念,理解分式方程与一元一次方程的联系和区别。
2.学会列分式方程,并能解简单的分式方程。
3.培养学生的逻辑思维能力和解决实际问题的能力。
四. 教学重难点1.重点:分式方程的概念,列分式方程的方法,解分式方程的步骤。
2.难点:理解分式方程与一元一次方程的联系和区别,解决实际问题中的分式方程。
五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等多种教学方法,引导学生主动探究、合作交流,培养学生的动手操作能力和思维能力。
六. 教学准备1.教学PPT2.教学素材(实际问题)七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生思考如何用数学模型来解决这些问题。
通过分析,引入分式方程的概念。
2.呈现(10分钟)讲解分式方程的概念,解释分式方程与一元一次方程的联系和区别。
通过示例,展示如何列分式方程。
3.操练(10分钟)让学生分组讨论,尝试解决一些简单的实际问题,引导学生运用分式方程来解决问题。
每组选择一个问题,列出分式方程,并求解。
4.巩固(10分钟)选取部分学生的解题过程和答案,进行讲解和分析。
针对学生解题中出现的问题,进行讲解和指导。
5.拓展(10分钟)让学生尝试解决一些稍复杂的实际问题,引导学生运用所学的分式方程知识来解决问题。
4 分式方程第2课时分式方程的解法【教学目标】【知识与技能】1.理解分式方程的概念;2.会通过设适当的未知数并根据等量关系列出分式方程;3.学生掌握解分式方程的基本方法和步骤.【过程与方法】通过列出的方程归纳出它们的共同特点,得出分式方程的概念.了解分式的概念,明确分式和整式的区别;经历和体会解分式方程的必要步骤;使学生进一步了解数学思想中的“转化”思想.【情感态度】在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力.【教学重点】1、掌握分式方程的解法、解,分式方程要验根.2、在进一步理解分式方程意义的基础上,掌握分式方程的一般解法;【教学难点】1、掌握分式方程的解法、解,分式方程要验根.2、了解解分式方程可能会产生增根,掌握解分式方程一定要验根及验根方法.【教学过程】一、情境导入问题1:填空:(1)分母中不含未知数的方程叫做整式方程;(2)分母中含有未知数的方程叫做分式方程.问题2:判断下列说法是否正确: ①2x +32=5是分式方程; ②34-4x =4x +3是分式方程; ③x 2x =1是分式方程; ④1x +1=1y -1是分式方程. 解:①不是分式方程,因为分母中不含有未知数.②是分式方程.因为分母中含有未知数.③是分式方程.因为分母中含有未知数.④是分式方程.因为分母中含有未知数.问题3:方程5x -2=3x与以前学习的方程有什么不同?怎样解这样的方程? 二、合作探究探究点一:分式方程的解法【类型一】 解分式方程解方程:(1)5x =7x -2;(2)1x -2=1-x 2-x-3. 解析:分式方程两边同乘以最简公分母,把分式方程转化为整式方程求解,注意验根.解:(1)方程两边同乘x (x -2),得5(x -2)=7x ,5x -10=7x ,2x =-10,解得x =-5,检验:把x =-5代入最简公分母,得x (x -2)≠0,∴x =-5是原方程的解;(2)方程两边同乘最简公分母(x -2),得1=x -1-3(x -2),解得x =2,检验:把x =2代入最简公分母,得x -2=0,∴原方程无解.方法总结:解分式方程的步骤:①去分母;②解整式方程;③检验;④写出方程的解.注意检验有两种方法,一是代入原方程,二是代入去分母时乘的最简公分母,一般是代入公分母检验.【类型二】由分式方程的解确定字母的取值范围关于x的方程2x+ax-1=1的解是正数,则a的取值范围是____________.解析:去分母得2x+a=x-1,解得x=-a-1,∵关于x的方程2x+ax-1=1的解是正数,∴x>0且x≠1,∴-a-1>0且-a-1≠1,解得a<-1且a≠-2,∴a的取值范围是a<-1且a≠-2.方法总结:求出方程的解(用未知字母表示),然后根据解的正负性,列关于未知字母的不等式求解,特别注意分母不能为0.探究点二:分式方程的增根【类型一】求分式方程的增根若方程3x-2=ax+4x(x-2)有增根,则增根为( )A.0 B.2 C.0或2 D.1解析:∵最简公分母是x(x-2),方程有增根,则x(x-2)=0,∴x=0或x=2.去分母得3x=a(x -2)+4,当x=0时,2a=4,a=2;当x=2时,6=4不成立,∴增根只能为x=0,故选A.方法总结:增根是使分式方程的分母为0的根,所以判断增根只需让分式方程的最简公分母为0,注意应舍去不合题意的解.【类型二】分式方程有增根,求字母的值如果关于x的分式方程2x-3=1-mx-3有增根,则m的值为( )A.-3 B.-2C.-1 D.3解析:方程两边同乘以x-3,得2=x-3-m①.∵原方程有增根,∴x-3=0,即x=3.把x=3代入①,得m=-2.故选B.方法总结:增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.【类型三】分式方程无解,求字母的值若关于x的分式方程2x-2+mxx2-4=3x+2无解,求m的值.解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根.解:方程两边都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①当m-1=0时,此方程无解,此时m=1;②方程有增根,则x=2或x=-2,当x=2时,代入(m-1)x=-10得(m-1)×2=-10,m=-4;当x=-2时,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.三、板书设计1.分式方程的解法方程两边同乘以最简公分母,化为整式方程求解,再检验.2.分式方程的增根(1)解分式方程为什么会产生增根;(2)分式方程检验的方法.四、教学反思这节课主要是通过对比有分数系数的整式方程的解法来学习分式方程的解法,从而归纳出分式方程的基本解题步骤.在教学过程中要着重讲解分式方程为什么要检验,要让学生理解增根的由来,从而牢记分式方程在解题后要进行检验,避免解题出错.在完成解题步骤归纳之后,通过例题与练习让学生在出错中找到正确的解法,让学生自己归纳理解解题时容易出错的地方,防止犯错.。
北师大版八年级下册数学《5.4 第1课时分式方程的概念及列分式方程》教案一. 教材分析《5.4 第1课时分式方程的概念及列分式方程》这一课时主要让学生了解分式方程的概念,学会如何列分式方程。
分式方程是初中数学中的重要内容,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。
通过学习分式方程,学生能够更好地理解和运用数学知识。
二. 学情分析八年级下的学生已经掌握了分式的基本知识,对分式的性质和运算有一定的了解。
但是,对于分式方程的概念和列方程的方法,学生可能还存在一定的困惑。
因此,在教学过程中,教师需要引导学生理解分式方程的概念,并通过具体的例子让学生掌握列分式方程的方法。
三. 教学目标1.了解分式方程的概念,理解分式方程与整式方程的区别。
2.学会如何列分式方程,并能运用分式方程解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.分式方程的概念的理解。
2.列分式方程的方法的掌握。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题引导学生思考,通过具体的案例让学生掌握列分式方程的方法,通过小组合作让学生互相交流和学习。
六. 教学准备1.准备相关的案例和问题。
2.准备PPT,用于展示案例和问题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入分式方程的概念,例如:“某商品的原价是100元,打8折后的价格是80元,求商品的折扣率。
”让学生思考如何用数学方程来表示这个问题。
2.呈现(10分钟)呈现PPT,展示分式方程的定义和例子。
解释分式方程与整式方程的区别,并通过具体的例子让学生理解分式方程的概念。
3.操练(10分钟)让学生分组讨论,每组出一个例子,尝试列出一个分式方程。
然后,让学生互相交换例子,尝试解对方列出的分式方程。
4.巩固(10分钟)让学生回答一些关于分式方程的问题,以巩固对分式方程的理解。
例如:“分式方程的解与哪些因素有关?”、“如何判断一个方程是不是分式方程?”等。
5.4分式方程(第2课时分式方程的解法)教学目标1.引导学生掌握解分式方程的基本思路和方法.2.了解分式方程增根产生的原因并能解决与增根有关的问题.教学重点难点重点:解分式方程的基本方法和步骤.难点:检验分式方程的解.教学过程复习巩固1.方程的解:使方程左右两边相等的未知数的值叫方程的解.2.解一元一次方程的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.导入新课【创设情境,课堂引入】有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg和15000kg.已知第一块试验田每公顷的产量比第二块少3000kg,分别求这两块试验田每公顷的产量.如果设第一块试验田每公顷的产量为x kg,那么第二块试验田的产量是(x+3 000)kg.根据题意,可得方程=.探究新知【实践探究,交流新知】【教师提问】这个方程是我们学过的分式方程,这类方程该如何解呢?【学生活动】先独立完成,再与同伴交流,踊跃回答.【示例展示】解方程=.解:方程两边都乘x(x-2),得x=3(x-2).解这个方程,得x=3.检验:将x=3代入原方程,得左边=1,右边=1,左边=右边.所以,x=3是原方程的根.【师生总结】解分式方程.关键:将分式方程转化为整式方程.步骤:(1)去分母;(2)解整式方程;(3)检验;(4)写出方程的解.简记为:“一化、二解、三检验”.检验有两种方法:一是代入原方程,二是代入去分母时乘的最简公分母.一般是代入最简公分母检验.去分母的方法:⑴把各分母分解因式;⑵找出各分母的最简公分母;⑶方程两边各项乘最简公分母.【巩固练习】解分式方程:-=45.解:方程的两边同乘2x,得960-600=90x.解这个方程,得x=4.经检验,x=4是原方程的根.【合作探究,解决问题】【小组讨论,师生互学】在解方程=-2时,小亮的解法如下:解:方程的两边同乘x-2,得1-x=-1-2(x-2).解这个方程,得x=2.【教师提问】x=2是原方程的根吗?为什么?【学生活动】先独立思考,再与同伴交流,踊跃回答.答:在上面的方程中,x=2不是原方程的根,因为它使得原分式方程的分母为零.【师生总结】产生增根的原因:在方程的两边同乘了一个可能使分母为零的整式.注意:解分式方程一定要验根!【示例展示】当m为何值时,分式方程+ =4会产生增根?解:方程两边都乘x-3,得1-m=4(x-3),解这个方程,得x=.∵x=是原方程的增根,且原方程的增根是x=3,∴=3,解得m=1.【拓展延伸】【例1】若关于x的方程=1的解是正数,则a的取值范围是.【解析】去分母,得2x+a=x-1,解得x=-a-1.∵关于x的方程=1的解是正数,∴x>0且x≠1,∴-a-1>0且-a-1≠1,解得a<-1且a≠-2.【答案】a<-1且a≠-2方法总结:求出方程的解(用未知字母表示),然后根据解的正负,列关于未知字母的不等式求解,特别注意分母不能为0.【例2】若关于x的分式方程无解,求m的值.【思考】无解说明什么?两种情况:一是所化成的整式方程无解;二是解得整式方程的解使最简公分母为0.解:方程两边都乘(x+2)(x-2),得2(x+2)+m x=3(x-2),即(m-1)x=-10.①当m-1=0时,此方程无解,此时m=1;②原方程的解使最简公分母为0,则x=2或x=-2,当x=2时,代入(m-1)x=-10,得(m-1)×2=-10,解得m=-4;当x=-2时,代入(m-1)x=-10,得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.【总结】分式方程无解与分式方程有增根所表达的意义不一样:分式方程有增根仅仅是指求得的整式方程的解使最简公分母为0;分式方程无解不但包括求得的整式方程的解使最简公分母为0,而且还包括分式方程化为整式方程后无解.课堂练习1.以下是方程去分母后的结果,其中正确的是( )A. 2―1―x=1B. 2―1+x=1C. 2―1―x=2xD. 2―1+x=2x2.若方程3x-2=+4xx-2有增根,则增根为( )A.0B.2C.0或2D.13.解方程:(1);(2);(3).参考答案1.D2.A3.解:(1)x=1. (2)x=-32. (3)原分式方程无解.课堂小结1.解分式方程的一般步骤:(1)在方程的两边都乘最简公分母,约去分母,化成整式方程.(2)解这个整式方程.(3)把整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则须舍去.(4)写出原方程的根.2.方程的增根:若求出的解使得原分式方程的分母为零,我们称它为原方程的增根.产生增根的原因:在方程的两边同乘了一个可能使分母为零的整式.注意:解分式方程一定要验根!布置作业请完成本课时对应练习!板书设计分式方程的解法1.解分式方程的基本思路2.解分式方程的一般步骤3.方程的增根若求出的解使得原分式方程的分母为零,我们称它为原方程的增根.。
分式方程(三)—分式方程应用题
设计理念: 坚持“以学生为本”, 确立学生主动参与、合作学习、探究发现的主体地位;课堂教学设计把学生学习的起点作为教师教学的起点。
教师做为学生学习的组织者、引导者、合作者,课堂上努力创设学生自主探索学习的情景和机会, 发挥学生的主动性,给学生充分的时间与空间,让学生积极地思考、概括、提炼、消化知识,体验学习过程,从而培养学生自主探索问题的能力,形成有效的建构性学习。
体现“数学教学活动是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程”的教学新理念。
教学内容:《义务教育课程标准实验教科书·数学》北师大版八年级下册第92页教学目标:
1.知识与技能
⑴用分式方程的数学模型反映现实情境中的实际问题.
⑵用分式方程来解决现实情境中的问题.
2.过程与方法
⑴经历“实际问题-建立分式方程模型-求解-验根”的过程,发展抽象概括、分析问题和解决问题的能力.
⑵认识运用方程解决实际问题的关键是审清题意,寻找等量关系,建立数学模型.
3.情感、态度与价值观
⑴经历运用分式方程解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣.
⑵培养学生的创新精神,从中获得成功的体验.
教学策略:着力引导——主动参与——有效建构.
学情与教材分析:
1.学情分析
在数学教学中,发现应用题的解答对学生来说始终是一个难点。
这些问题,要么背景鲜活,学生缺少对问题的最基本的感性认识,解答时比较茫然;要么文字繁
多,学生阅读理解起来很费劲,容易造成视觉上的疲劳;要么数量关系复杂,隐蔽性较强,学生不知从哪里入手。
初中学生解答应用题困难的原因主要表现在以下三个方面:第一,生活经验匮乏。
第二,阅读文字和理解文字的能力欠缺。
第三,分析问题的方法和技巧欠缺。
2.教材分析
分式方程应用题是在学习了一元一次方程应用题、二元一次方程组应用题和一元一次不等式(组)应用题的基础上进行的。
列分式方程解决应用问题要稍复杂一些。
教科书力图使问题贴近学生的生活实际,如房屋租金、交水费、服装销售、糖果定价、购买文具等实际问题,以增进数学(分式)与现实世界的密切联系,提高学生解决实际问题的兴趣与能力,使学生在(知识与技能以外)数学思考、解决问题、情感态度价值观方面都得到发展。
教学重点:经历和体验列分式方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型,培养学生的数学应用能力。
教学难点:多角度分析问题,确立等量关系,列出正确的分式方程。
教学准备:PPT多媒体课件,让学生搜集有关的报纸、网络信息。
设计思路:本课的教学策略是:着力引导——主动参与——有效建构.教学设计体现了以学生发展为本的教育理念。
选用贴近学生生活和具有时代气息的问题,以增进数学(分式)与现实世界的密切联系,激发学生解决实际问题的兴趣,注重对学生的引导启发,通过创设问题情境,利用多媒体辅助教学,给学生提供充分活动和交流的机会,引导学生主动获取知识,力图在分析问题的方法和技巧上提高学生解答应用题的能力。
在解决每个问题时,都先让学生找等量关系,再根据等量关系列方程,使学生认识到“等量关系”是列方程解实际问题的关键。
然后,通过学生归纳总结,加深了“用分式方程解决实际问题”的实质把握,既是找等量关系解决实际问题,形成用分式方程解决实际问题的一般性策略;并体会自编自解的乐趣,增强学生学习的主动性和学习数学的信心,满足不同学生的学习需要。
最后,通过学生以及老师的小结反思,使学生认识到“用分式方程解决实际问题”是“建立数学模型解决问题”的具体过程,从而培养学生建模思想。