2022年全国各省中考数学真题分类解析整式
- 格式:docx
- 大小:103.94 KB
- 文档页数:14
(2022•福建中考)如图,数轴上的点P表示下列四个无理数中的一个,这个无理数是()A.−√2B.√2C.√5D.π【解析】选B.根据题意可得,1<P<2,∵1<√2<2,∴这个无理数是√2.(2022•荆州中考)实数a,b,c,d在数轴上对应点的位置如图,其中有一对互为相反数,它们是()A.a与d B.b与d C.c与d D.a与c【解析】选C.∵c<0,d>0,|c|=|d|,∴c,d互为相反数.(2022•永州中考)如图,数轴上点E对应的实数是()A.﹣2B.﹣1C.1D.2【解析】选A.数轴上点E对应的实数是﹣2.1(2022•雅安中考)使√x−2有意义的x的取值范围在数轴上表示为()A.B.C.D.【解析】选B.∵√x−2有意义,∴x﹣2≥0,∴x≥2.(2022•大庆中考)实数c,d在数轴上的对应点如图所示,则下列式子正确的是()A.c>d B.|c|>|d|C.﹣c<d D.c+d<0【解析】选C.由题意得:c<0,d>0且|c|<|d|,A.c<d,故A不符合题意;B.|c|<|d|,故B不符合题意;C.﹣c<d,故C符合题意;D.c+d>0,故D不符合题意.2(2022•吉林中考)实数a,b在数轴上对应点的位置如图所示,则a,b的大小关系为()A.a>b B.a<b C.a=b D.无法确定【解析】选B.∵b>0,a<0,∴a<b.(2022•遂宁中考)实数a、b在数轴上的位置如图所示,化简|a+1|−√(b−1)2+√(a−b)2= 2 .【解析】由数轴可得,﹣1<a<0,1<b<2,∴a+1>0,b﹣1>0,a﹣b<0,∴|a+1|−√(b−1)2+√(a−b)2=a+1﹣(b﹣1)+(b﹣a)=a+1﹣b+1+b﹣a=2.答案:2。
专题02 整式与因式分解一.选择题1.(2022·江苏宿迁)下列运算正确的是( )A .21m m -=B .236·m m a =C .()222mn m n =D .()235m m = 【答案】C【分析】由合并同类项可判断A ,由同底数幂的乘法可判断B ,由积的乘方运算可判断C ,由幂的乘方运算可判断D ,从而可得答案.【详解】解:2m m m -=, 故A 不符合题意;235m m m ⋅=, 故B 不符合题意;()222mn m n =, 故C 符合题意;()236m m =, 故D 不符合题意;故选:C【点睛】本题考查的是合并同类项,同底数幂的乘法,积的乘方运算,幂的乘方运算,掌握以上基础运算是解本题的关键.2.(2022·湖南株洲)下列运算正确的是( )A .235a a a ⋅=B .()235a a =C .22()ab ab = D .632(0)a a a a =≠ 【答案】A【分析】根据同底数幂相乘,幂的乘方,积的乘方,分式的化简,逐项判断即可求解.【详解】解:A 、235a a a ⋅=,故本选项正确,符合题意;B 、()236a a =,故本选项错误,不符合题意; C 、222()ab a b =,故本选项错误,不符合题意;D 、462(0)a a a a=≠,故本选项错误,不符合题意;故选:A 【点睛】本题主要考查了同底数幂相乘,幂的乘方,积的乘方,分式的化简,熟练掌握相关运算法则是解题的关键.3.(2022·陕西)计算:()2323x x y ⋅-=( ) A .336x y B .236x y - C .336x y - D .3318x y【答案】C 【分析】利用单项式乘单项式的法则进行计算即可.【详解】解:()()23233323236x x y x x y x y ⋅-=⨯-⨯=-⋅⨯.故选:C .【点睛】本题考查了单项式乘单项式的运算,正确地计算能力是解决问题的关键.4.(2022·浙江嘉兴)计算a 2·a ( )A .aB .3aC .2a 2D .a 3【答案】D【分析】根据同底数幂的乘法法则进行运算即可.【详解】解:23,a a a 故选D 【点睛】本题考查的是同底数幂的乘法,掌握“同底数幂的乘法,底数不变,指数相加”是解本题的关键. 5.(2022·四川眉山)下列运算中,正确的是( )A .3515x x x ⋅=B .235x y xy +=C .22(2)4x x -=-D .()2242235610x x y x x y ⋅-=-【答案】D【分析】根据同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则分析选项即可知道答案.【详解】解:A. 3515x x x ⋅=,根据同底数幂的乘法法则可知:358⋅=x x x ,故选项计算错误,不符合题意;B. 235x y xy +=,2x 和3y 不是同类项,不能合并,故选项计算错误,不符合题意;C. 22(2)4x x -=-,根据完全平方公式可得:22(2)44-=+-x x x ,故选项计算错误,不符合题意;D. ()2242235610x x y x x y ⋅-=-,根据单项式乘多项式的法则可知选项计算正确,符合题意; 故选:D【点睛】本题考查同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则,解题的关键是掌握同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则.6.(2022·江西)下列计算正确的是( )A .236m m m ⋅=B .()m n m n --=-+C .2()m m n m n +=+D .222()m n m n +=+【答案】B【分析】利用同底数幂的乘法,去括号法则,单项式乘多项式,完全平方公式对各选项依次判断即可.【详解】解:A 、2356m m m m ⋅=≠,故此选项不符合题意;B 、()m n m n --=-+,故此选项符合题意;C 、22()m m n m mn m n +=+≠+,故此选项不符合题意;D 、22222()2m m n m n m n n +=++≠+,故此选项不符合题意.故选:B .【点睛】本题考查了整式的混合运算,涉及到同底数幂的乘法,去括号法则,单项式乘多项式的运算法则,完全平方公式等知识.熟练掌握各运算法则和222()2a b a ab b +=++的应用是解题的关键.7.(2022·浙江宁波)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD 内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出( )A .正方形纸片的面积B .四边形EFGH 的面积C .BEF 的面积D .AEH △的面积【答案】C 【分析】设正方形纸片边长为x ,小正方形EFGH 边长为y ,得到长方形的宽为x -y ,用x 、y 表达出阴影部分的面积并化简,即得到关于x 、y 的已知条件,分别用x 、y 列出各选项中面积的表达式,判断根据已知条件能否求出,找到正确选项.【详解】根据题意可知,四边形EFGH 是正方形,设正方形纸片边长为x ,正方形EFGH 边长为y ,则长方形的宽为x -y ,所以图中阴影部分的面积=S 正方形EFGH +2S △AEH +2S △DHG =2112()222y y x y xy +⨯-+⨯=2xy ,所以根据题意,已知条件为xy 的值,A.正方形纸片的面积=x 2,根据条件无法求出,不符合题意;B.四边形EFGH 的面积=y 2, 根据条件无法求出,不符合题意;C.BEF 的面积=12xy ,根据条件可以求出,符合题意; D.AEH △的面积=21()22xy y y x y --=,根据条件无法求出,不符合题意;故选 C . 【点睛】本题考查整式与图形的结合,熟练掌握正方形、长方形、三角形等各种形状的面积公式,能正确用字母列出各种图形的面积表达式是解题的关键.8.(2022·浙江温州)化简3()()a b -⋅-的结果是( ) A .3ab - B .3ab C .3a b - D .3a b【答案】D【分析】先化简乘方,再利用单项式乘单项式的法则进行计算即可.【详解】解:()()()333·a b a b a b -⋅-=--=,故选:D .【点睛】本题考查单项式乘单项式,掌握单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式是解题的关键.9.(2022·江西)将字母“C ”,“H ”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H ”的个数是( ) A .9 B .10 C .11D .12【答案】B 【分析】列举每个图形中H 的个数,找到规律即可得出答案.【详解】解:第1个图中H 的个数为4,第2个图中H 的个数为4+2,第3个图中H 的个数为4+2×2,第4个图中H 的个数为4+2×3=10,故选:B .【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.10.(2022·浙江绍兴)下列计算正确的是( )A .2()a ab a a b +÷=+B .22a a a ⋅=C .222()a b a b +=+D .325()a a =【答案】A【分析】根据多项式除以单项式、同底数幂的乘法、完全平方公式、幂的乘方法则逐项判断即可.【详解】解:A 、2()a ab a a b +÷=+,原式计算正确;B 、23a a a ⋅=,原式计算错误;C 、222()2a b a b ab +=++,原式计算错误;D 、326()a a =,原式计算错误;故选:A .【点睛】本题考查了多项式除以单项式、同底数幂的乘法、完全平方公式和幂的乘方,熟练掌握运算法则是解题的关键.11.(2022·云南)按一定规律排列的单项式:x ,3x ²,5x ³,7x 4,9x 5,……,第n 个单项式是( ) A .(2n -1)n xB .(2n +1)n xC .(n -1)n xD .(n +1)n x【答案】A【分析】系数的绝对值均为奇数,可用(2n -1)表示;字母和字母的指数可用xn 表示.【详解】解:依题意,得第n 项为(2n -1)xn ,故选:A .【点睛】本题考查的是单项式,根据题意找出规律是解答此题的关键.12.(2022·重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为( ) A .15 B .13 C .11 D .9【答案】C【分析】根据第①个图案中菱形的个数:1;第②个图案中菱形的个数:123+=;第③个图案中菱形的个数:1225+⨯=;…第n 个图案中菱形的个数:()121n +-,算出第⑥个图案中菱形个数即可.【详解】解:∵第①个图案中菱形的个数:1;第②个图案中菱形的个数:123+=;第③个图案中菱形的个数:1225+⨯=;…第n 个图案中菱形的个数:()121n +-,∵则第⑥个图案中菱形的个数为:()126111+⨯-=,故C 正确.故选:C .【点睛】本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律. 13.(2022·安徽)下列各式中,计算结果等于9a 的是( )A .36+a aB .36a a ⋅C .10a a -D .182÷a a【答案】B 【分析】利用整式加减运算和幂的运算对每个选项计算即可.【详解】A .36+a a ,不是同类项,不能合并在一起,故选项A 不合题意;B .36369a a a a +⋅==,符合题意;C .10a a -,不是同类项,不能合并在一起,故选项C 不合题意;D .11816282a a a a -==÷,不符合题意,故选B【点睛】本题考查了整式的运算,熟练掌握整式的运算性质是解题的关键.14.(2022·四川成都)下列计算正确的是( )A .2m m m +=B .()22m n m n -=-C .222(2)4m n m n +=+D .2(3)(3)9m m m +-=-【答案】D【分析】根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定.【详解】解:A.2m m m +=,故该选项错误,不符合题意;B.()222m n m n -=-,故该选项错误,不符合题意;C.2224(2)4m n m n mn ++=+,故该选项错误,不符合题意;D.2(3)(3)9m m m +-=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键.15.(2022·山东滨州)下列计算结果,正确的是( )A .352()a a =B C 2= D .1cos302︒= 【答案】C【分析】根据幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值逐一进行计算即可.【详解】解:A 、23236()a a a ⨯==,该选项错误;B =C 2,该选项正确;D 、cos30=°,该选项错误;故选:C . 【点睛】本题考查了幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值,熟练掌握运算法则是解题的关键.16.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为( )A .32B .34C.37D.41【答案】C【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.17.(2022·湖南湘潭)下列整式与2ab为同类项的是()A.2a b B.22ab-C.ab D.2ab c【答案】B【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项求解.【详解】解:由同类项的定义可知,a的指数是1,b的指数是2.A、a的指数是2,b的指数是1,与2ab不是同类项,故选项不符合题意;B、a的指数是1,b的指数是2,与2ab是同类项,故选项符合题意;C、a的指数是1,b的指数是1,与2ab不是同类项,故选项不符合题意;D、a的指数是1,b的指数是2,c的指数是1,与2ab不是同类项,故选项不符合题意.故选:B.【点睛】此题考查了同类项,判断同类项只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.18.(2022·江苏苏州)下列运算正确的是()A7=-B.2693÷=C.222a b ab+=D.235a b ab⋅=【答案】Ba=,判断A选项不正确;C选项中2a、2b不是同类项,不能合并;D选项中,单项式与单项式法则:把单项式的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式;B【详解】A. 7=,故A 不正确; B. 2366932÷=⨯=,故B 正确; C. 222a b ab +≠,故C 不正确;D. 236a b ab ⋅=,故D 不正确;故选B .【点睛】本题考查二次根式的性质、有理数的除法及整式的运算,灵活运用相应运算法则是解题的关键. 19.(2022·重庆)对多项式x y z m n ----任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:()()x y z m n x y z m n ----=--++,()x y z m n x y z m n ----=--+-,…,给出下列说法: ①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为( )A .0B .1C .2D .3 【答案】D【分析】给x y -添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得x 的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.【详解】解:∵()x y z m n x y z m n ----=----∴①说法正确∵0x y z m n x y z m n -----++++=又∵无论如何添加括号,无法使得x 的符号为负号∴②说法正确∵当括号中有两个字母,共有4种情况,分别是()x y z m n ----、()x y z m n ----、()x y z m n ----、()x y z m n ----;当括号中有三个字母,共有3种情况,分别是()x y z m n ----、()x y z m n ----、()x y z m n ----;当括号中有四个字母,共有1种情况,()x y z m n ----∴共有8种情况∴③说法正确∴正确的个数为3故选D .【点睛】本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.二.填空题20.(2022·江苏苏州)已知4x y +=,6-=x y ,则22x y -=______.【分析】根据平方差公式计算即可.【详解】解:∵4x y +=,6-=x y ,∴22()()4624x y x y x y -=+-=⨯=,故答案为:24.【点睛】本题考查因式分解的应用,先根据平方差公式进行因式分解再整体代入求值是解题的关键. 21.(2022·四川乐山)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD 的周长为26,则正方形d 的边长为______.【答案】5【分析】设正方形a 、b 、c 、d 的边长分别为a 、b 、c 、d ,分别求得b =13c ,c =35d ,由“优美矩形”ABCD 的周长得4d +2c =26,列式计算即可求解.【详解】解:设正方形a 、b 、c 、d 的边长分别为a 、b 、c 、d ,∵“优美矩形”ABCD 的周长为26,∴4d +2c =26,∵a =2b ,c =a +b ,d =a +c ,∴c =3b ,则b =13c , ∴d =2b +c =53c ,则c =35d ,∴4d +65d =26, ∴d =5,∴正方形d 的边长为5,故答案为:5.【点睛】本题考查了整式加减的应用,认真观察图形,根据长方形的周长公式推导出所求的答案是解题的关键.22.(2022·四川乐山)已知221062m n m n ++=-,则m n -=______.【答案】4【分析】根据已知式子,凑完全平方公式,根据非负数之和为0,分别求得,m n 的值,进而代入代数式即可求解. 【详解】解:221062m n m n ++=-,2210620m n m n +-+∴+=,即()()22310m n -++=,3,1m n ∴==-,()314m n ∴-=--=,故答案为:4.【点睛】本题考查了因式分解的应用,掌握完全平方公式是解题的关键.23.(2022·湖南邵阳)已知2310x x -+=,则2395x x -+=_________.【答案】2【分析】将2395x x -+变形为23(31)+2x x -+即可计算出答案.【详解】22239539323(31)+2x x x x x x -+=-++=-+∵2310x x -+=∴23950+2=2x x -+=故答案为:2.【点睛】本题考查代数式的性质,解题的关键是熟练掌握代数式的相关知识.24.(2022·天津)计算7m m ⋅的结果等于___________.【答案】8m【分析】根据同底数幂的乘法即可求得答案.【详解】解:7178m m m m +⋅==,故答案为:8m .【点睛】本题考查了同底数幂的乘法,熟练掌握计算方法是解题的关键.25.(2022·江苏扬州)掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量E 与震级n 的关系为 1.510n E k =⨯(其中k 为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的________倍.【答案】1000【分析】分别求出震级为8级和震级为6级所释放的能量,然后根据同底数幂的除法即可得到答案.【详解】解:根据能量E 与震级n 的关系为 1.510n E k =⨯(其中k 为大于0的常数)可得到, 当震级为8级的地震所释放的能量为: 1.58121010k k ⨯⨯=⨯,当震级为6级的地震所释放的能量为: 1.5691010k k ⨯⨯=⨯,12391010100010k k ⨯==⨯, ∴震级为8级的地震所释放的能量是震级为6级的地震所释放能量的1000倍.故答案为:1000.【点睛】本题考查了利用同底数幂的除法底数不变指数相减的知识,充分理解题意并转化为所学数学知识是解题的关键.26.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n 的值为____________. 【答案】不存在【分析】首先根据n =1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n ;然后根据n =1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可. 【详解】解:∵n =1时,“•”的个数是3=3×1; n =2时,“•”的个数是6=3×2; n =3时,“•”的个数是9=3×3; n =4时,“•”的个数是12=3×4; ……∴第n 个图形中“•”的个数是3n ; 又∵n =1时,“○”的个数是1=1(11)2⨯+; n =2时,“○”的个数是2(21)32⨯+=, n =3时,“○”的个数是3(31)62⨯+=,n =4时,“○”的个数是4(41)102⨯+=, ……∴第n 个“○”的个数是()12n n +, 由图形中的“○”的个数和“.”个数差为2022 ()1320222n n n +∴-=①,()1320222n n n +-=② 解①得:无解解②得:12n n ==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.27.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数. 【详解】解:∵第一代勾股树中正方形有1+2=3(个), 第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律. 28.(2022·山东滨州)若10m n +=,5mn =,则22m n +的值为_______. 【答案】90【分析】将22m n +变形得到()22m n mn +-,再把10m n +=,5mn =代入进行计算求解. 【详解】解:∵10m n +=,5mn =,∴22m n + ()22m n mn =+- 21025=-⨯ 10010=- 90=.故答案为:90.【点睛】本题主要考查了代数式求值,完全平方公式的应用,灵活运用完全平方公式是解答关键. 29.(2022·山东泰安)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是_____(用科学记数法表示,保留2位有效数字) 【答案】7.1×10-7【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【详解】∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米, ∴地球的体积约是太阳体积的倍数是:1012÷(1.4×1018)≈7.1×10-7.故答案是:7.1×10-7.【点睛】本题主要考查了用科学记数法表示数的除法与有效数字,正确掌握运算法则是解题关键. 30.(2022·四川德阳)已知(x+y )2=25,(x ﹣y )2=9,则xy=___. 【答案】4【分析】根据完全平方公式的运算即可. 【详解】∵()225x y +=,()29x y -= ∵()2x y ++()2x y -=4xy =16,∴xy =4.【点睛】此题主要考查完全平方公式的灵活运用,解题的关键是熟知完全平方公式的应用. 31.(2022·浙江嘉兴)分解因式:m 2-1=_____. 【答案】()()11m m +-【分析】利用平方差公式进行因式分解即可.【详解】解:m 2-1=11,m m 故答案为:()()11m m +-【点睛】本题考查的是利用平方差公式分解因式,掌握“平方差公式的特点”是解本题的关键. 32.(2022·湖南怀化)因式分解:24-=x x _____.【答案】2(1)(1)+-x x x 【分析】根据提公因式法和平方差公式进行分解即可.【详解】解:()242221(1)(1)-=-=+-x x x x x x x ,故答案为:2(1)(1)+-x x x【点睛】本题考查了提公因式法和平方差公式,熟练掌握提公因式法和平方差公式是解题的关键. 33.(2022·浙江绍兴)分解因式:2x x + = ______. 【答案】(1)x x +【分析】利用提公因式法即可分解. 【详解】2(1)x x x x +=+, 故答案为:(1)x x +.【点睛】本题考查了用提公因式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解.34.(2022·浙江宁波)分解因式:x 2-2x +1=__________.【答案】(x -1)2【详解】由完全平方公式可得:2221(1)x x x -+=- 故答案为2(1)x -.【点睛】错因分析 容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底.35.(2022·江苏连云港)若关于x 的一元二次方程()2100mx nx m +-=≠的一个解是1x =,则m n +的值是___.【答案】1【分析】根据一元二次方程解的定义把1x =代入到()2100mx nx m +-=≠进行求解即可. 【详解】∵关于x 的一元二次方程()2100mx nx m +-=≠的一个解是1x =,∴10m n +-=,∴1m n +=,故答案为:1.【点睛】本题主要考查了一元二次方程解的定义,代数式求值,熟知一元二次方程解的定义是解题的关键. 36.(2022·浙江丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN ,已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.,AE a DE b ==,且a b >.(1)若a ,b 是整数,则PQ 的长是___________;(2)若代数式222a ab b --的值为零,则ABCD PQMNS S 四边形矩形的值是___________.【答案】 -a b3+【分析】(1)根据图象表示出PQ 即可;(2)根据2220a ab b --=分解因式可得()()0a b a b --=,继而求得a b =,根据这四个矩形的面积都是5,可得55,EP EN a b==,再进行变形化简即可求解. 【详解】(1)①和②能够重合,③和④能够重合,,AE a DE b ==, PQ a b ∴=-,故答案为:-a b ;(2)2220a ab b --=,2222222()2()()0a ab b b a b b a b a b ∴-+-=--=---=,0a b ∴-=或0a b -=,即a b =(负舍)或a b =+这四个矩形的面积都是5,55,EP EN a b∴==, ()()()()()()()()22555555ABCD PQMNa b a b a b a b S b a ab a b S a b a b a b b a ab ⎛⎫++⋅++⋅⎪+⎝⎭∴===-⎛⎫----⋅⎪⎝⎭四边形矩形,2222222222222222a b ab a b a b a a b ab a b a b b ++++-===+-+-+,3=+ 【点睛】本题考查了代数式及其分式的化简求值,准确理解题意,熟练掌握知识点是解题的根据. 37.(2022·四川德阳)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是123+=,第三个三角形数是1236++=,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是134+=,第三个正方形数是1359++=,……由此类推,图④中第五个正六边形数是______.【答案】45【分析】根据题意找到图形规律,即可求解. 【详解】根据图形,规律如下表:(3)1m ⎪-⎬⎪⎭1+2+312(3)12m +⎫⎪-⎬⎪+⎭ 1+2+3+423(23m ++⎫⎪-⎬⎪++⎭ n +1n +1(1)n +-n +(1)n +-n +(1)n +- 2n ++2(1)n +++- 12(1)n +++-12(1)n +++-12(1)3)12(1)n n +++-⎪⎬⎪+++-⎭由上表可知第n 个M 边形数为:12)[12(1)]()(3S n n m +++++++-=-,整理得:1)(1)(3)2(2n n n n m S --+=+, 则有第5个正六边形中,n=5,m=6,代入可得:((1)(1)(3)15)55(51)(63)452222n n n S n m +--+--+=+==,故答案为:45.【点睛】本题考查了整式--图形类规律探索,理解题意是解答本题的关键. 38.(2022·湖南怀化)正偶数2,4,6,8,10,……,按如下规律排列, 2 4 6 8 10 12 14 16 18 20……则第27行的第21个数是______. 【答案】744【分析】由图可以看出,每行数字的个数与行数是一致的,即第一行有1个数,第二行有2个数,第三行有3个数••••••••第n 行有n 个数,则前n 行共有(1)2n n +个数,再根据偶数的特征确定第几行第几个数是几.【详解】解:由图可知, 第一行有1个数, 第二行有2个数, 第三行有3个数, •••••••第n 行有n 个数. ∴前n 行共有1+2+3+⋯+n =(1)2n n +个数. ∴前26行共有351个数,∴第27行第21个数是所有数中的第372个数.∵这些数都是正偶数, ∴第372个数为372×2=744.故答案为:744.【点睛】本题考查了数字类的规律问题,解决这类问题的关键是先根据题目的已知条件找出其中的规律,再结合其他已知条件求解. 三.解答题39.(2022·江苏苏州)已知23230x x --=,求()2213x x x ⎛⎫-++ ⎪⎝⎭的值.【答案】24213x x -+,3【分析】先将代数式化简,根据23230x x --=可得2213x x -=,整体代入即可求解.【详解】原式222213x x x x =-+++24213x x =-+.∵23230x x --=,∴2213x x -=.∴原式22213x x ⎛⎫=-+ ⎪⎝⎭211=⨯+3=.【点睛】本题考查了整式的乘法运算,代数式化简求值,整体代入是解题的关键.40.(2022·江苏宿迁)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为 元;乙超市的购物金额为 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?【答案】(1)300,240(2)当040x <≤时,选择乙超市更优惠,当50x =时,两家超市的优惠一样,当4050x <<时,选择乙超市更优惠,当50x >时,选择甲超市更优惠. 【分析】(1)根据甲、乙两家超市的优惠方案分别进行计算即可;(2)设单位购买x 件这种文化用品,所花费用为y 元, 可得当040x <≤时,10,y x 甲 100.88,y x x 乙 显然此时选择乙超市更优惠,当40x >时4000.610406100,y x x 甲 100.88,y x x 乙再分三种情况讨论即可.(1)解: 甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖; ∴该单位需要购买30件这种文化用品,则在甲超市的购物金额为3010=300⨯(元),∵乙超市全部按标价的8折售卖,∴该单位需要购买30件这种文化用品,则在甲超市的购物金额为30100.8240(元), 故答案为:300,240(2)设单位购买x 件这种文化用品,所花费用为y 元,又当10x =400时,可得40,x = 当040x <≤时,10,y x 甲 100.88,y x x 乙 显然此时选择乙超市更优惠, 当40x >时,4000.610406100,y x x 甲 100.88,y x x 乙当y y =甲乙时,则86100,x x 解得:50,x = ∴当50x =时,两家超市的优惠一样, 当y y >乙甲时,则61008,x x 解得:50,x ∴当4050x <<时,选择乙超市更优惠, 当y y <乙甲时,则61008,x x 解得:50,x ∴当50x >时,选择甲超市更优惠.【点睛】本题考查的是列代数式,一次函数的实际应用,一元一次不等式的实际应用,清晰的分类讨论是解本题的关键.41.(2022·湖南衡阳)先化简,再求值:()()()2a b a b b a b +-++,其中1a =,2b =-.【答案】2a 2ab +,3-【分析】利用平方差公式与多项式乘法法则进行化简,再代值计算. 【详解】解:原式222222a b ab b a ab =-++=+, 将1a =,2b =-代入式中得:原式()21212143=+⨯⨯-=-=-.【点睛】本题考查多项式乘法与平方差公式,熟练掌握相关运算法则是解题的关键.42.(2022·浙江金华)如图1,将长为23a +,宽为2a 的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.(1)用关于a 的代数式表示图2中小正方形的边长.(2)当3a =时,该小正方形的面积是多少?【答案】(1)3a +(2)36【分析】(1)分别算出直角三角形较长的直角边和较短的直角边,再用较长的直角边减去较短的直角边即可得到小正方形面积;(2)根据(1)所得的小正方形边长,可以写出小正方形的面积代数式,再将a 的值代入即可. (1)解:∵直角三角形较短的直角边122a a =⨯=,较长的直角边23a =+, ∴小正方形的边长233a a a =+-=+;(2)解:22(3)69S a a a =+=++小正方形,当3a =时,2(33)36S =+=小正方形.【点睛】本题考查割补思想,属性结合思想,以及整式的运算,能够熟练掌握割补思想是解决本题的关键. 43.(2022·安徽)观察以下等式:第1个等式:()()()22221122122⨯+=⨯+-⨯, 第2个等式:()()()22222134134⨯+=⨯+-⨯, 第3个等式:()()()22223146146⨯+=⨯+-⨯, 第4个等式:()()()22224158158⨯+=⨯+-⨯,……按照以上规律.解决下列问题:(1)写出第5个等式:________; (2)写出你猜想的第n 个等式(用含n 的式子表示),并证明. 【答案】(1)()()()2222516101610⨯+=⨯+-⨯(2)()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明见解析【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;(2)观察相同位置的数变化规律可以得出第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,利用完全平方公式和平方差公式对等式左右两边变形即可证明.(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:()()()2222516101610⨯+=⨯+-⨯,故答案为:()()()2222516101610⨯+=⨯+-⨯;(2)解:第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明如下:等式左边:()2221441n n n +=++, 等式右边:[][]22(1)21(1)2n n n n +⋅+-+⋅[][](1)21(1)2(1)21(1)2n n n n n n n n =+⋅+++⋅⋅+⋅+-+⋅[](1)411n n =+⋅+⨯2441n n =++,故等式()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.44.(2022·浙江丽水)先化简,再求值:(1)(1)(2)x x x x +-++,其中12x =. 【答案】12x + ;2 【分析】先利用平方差公式,单项式与多项式乘法化简,然后代入12x =即可求解. 【详解】(1)(1)(2)x x x x +-++ 2212x x x =-++12x =+当12x =时, 原式12x =+11222=+⨯=. 【点睛】本题考查了整式的化简求值,正确地把代数式化简是解题的关键.45.(2022·重庆)若一个四位数M 的个位数字与十位数字的平方和恰好是M 去掉个位与十位数字后得到的两位数,则这个四位数M 为“勾股和数”.例如:2543M =,∵223425+=,∴2543是“勾股和数”;。
专题02 整式与因式分解三.解答题39.(2022·江苏苏州)已知23230x x −−=,求()2213x x x ⎛⎫−++ ⎪⎝⎭的值.【答案】24213x x −+,3【分析】先将代数式化简,根据23230x x −−=可得2213x x −=,整体代入即可求解. 【详解】原式222213x x x x =−+++24213x x =−+. ∵23230x x −−=,∴2213x x −=. ∴原式22213x x ⎛⎫=−+ ⎪⎝⎭211=⨯+3=.【点睛】本题考查了整式的乘法运算,代数式化简求值,整体代入是解题的关键.40.(2022·江苏宿迁)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为 元;乙超市的购物金额为 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?【答案】(1)300,240(2)当040x <≤时,选择乙超市更优惠,当50x =时,两家超市的优惠一样,当4050x <<时,选择乙超市更优惠,当50x >时,选择甲超市更优惠. 【分析】(1)根据甲、乙两家超市的优惠方案分别进行计算即可;(2)设单位购买x 件这种文化用品,所花费用为y 元, 可得当040x <≤时,10,y x 甲 100.88,y x x 乙 显然此时选择乙超市更优惠,当40x >时4000.610406100,y x x 甲 100.88,y x x 乙再分三种情况讨论即可.(1)解:Q 甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖; ∴该单位需要购买30件这种文化用品,则在甲超市的购物金额为3010=300⨯(元), ∵乙超市全部按标价的8折售卖,∴该单位需要购买30件这种文化用品,则在甲超市的购物金额为30100.8240(元), 故答案为:300,240(2)设单位购买x 件这种文化用品,所花费用为y 元,又当10x =400时,可得40,x = 当040x <≤时,10,y x 甲 100.88,y x x 乙 显然此时选择乙超市更优惠, 当40x >时,4000.610406100,y x x 甲100.88,y x x 乙当y y =甲乙时,则86100,x x 解得:50,x = ∴当50x =时,两家超市的优惠一样, 当y y >乙甲时,则61008,x x 解得:50,x ∴当4050x <<时,选择乙超市更优惠, 当y y <乙甲时,则61008,x x 解得:50,x ∴当50x >时,选择甲超市更优惠.【点睛】本题考查的是列代数式,一次函数的实际应用,一元一次不等式的实际应用,清晰的分类讨论是解本题的关键.41.(2022·湖南衡阳)先化简,再求值:()()()2a b a b b a b +−++,其中1a =,2b =−. 【答案】2a 2ab +,3−【分析】利用平方差公式与多项式乘法法则进行化简,再代值计算. 【详解】解:原式222222a b ab b a ab =−++=+, 将1a =,2b =−代入式中得:原式()21212143=+⨯⨯−=−=−.【点睛】本题考查多项式乘法与平方差公式,熟练掌握相关运算法则是解题的关键.42.(2022·浙江金华)如图1,将长为23a +,宽为2a 的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.(1)用关于a 的代数式表示图2中小正方形的边长.(2)当3a =时,该小正方形的面积是多少? 【答案】(1)3a +(2)36【分析】(1)分别算出直角三角形较长的直角边和较短的直角边,再用较长的直角边减去较短的直角边即可得到小正方形面积;(2)根据(1)所得的小正方形边长,可以写出小正方形的面积代数式,再将a 的值代入即可. (1)解:∵直角三角形较短的直角边122a a =⨯=,较长的直角边23a =+, ∴小正方形的边长233a a a =+−=+;(2)解:22(3)69S a a a =+=++小正方形,当3a =时,2(33)36S =+=小正方形.【点睛】本题考查割补思想,属性结合思想,以及整式的运算,能够熟练掌握割补思想是解决本题的关键. 43.(2022·安徽)观察以下等式:第1个等式:()()()22221122122⨯+=⨯+−⨯, 第2个等式:()()()22222134134⨯+=⨯+−⨯, 第3个等式:()()()22223146146⨯+=⨯+−⨯, 第4个等式:()()()22224158158⨯+=⨯+−⨯,……按照以上规律.解决下列问题:(1)写出第5个等式:________; (2)写出你猜想的第n 个等式(用含n 的式子表示),并证明. 【答案】(1)()()()2222516101610⨯+=⨯+−⨯(2)()[][]22221(1)21(1)2n n n n n +=+⋅+−+⋅,证明见解析【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;(2)观察相同位置的数变化规律可以得出第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+−+⋅,利用完全平方公式和平方差公式对等式左右两边变形即可证明.(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:()()()2222516101610⨯+=⨯+−⨯,故答案为:()()()2222516101610⨯+=⨯+−⨯;(2)解:第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+−+⋅,证明如下:等式左边:()2221441n n n +=++, 等式右边:[][]22(1)21(1)2n n n n +⋅+−+⋅[][](1)21(1)2(1)21(1)2n n n n n n n n =+⋅+++⋅⋅+⋅+−+⋅[](1)411n n =+⋅+⨯2441n n =++,故等式()[][]22221(1)21(1)2n n n n n +=+⋅+−+⋅成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.44.(2022·浙江丽水)先化简,再求值:(1)(1)(2)x x x x +−++,其中12x =. 【答案】12x + ;2 【分析】先利用平方差公式,单项式与多项式乘法化简,然后代入12x =即可求解. 【详解】(1)(1)(2)x x x x +−++2212x x x =−++12x =+当12x =时, 原式12x =+11222=+⨯=. 【点睛】本题考查了整式的化简求值,正确地把代数式化简是解题的关键.45.(2022·重庆)若一个四位数M 的个位数字与十位数字的平方和恰好是M 去掉个位与十位数字后得到的两位数,则这个四位数M 为“勾股和数”.例如:2543M =,∵223425+=,∴2543是“勾股和数”;又如:4325M =,∵225229+=,2943≠,∴4325不是“勾股和数”. (1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,记()9c dG M +=,()()()103a cb d P M −+−=.当()G M ,()P M 均是整数时,求出所有满足条件的M .【答案】(1)2022不是“勾股和数”,5055是“勾股和数”;理由见解析 (2)8109或8190或4536或4563.【分析】(1)根据“勾股和数”的定义进行验证即可;(2)由“勾股和数”的定义可得2210a b c d +=+,根据()G M ,()P M 均是整数可得9c d +=,22812c d cd+=−为3的倍数,据此得出符合条件的c ,d 的值,然后即可确定出M . (1)解:2022不是“勾股和数”,5055是“勾股和数”; 理由:∵22228+=,820≠,∴1022不是“勾股和数”; ∵225550+=,∴5055是“勾股和数”;(2)∵M 为“勾股和数”,∴2210a b c d +=+,∴220100c d <+<, ∵()9c dG M +=为整数,∴9c d +=, ∵()()()2291010910333c a c b d a b c dP c d M −−+−+−+=−−==为整数, ∴22812c d cd +=−为3的倍数,∴①0c ,9d =或9c =,0d =,此时8109M =或8190; ②3c =,6d =或6c =,3d =,此时4536M =或4563, 综上,M 的值为8109或8190或4536或4563.【点睛】本题以新定义为背景考查了整式混合运算的应用以及学生应用知识的能力,解题关键是要理解新定义,能根据条件找出合适的“勾股和数”.46.(2022·重庆)对于一个各数位上的数字均不为0的三位自然数N ,若N 能被它的各数位上的数字之和m 整除,则称N 是m 的“和倍数”.例如:∵247(247)2471319÷++=÷=,∴247是13的“和倍数”. 又如:∵214(214)2147304÷++=÷=L L ,∴214不是“和倍数”. (1)判断357,441是否是“和倍数”?说明理由;(2)三位数A 是12的“和倍数”,a ,b ,c 分别是数A 其中一个数位上的数字,且a b c >>.在a ,b ,c 中任选两个组成两位数,其中最大的两位数记为()F A ,最小的两位数记为()G A ,若()()16F AG A +为整数,求出满足条件的所有数A .【答案】(1)357不是15“和倍数”,441是9的“和倍数”;理由见解析 (2)数A 可能为732或372或516或156【分析】(1)根据题目中给出的“和倍数”定义进行判断即可;(2)先根据三位数A 是12的“和倍数”得出12a b c ++=,根据a b c >>,()F A 是最大的两位数,()G A 是最小的两位数,得出()()10210F A G A a b c +=++,()()16k F A G A +=(k 为整数),结合12a b c ++=得出152b k =−,根据已知条件得出16b <<,从而得出3b =或5b =,然后进行分类讨论即可得出答案.(1)解:∵()357357357152312÷++=÷=⋅⋅⋅⋅⋅⋅,∴357不是15“和倍数”; ∵()441441441949÷++=÷=,∴441是9的“和倍数”. (2)∵三位数A 是12的“和倍数”,∴12a b c ++=,∵a b c >>,∴在a ,b ,c 中任选两个组成两位数,其中最大的两位数()10F A a b =+,最小的两位数()10G A c b =+,∴()()101010210F A G A a b c b a b c +=+++=++, ∵()()16F A G A +为整数,设()()16k F A G A +=(k 为整数),则1021016a b c k ++=, 整理得:558a c b k ++=,根据12a b c ++=得:12a c b +=−, ∵a b c >>,∴12b b −>,解得6b <,∵“和倍数”是各数位上的数字均不为0的三位自然数,∴0a b c >>>,∴1b >,∴16b <<,把12a c b +=−代入558a c b k ++=得: ()5128b b k −+=,整理得:152b k =−,∵16b <<,k 为整数,∴3b =或5b =, 当3b =时,1239a c +=−=,∵0a b c >>>,∴a >3,03c <<,7a ∴=,3b =,2c =,或8a =,3b =,1c =,要使三位数A 是12的“和倍数”,数A 必须是一个偶数, 当7a =,3b =,2c =时,组成的三位数为732或372, ∵7321261÷=,∴732是12的“和倍数”, ∵3721231÷=,∴372是12的“和倍数”;当8a =,3b =,1c =时,组成的三位数为318或138, ∵31812266÷=⋅⋅⋅⋅⋅⋅,∴318不是12的“和倍数”, ∵13812116÷=⋅⋅⋅⋅⋅⋅,∴138不是12的“和倍数”;当5b =时,1257a c +=−=,∵0a b c >>>,∴57a <<,6a ∴=,5b =,1c =,组成的三位数为516或156,∵5161243÷=,∴516是12的“和倍数”, ∵1561213÷=,∴156是12的“和倍数”;综上分析可知,数A 可能为732或372或516或156.【点睛】本题主要考查了新定义类问题,数的整除性,列代数式,利用数位上的数字特征和数据的整除性,是解题的关键,分类讨论是解答本题的重要方法,本题有一定的难度.47.(2022·浙江嘉兴)设5a 是一个两位数,其中a 是十位上的数字(1≤a ≤9).例如,当a =4时,5a 表示的两位数是45.(1)尝试:①当a =1时,152=225=1×2×100+25; ②当a =2时,252=625=2×3×100+25; ③当a =3时,352=1225= ;……(2)归纳:25a 与100a (a +1)+25有怎样的大小关系?试说明理由. (3)运用:若25a 与100a 的差为2525,求a 的值.【答案】(1)③34100+25;(2)相等,证明见解析;(3)5a = 【分析】(1)③仔细观察①②的提示,再用含有相同规律的代数式表示即可; (2)由()222510510010025,a a a a =+=++再计算100a (a +1)+25,从而可得答案;(3)由25a 与100a 的差为2525,列方程,整理可得225,a =再利用平方根的含义解方程即可. (1)解:①当a =1时,152=225=1×2×100+25; ②当a =2时,252=625=2×3×100+25; ③当a =3时,352=1225=34100+25; (2)解:相等,理由如下:Q ()222510510010025,a a a a =+=++100a (a +1)+25=210010025,a a25100125.a a a(3)Q 25a 与100a 的差为2525, 2100100251002525,a a a整理得:21002500,a 即225,a = 解得:5,a Q 1≤a ≤9, 5.a ∴=【点睛】本题考查的是数字的规律探究,完全平方公式的应用,单项式乘以多项式,利用平方根的含义解方程,理解题意,列出运算式或方程是解本题的关键.。
(2022•泰州中考)如图,在长为50m 、宽为38m 的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260m 2,道路的宽应为多少?【解析】设路宽应为x 米根据等量关系列方程得:(50﹣2x )(38﹣2x )=1260,解得:x =4或40,40不合题意,舍去,所以x =4.答:道路的宽应为4米.(2022·牡丹江中考)如图,直线MN 与x 轴,y 轴分别相交于A ,C 两点,分别过A ,C 两点作x 轴,y 轴的垂线相交于B 点,且OA ,OC (OA >OC )的长分别是一元二次方程x 2﹣14x +48=0的两个实数根.(1)求C 点坐标;(2)求直线MN 的解析式;(3)在直线MN 上存在点P ,使以点P ,B ,C 三点为顶点的三角形是等腰三角形,请直接写出P 点的坐标.【解析】(1)解方程x 2﹣14x +48=0得x 1=6,x 2=8.∵OA ,OC (OA >OC )的长分别是一元二次方程x 2﹣14x +48=0的两个实数根,∴OC =6,OA =8.∴C (0,6);(2)设直线MN 的解析式是y =kx +b (k ≠0).由(1)知,OA =8,则A (8,0).∵点A 、C 都在直线MN 上,∴{8k +b =0b =6,解得,{k =−34b =6,∴直线MN 的解析式为y =−34x +6; (3)∵A (8,0),C (0,6),∴根据题意知B (8,6).∵点P 在直线MN :y =−34x +6上,∴设P (a ,−34a +6)当以点P ,B ,C 三点为顶点的三角形是等腰三角形时,需要分类讨论: ①当PC =PB 时,点P 是线段BC 的中垂线与直线MN 的交点,则P 1(4,3); ②当PC =BC 时,a 2+(−34a +6﹣6)2=64,解得,a =±325,则P 2(−325,545),P 3(325,65); ③当PB =BC 时,(a ﹣8)2+(34a ﹣6+6)2=64,解得,a =25625,则−34a +6=−4225,∴P 4(25625,−4225). 综上所述,符合条件的点P 有:P 1(4,3),P 2(−325,545),P 3(325,65),P 4(25625,−4225).。
(2022•武威中考)如图1,在菱形ABCD中,∠A=60°,动点P从点A出发,沿折线AD→DC→CB方向匀速运动,运动到点B停止.设点P的运动路程为x,△APB的面积为y,y与x的函数图象如图2所示,则AB的长为()A.√3B.2√3C.3√3D.4√3【解析】选B.在菱形ABCD中,∠A=60°,∴△ABD为等边三角形,设AB=a,由图2可知,△ABD的面积为3√3,∴S△ABD=√34a2=3√3,解得:a=2√3.(2022•自贡中考)如图,菱形ABCD对角线交点与坐标原点O重合,点A(﹣2,5),则点C的坐标是()A.(5,﹣2)B.(2,﹣5)C.(2,5)D.(﹣2,﹣5)【解析】选B.∵四边形ABCD是菱形,∴OA=OC,即点A与点C关于原点对称,∵点A(﹣2,5),∴点C的坐标是(2,﹣5).(2022•株洲中考)如图所示,在菱形ABCD中,对角线AC与BD相交于点O,过点C作CE∥BD交AB的延长线于点E,下列结论不一定正确的是()A.OB=12CE B.△ACE是直角三角形C.BC=12AE D.BE=CE【解析】选D.∵四边形ABCD是菱形,∴AO=CO=12,AC⊥BD,∵CE∥BD,∴△AOB∽△ACE,∴∠AOB=∠ACE=90°,AOAC=OBCE=ABAE=12,∴△ACE是直角三角形,OB=12CE,AB=12AE,(2022•河南中考)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E 为CD 的中点.若OE =3,则菱形ABCD 的周长为( )A .6B .12C .24D .48【解析】选C .∵四边形ABCD 为菱形,∴AC ⊥BD ,AB =BC =CD =DA ,∴△COD 为直角三角形.∵OE =3,点E 为线段CD 的中点,∴CD =2OE =6.∴C 菱形ABCD =4CD =4×6=24.(2022•赤峰中考)如图,菱形ABCD ,点A 、B 、C 、D 均在坐标轴上.∠ABC =120°,点A (﹣3,0),点E是CD 的中点,点P 是OC 上的一动点,则PD +PE 的最小值是( )A .3B .5C .2√2D .32√3【解析】选A .根据题意得,E 点关于x 轴的对称点是BC 的中点E ',连接DE '交AC 与点P ,此时PD +PE 有最小值为DE ',∵四边形ABCD 是菱形,∠ABC =120°,点A (﹣3,0),∴OA =OC =3,∠DBC =60°,∴△BCD 是等边三角形,∴DE '=OC =3,即PD +PE 的最小值是3.(2022•海南中考)如图,菱形ABCD 中,点E 是边CD 的中点,EF 垂直AB 交AB 的延长线于点F ,若BF :CE =1:2,EF =√7,则菱形ABCD 的边长是( )A .3B .4C .5D .45√7【解析】选B .过点D 作DH ⊥AB 于点H ,如图,∵四边形ABCD是菱形,∴AD=AB=CD,AB∥CD.∵EF⊥AB,DH⊥AB,∴DH∥EF,∴四边形DHFE为平行四边形,∴HF=DE,DH=EF=√7.∵点E是边CD的中点,∴DE=12CD,∴HF=12CD=12AB.∵BF:CE=1:2,∴设BF=x,则CE=2x,∴CD=4x,DE=HF=2x,AD=AB=4x,∴AF=AB+BF=5x.∴AH=AF﹣HF=3x.在Rt△ADH中,∵DH2+AH2=AD2,∴(√7)2+(3x)2=(4x)2.解得:x=±1(负数不合题意,舍去),∴x=1.∴AB=4x=4.即菱形ABCD的边长是4.A .52 B .5 C .10 D .20 【解析】选C .由作图过程可得:PQ 为BD 的垂直平分线,∴BM =MD ,BN =ND .设PQ 与BD 交于点O ,如图,则BO =DO .∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠MDO =∠NBO ,∠DMO =∠BNO ,在△MDO 和△NBO 中,{∠MDO =∠NBO∠DMO =∠BNO OD =OB,∴△MDO ≌△NBO (AAS ),∴DM =BN ,∴四边形BNDM 为平行四边形,∵BM =MD ,∴四边形MBND 为菱形,∴四边形MBND 的周长=4BM .设MB =x ,则MD =BM =x ,∴AM =AD ﹣DM =4﹣x ,在Rt △ABM 中,∵AB 2+AM 2=BM 2,∴22+(4﹣x )2=x 2,解得:x =52,∴四边形MBND 的周长=4BM =10.(2022•武威中考)如图,菱形ABCD 中,对角线AC 与BD 相交于点O ,若AB =2√5cm ,AC =4cm ,则BD 的长为8 cm .【解析】∵四边形ABCD 是菱形,AC =4cm ,∴AC ⊥BD ,BO =DO ,AO =CO =2cm ,∵AB =2√5cm ,∴BO =√AB 2−AO 2=4cm ,∴DO =BO =4cm ,∴BD =8cm.答案:8.(2022•温州中考)如图,在菱形ABCD 中,AB =1,∠BAD =60°.在其内部作形状、大小都相同的菱形AENH和菱形CGMF ,使点E ,F ,G ,H 分别在边AB ,BC ,CD ,DA 上,点M ,N 在对角线AC 上.若AE =3BE ,则MN 的长为 √32 .【解析】连接DB 交AC 于点O ,作MI ⊥AB 于点I ,作FJ ⊥AB 交AB 的延长线于点J ,如图所示,∵四边形ABCD 是菱形,∠BAD =60°,AB =1,∴AB =BC =CD =DA =1,∠BAC =30°,AC ⊥BD ,∵△ABD 是等边三角形,∴OD =12,∴AO =√AD 2−DO 2=√12−(12)2=√32, ∴AC =2AO =√3,∵AE =3BE ,∴AE =34,BE =14,∵菱形AENH 和菱形CGMF 大小相同,∴BE =BF =14,∠FBJ =60°,∴FJ =BF •sin60°=14×√32=√38, ∴MI =FJ =√38,∴AM =MI sin30°=√3812=√34, 同理可得,CN =√34, ∴MN =AC ﹣AM ﹣CN =√3−√34−√34=√32. 答案:√32.DQ ﹣P 'Q 的最大值为 16√23.【解析】如图,连接BD 交AC 于点O ,过点D 作DK ⊥BC 于点B ,延长DE 交AB 于点R ,连接EP ′交AB 于点J ,作EJ 关于AC 的对称线段EJ ′,则DP ′的对应点P ″在线段EJ ′上.当点P 是定点时,DQ ﹣QP ′=AD ﹣QP ″,当D ,P ″,Q 共线时,QD ﹣QP ′的值最大,最大值是线段DP ″的长,当点P 与B 重合时,点P ″与J ′重合,此时DQ ﹣QP ′的值最大,最大值是线段DJ ′的长,也就是线段BJ 的长.∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =OC ,∵AE =14.EC =18,∴AC =32,AO =OC =16,∴OE =AO ﹣AE =16﹣14=2,∵DE ⊥CD ,∴∠DOE =∠EDC =90°,∵∠DEO =∠DEC ,∴△EDO ∽△ECD ,∴DE 2=EO •EC =36,∴DE =EB =EJ =6,∴CD =√EC 2−DE 2=√182−62=12√2,∴OD =√DE 2−OE 2=√62−22=4√2,∴BD =8√2,∵S △DCB =12×OC ×BD =12BC •DK , ∴DK =12×16×8√212√212×16×8√26√2=323, ∵∠BER =∠DCK ,∴sin ∠BER =sin ∠DCK =DK CD =32312√2=4√29, ∴RB =BE ×4√29=8√23,3(2022•达州中考)如图,菱形ABCD的对角线AC,BD相交于点O,AC=24,BD=10,则菱形ABCD的周长为52.【解析】∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,AO=CO,BO=DO,∵AC=24,BD=10,∴AO=12AC=12,BO=12BD=5,在Rt△AOB中,AB=√AO2+BO2=√122+52=13,∴菱形的周长为13×4=52.答案:52(2022•娄底中考)菱形ABCD的边长为2,∠ABC=45°,点P、Q分别是BC、BD上的动点,CQ+PQ的最小值为√2.【解析】连接AQ,作AH⊥BC于H,∵四边形ABCD是菱形,∴AB=CB,∠ABQ=∠CBQ,∵BQ=BQ,∴△ABQ≌△CBQ(SAS),(2022•天津中考)如图,已知菱形ABCD的边长为2,∠DAB=60°,E为AB的中点,F为CE的中点,AF与DE相交于点G,则GF的长等于√194.【解析】如图,过点F作FH∥CD,交DE于H,过点C作CM⊥AB,交AB的延长线于M,连接FB,∵四边形ABCD是菱形,∴AB=CD=BC=2,AB∥CD,∴FH∥AB,∴∠FHG=∠AEG,∵F是CE的中点,FH∥CD,∴H是DE的中点,∴FH是△CDE的中位线,∴FH=12CD=1,∵E是AB的中点,∴AE=BE=1,∴AE=FH,∵∠AGE=∠FGH,∴△AEG≌△FHG(AAS),∴AG=FG,∵AD∥BC,4(2022•陕西中考)如图,在菱形ABCD中,AB=4,BD=7.若M、N分别是边AD、BC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为√152.【解析】连接AC交BD于O,∵四边形ABCD为菱形,∴BD⊥AC,OB=OD=72,OA=OC,由勾股定理得:OA=√AB2−OB2=√42−(72)2=√152,∵ME⊥BD,AO⊥BD,∴ME∥AO,∴△DEM∽△DOA,∴MEOA=DMAD,即ME√152=4−AM4,解得:ME=4√15−√15AM8,同理可得:NF=√15AM8,∴ME+NF=√15 2,答案:√152.(2022•台州中考)如图,在菱形ABCD 中,∠A =60°,AB =6.折叠该菱形,使点A 落在边BC 上的点M 处,折痕分别与边AB ,AD 交于点E ,F .当点M 与点B 重合时,EF 的长为 3√3 ;当点M 的位置变化时,DF 长的最大值为 6﹣3√3 .【解析】如图1中,∵四边形ABCD 是菱形,∴AD =AB =BC =CD ,∠A =∠C =60°,∴△ADB ,△BDC 都是等边三角形,当点M 与B 重合时,EF 是等边△ADB 的高,EF =AD •sin60°=6×√32=3√3.如图2中,连接AM 交EF 于点O ,过点O 作OK ⊥AD 于点K ,交BC 于点T ,过点A 作AG ⊥CB 交CB 的延长线于点G ,取AD 的中点R ,连接OR .∵AD ∥CG ,OK ⊥AD ,∴OK ⊥CG ,∴∠G =∠AKT =∠GTK =90°,∴四边形AGTK 是矩形,∴AG =TK =AB •sin60°=3√3,∵OA =OM ,∥AOK =∠MOT ,∠AKO =∠MTO =90°,(2022•黔东南州中考)如图,矩形ABCD的对角线AC,BD相交于点O,DE∥AC,CE∥BD.若AC=10,则四边形OCED的周长是20.【解析】∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∴OC=DE,OD=CE,∵矩形ABCD的对角线AC,BD相交于点O,∴OC=12AC=5,OD=12BD,BD=AC,∴OC=OD=5,∴OC=OD=CE=DE,∴平行四边形OCED是菱形,∴C菱形OCED=4OC=4×5=20.答案:20.(2022•哈尔滨中考)如图,菱形ABCD的对角线AC,BD相交于点O,点E在OB上,连接AE,点F为CD 的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为2√5.【解析】∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=4,BO=DO,∴AE=√AO2+EO2=√9+16=5,∴BE=AE=5,∴BO=8,∴BC=√BO2+CO2=√64+16=4√5,∵点F为CD的中点,BO=DO,∴OF=12BC=2√5.答案:2√5.【解析】添加的条件是AB =CD ,理由如下:∵AB ∥CD ,AB =CD ,∴四边形ABCD 是平行四边形,又∵AC ⊥BD ,∴平行四边形ABCD 是菱形.答案:AB =CD (答案不唯一).(2022•龙东中考)如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,∠BAD =60°,AD =3,AH 是∠BAC的平分线,CE ⊥AH 于点E ,点P 是直线AB 上的一个动点,则OP +PE 的最小值是 32√6 .【解析】连接OE ,过点O 作OF ⊥AB ,垂足为F ,并延长到点O ′,使O ′F =OF ,连接O ′E 交直线AB 于点P ,连接OP ,∴AP 是OO ′的垂直平分线,∴OP =O ′P ,∴OP +PE =O ′P +PE =O ′E ,此时,OP +PE 的值最小,∵四边形ABCD 是菱形,∴AD =AB =3,∠BAC =12∠BAD ,OA =OC =12AC ,OD =OB =12BD ,∠AOD =90°, ∵∠BAD =60°,∴△ADB 是等边三角形,∴BD =AD =3,∴OD =12BD =32,∴AO =√AD 2−DO 2=√32−(32)2=32√3,∴AC =2OA =3√3, ∵CE ⊥AH ,∴∠AEC =90°,∴OE =OA =12AC =32√3,∴∠OAE =∠OEA ,∵AE 平分∠CAB ,∴∠OAE =∠EAB ,∴∠OEA =∠EAB ,∴OE ∥AB ,∴∠EOF =∠AFO =90°,在Rt △AOF 中,∠OAB =12DAB =30°,∴OF =12OA =34√3,∴OO ′=2OF =32√3, 在Rt △EOO ′中,O ′E =√EO 2+OO ′2=√(32√3)2+(32√3)2=32√6,∴OE +PE =32√6,∴OP +PE 的最小值为32√6. 答案:32√6.(2022·安徽中考)已知四边形ABCD 中,BC =CD ,连接BD ,过点C 作BD 的垂线交AB 于点E ,连接DE .【解析】(1)证明:设CE 与BD 交于点O ,∵CB =CD ,CE ⊥BD ,∴DO =BO ,∵DE ∥BC ,∴∠DEO =∠BCO ,∵∠DOE =∠BOC ,∴△DOE ≌△BOC (AAS ),∴DE =BC ,∴四边形BCDE 是平行四边形,∵CD =CB ,∴平行四边形BCDE 是菱形;(2)(i )解:∵DE 垂直平分AC ,∴AE =EC 且DE ⊥AC ,∴∠AED =∠CED ,又∵CD =CB 且CE ⊥BD ,∴CE 垂直平分DB ,∴DE =BE ,∴∠DEC =∠BEC ,∴∠AED =∠CED =∠BEC ,又∵∠AED +∠CED +∠BEC =180°,∴∠CED =13×180°=60°;(ii )证明:由(i )得AE =EC ,又∵∠AEC =∠AED +∠DEC =120°,∴∠ACE =30°,同理可得,在等腰△DEB 中,∠EBD =30°,∴∠ACE =∠ABF =30°, 在△ACE 与△ABF 中,{∠ACE =∠ABF∠CAE =∠BAF AE =AF,∴△ABF ≌△ACE (AAS ),∴AC =AB ,又∵AE =AF ,∴AB ﹣AE =AC ﹣AF ,即BE =CF .(2022•连云港中考)如图,四边形ABCD 为平行四边形,延长AD 到点E ,使DE =AD ,且BE ⊥DC .(1)求证:四边形DBCE 为菱形;(2)若△DBC 是边长为2的等边三角形,点P 、M 、N 分别在线段BE 、BC 、CE 上运动,求PM +PN 的最小值.【解析】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∵DE =AD ,∴DE =BC ,∵E 在AD 的延长线上,∴DE ∥BC ,∴四边形DBCE是平行四边形,∵BE⊥DC,∴四边形DBCE是菱形;(2)解:作N关于BE的对称点N',过D作DH⊥BC于H,如图:由菱形的对称性知,点N关于BE的对称点N'在DE上,∴PM+PN=PM+PN',∴当P、M、N'共线时,PM+PN'=MN'=PM+PN,∵DE∥BC,∴MN'的最小值为平行线间的距离DH的长,即PM+PN的最小值为DH的长,在Rt△DBH中,∠DBC=60°,DB=2,=√3,∴PM+PN的最小值为√3.∴DH=DB•sin∠DBC=2×√32(2022•滨州中考)如图,菱形ABCD的边长为10,∠ABC=60°,对角线AC、BD相交于点O,点E在对角线BD 上,连接AE,作∠AEF=120°且边EF与直线DC相交于点F.(1)求菱形ABCD的面积;(2)求证AE=EF.【解析】(1)作AG⊥BC交BC于点G,如图所示,∵四边形ABCD是菱形,边长为10,∠ABC=60°,=5√3,∴BC=10,AG=AB•sin60°=10×√32∴菱形ABCD的面积是:BC•AG=10×5√3=50√3,即菱形ABCD的面积是50√3;(2)证明:连接EC,∵四边形ABCD是菱形,∠ABC=60°,∴EO垂直平分AC,∠BCD=120°,∴EA=EC,∠DCA=60°,∴∠EAC=∠ECA,∠ACF=120°,∵∠AEF=120°,∴∠EAC+∠EFC=360°﹣∠AEF﹣∠ACF=360°﹣120°﹣120°=120°,∵∠ECA+∠ECF=120°,∴∠EFC=∠ECF,∴EC=EF,∴AE=EF.(2022•舟山中考)小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.小惠:证明:∵AC⊥BD,OB=OD,∴AC垂直平分BD.∴AB=AD,CB=CD,∴四边形ABCD是菱形.小洁:这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.【解析】赞成小洁的说法,补充条件:OA=OC,证明如下:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,又∵AC⊥BD,∴平行四边形ABCD是菱形.(2022•凉山州中考)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交CE的延长线于点F.(1)求证:四边形ADBF是菱形;(2)若AB=8,菱形ADBF的面积为40.求AC的长.【解析】(1)证明:∵AF∥BC,∴∠AFC=∠FCD,∠F AE=∠CDE,∵点E是AD的中点,∴AE=DE,∴△F AE≌△CDE(AAS),∴AF=CD,∵点D是BC的中点,∴BD=CD,∴AF=BD,∴四边形AFBD是平行四边形,(2022•南充中考)如图,在菱形ABCD中,点E,F分别在边AB,BC上,BE=BF,DE,DF分别与AC交于点M,N.求证:(1)△ADE≌△CDF.(2)ME=NF.【证明】(1)∵四边形ABCD是菱形,∴DA=DC,∠DAE=∠DCF,AB=CB,∵BE=BF,∴AE=CF,在△ADE和△CDF中,{DA=DC∠DAE=∠DCF AE=CF,∴△ADE≌△CDF(SAS);(2)由(1)知△ADE≌△CDF,∴∠ADM=∠CDN,DE=DF,∵四边形ABCD是菱形,∴∠DAM=∠DCN,∴∠DMA=∠DNC,∴∠DMN=∠DNM,∴DM=DN,∴DE﹣DM=DF﹣DN,∴ME=NF.(2022•广元中考)如图,在四边形ABCD中,AB∥CD,AC平分∠DAB,AB=2CD,E为AB中点,连结CE.(1)求证:四边形AECD为菱形;(2)若∠D=120°,DC=2,求△ABC的面积.【解析】(1)证明:∵E为AB中点,∴AB=2AE=2BE,∵AB=2CD,∴CD=AE,又∵AE∥CD,∴四边形AECD是平行四边形,∵AC平分∠DAB,∴∠DAC=∠EAC,∵AB∥CD,∴∠DCA=∠CAB,∴∠DCA=∠DAC,∴AD=CD,∴平行四边形AECD是菱形;(2)∵四边形AECD是菱形,∠D=120°,∴AD=CD=CE=AE=2,∠D=120°=∠AEC,∴AE=CE=BE,∠CEB=60°,∴∠CAE=30°=∠ACE,△CEB是等边三角形,∴BE=BC=EC=2,∠B=60°,∴∠ACB=90°,∴AC=√3BC=2√3,∴S△ABC=12×AC×BC=12×2×2√3=2√3.【解析】(1)①证明:∵CE⊥AB,CF⊥AD,∴∠BEC=∠DFC=90°,∵四边形ABCD是菱形,∴∠B=∠D,BC=CD,∴△BEC≌△DFC(AAS),∴CE=CF;②连接AC,如图1,∵E是边AB的中点,CE⊥AB,∴BC=AC,∵四边形ABCD是菱形,∴BC=AC,∴△ABC是等边三角形,∠EAC=60°,在Rt△ACE中,AE=2,∴CE=AE•tan60°=2×√3=2√3;(2)方法一:如图2,延长FE交CB的延长线于M,∵四边形ABCD是菱形,∴AD∥BC,AB=BC,∴∠AFE=∠M,∠A=∠EBM,∵E是边AB的中点,∴AE=BE,∴△AEF≌△BEM(AAS),∴ME=EF,MB=AF,∵AE=3,EF=2AF=4,∴ME=4,BM2,BE=3,∴BC=AB=2AE=6,∴MC=8,∴MBME =24=12,MEMC=48=12,∴MBME=MEMC,∵∠M为公共角,∴△MEB∽△MCE,∴BEEC =MBME=24,∵BE=3,∴CE=6;方法二:如图3,延长FE 交CB 的延长线于M ,过点E 作EN ⊥BC 于点N ,∵四边形ABCD 是菱形,∴AD ∥BC ,AB =BC ,∴∠AFE =∠M ,∠A =∠EBM ,∵E 是边AB 的中点,∴AE =BE ,∴△AEF ≌△BEM (AAS ),∴ME =EF ,MB =AF ,∵AE =3,EF =2AF =4,∴ME =4,BM 2,BE =3,∴BC =AB =2AE =6,∴MC =8,在Rt △MEN 和Rt △BEN 中,ME 2﹣MN 2=EN 2,BE 2﹣BN 2=EN 2,∴ME 2﹣MN 2=BE 2﹣BN 2,∴42﹣(2+BN )2=32﹣BN 2,解得:BN =34,∴CN =6−34=214, ∴EN 2=BE 2﹣BN 2=32﹣(34)2=13516,在Rt △ENC 中,CE 2=EN 2+CN 2=13516+44116=57616=36,∴CE =6.(2022•娄底中考)如图,以BC 为边分别作菱形BCDE 和菱形BCFG (点C ,D ,F 共线),动点A 在以BC 为直径且处于菱形BCFG 内的圆弧上,连接EF 交BC 于点O .设∠G =θ.(1)求证:无论θ为何值,EF 与BC 相互平分;并请直接写出使EF ⊥BC 成立的θ值.(2)当θ=90°时,试给出tan ∠ABC 的值,使得EF 垂直平分AC ,请说明理由.【解析】(1)∵四边形BCFG ,四边形BCDE 都是菱形,∴CF ∥BG ,CD ∥BE ,CB =CF =CD =BG =BE ,∵D ,C ,F 共线,∴G ,B ,E 共线,∴DF ∥EG ,DF =GE ,∴四边形DEGF 是平行四边形,∴EF 与BC 互相平分.当EF ⊥FG 时,∵GF =BG =BE ,∴EG =2GF ,∴∠GEF =30°,∴θ=90°﹣30°=60°;(2)当tan ∠ABC =2时,EF 垂直平分线段AC .理由:如图(2)中,设AC 交EF 于点J .∵四边形BCFG 是菱形,∴∠G =∠FCO =90°,∵EF 与BC 互相平分,∴OC =OB ,∴CF =BC ,∴FC =2OC ,∴tan ∠FOC =tan ∠ABC ,∴∠ABC =∠FOC ,∴OJ ∥AB ,∵OC =OB ,∴CJ =AJ ,∵BC 是直径,∴∠BAC =∠OJC =90°,∴EF 垂直平分线段AC.(2022•岳阳中考)如图,点E ,F 分别在▱ABCD 的边AB ,BC 上,AE =CF ,连接DE ,DF .请从以下三个条件:①∠1=∠2;②DE =DF ;③∠3=∠4中,选择一个合适的作为已知条件,使▱ABCD 为菱形. (1)你添加的条件是 ① (填序号);(2)添加了条件后,请证明▱ABCD 为菱形.【解析】(1)添加的条件是∠1=∠2,答案:①;(2)证明:∵四边形ABCD 是平行四边形,∴∠A =∠C ,在△ADE 和△CDF 中,{∠1=∠2∠A =∠C AE =CF,∴△ADE ≌△CDF (AAS ),∴AD =CD ,∴▱ABCD 为菱形.【解析】(1)M 与B 重合时,如图1,∵PQ ⊥AB ,∴∠PQA =90°,∴PA =12AB =2,∴t =2;(2)①当0≤t ≤2时,∵AM =2t ,∴BM =4﹣2t ,∵△APQ ≌△BMF ,∴AP =BM ,∴t =4﹣2t ,∴t =43;②当2<t ≤4时,∵AM =2t ,∴BM =2t ﹣4,∵△APQ ≌△BMF ,∴AP =BM ,∴t =2t ﹣4,∴t =4;综上所述,t 的值为4或43; (3)①0≤t ≤2时,如图2,在Rt △APQ 中,PQ =√32t ,∴MQ =32t ,∴S =12PQ ⋅MQ =12×√32t ×32t =3√38t 2; ②当2<t ≤4时,如图3,∵BF =t ﹣2,MF =√3(t ﹣2),∴S △BFM =12BF •MF =√32(t −2)2,∴S =S △PQM ﹣S △BFM =−√38t 2+2√3t −2√3;∴S ={3√38t 2(0≤t ≤2)−√38t 2+2√3t −2√3(2<t ≤4); (4)连接AE ,如图4,∵△PQE 为等边三角形,∴PE =√32t ,在Rt △APE 中,tan ∠PAE =PE PA =√32t t =√32, ∴∠PAE 为定值,∴点E 的运动轨迹为直线,∵AP =t ,∴AE =√AP 2+PE 2=√t 2+(√32t)2=√72t ,当t =2时,AE =√7,(2022•荆州中考)如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【解析】(1)如图1中,△ABD1,△ABD2,△ACD3,△ACD4,△CBD5即为所求;(2)如图2中,菱形ABDC,菱形BECF即为所求.(2022•长沙中考)如图,在▱ABCD中,对角线AC,BD相交于点O,AB=AD.(1)求证:AC⊥BD;(2)若点E,F分别为AD,AO的中点,连接EF,EF=32,AO=2,求BD的长及四边形ABCD的周长.【解析】(1)∵四边形ABCD是平行四边形,AB=AD,∴▱ABCD是菱形,∴AC⊥BD;(2)∵点E,F分别为AD,AO的中点,∴EF是△AOD的中位线,∴OD=2EF=3,由(1)可知,四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,BD=2OD=6,在Rt△AOD中,由勾股定理得:AD=√AO2+OD2=√22+32=√13,∴C菱形ABCD=4AD=4√13.(2)若AE=BE=2,求BF的长.【解析】(1)∵四边形ABCD是正方形,四边形HEFG是菱形,∴AD=CD,ED=GD,∠ADB=∠CDB,∠EHB=∠GHB,∴∠ADB﹣∠EHB=∠CDB﹣∠GHB,即∠ADE=∠CDG,在△ADE和△CDG中,{AD=CD∠ADE=∠CDG ED=GD,∴△ADE≌△CDG(SAS);(2)过E作EQ⊥DF于Q,则∠EQB=90°,∵四边形ABCD是正方形,∴∠A=90°,AD=AB=AE+EF=2+2=4,∠EBQ=∠CBD=45°,∴∠QEB=45°=∠EBQ,∴EQ=BQ,∵BE=2,∴2EQ2=22,∴EQ=BQ=√2(负数舍去),在Rt△DAE中,由勾股定理得:DE=√AD2+AE2=√42+22=2√5,∵四边形EFGH是菱形,∴EF=DE=2√5,∴QF=√EF2−EQ2=√(2√5)2−(√2)2=3√2,∴BF=QF﹣QB=3√2−√2=2√2.【解析】(1)作PE⊥AC于点E,在Rt△APE中,cos30°=AE AP,∴AE=AP•cos30°=√3x,∵∠APQ=120°,∴∠AQP=180°﹣120°﹣30°=30°,∴AP=PQ,∴点E为AQ中点,∴AQ=2√3x(cm),答案:2√3x.(2)如图,∵∠APQ=120°,∴∠MNB=∠PQB=60°,∵∠B=60°,∴△MNB为等边三角形,∴AP=PQ=PN=MN=NB,即AP+PN+NB=3AP=AB,∴3×2x=6,解得x=1.(3)当0≤x≤1时,作QF⊥AB于点F,∵∠A =30°,AQ =2√3x ,∴QF =12AQ =√3x ,∵PN =PQ =AP =2x ,∴y =PN •QF =2x •√3x =2√3x 2.当1<t ≤32时,QM ,NM 交BC 于点H ,K ,∵AB =6cm ,∠A =30°,∴AC =√32AB =3√3cm ,∴CQ =AC ﹣AQ =3√3−2√3x ,∴QH =2√3CQ =2√3(3√3−2√3x )=6﹣4x , ∴HM =QM ﹣QH =2x ﹣(6﹣4x )=6x ﹣6, ∵△HKM 为等边三角形,∴S △HKM =√34HM 2=9√3x 2﹣18√3x +9√3, ∴y =2√3x 2﹣(9√3x 2﹣18√3x +9√3)=﹣7√3x 2+18√3x ﹣9√3. 当32<x ≤3时,重叠图形△PQM 为等边三角形,PQ =PB =AB ﹣AP =6﹣2x ,∴y =√34PB 2=√34(6﹣2x )2=√3x 2﹣6√3x +9√3.综上所述,y ={ 2√3x 2(0≤x ≤1)−7√3x 2+18√3x −9√3(1<x ≤32)√3x 2−6√3x +9√3(32<x ≤3)。
(2022•舟山中考)如图,在Rt △ABC 和Rt △BDE 中,∠ABC =∠BDE =90°,点A 在边DE 的中点上,若AB =BC ,DB =DE =2,连结CE ,则CE 的长为( )A .√14B .√15C .4D .√17【解析】选D .作EF ⊥CB 交CB 的延长线于点F ,作EG ⊥BA 交BA 的延长线于点G , ∵DB =DE =2,∠BDE =90°,点A 是DE 的中点, ∴BE =√BD 2+DE 2=√22+22=2√2,DA =EA =1, ∴AB =√BD 2+AD 2=√22+12=√5, ∵AB =BC ,∴BC =√5, ∵AE⋅BD 2=AB⋅EG 2,∴1×22=√5⋅EG2,解得EG =2√55,∵EG ⊥BG ,EF ⊥BF ,∠ABF =90°, ∴四边形EFBG 是矩形,∴EG =BF =2√55,∵BE =2√2,BF =2√55, ∴EF =√BE 2−BF 2=√(2√2)2−(2√55)2=6√55,CF =BF +BC =2√55+√5=7√55, ∵∠EFC =90°,∴EC =√EF 2+CF 2=√(6√55)2+(7√55)2=√17.(2022·安徽中考)两个矩形的位置如图所示,若∠1=α,则∠2=( )A .α﹣90°B .α﹣45°C .180°﹣αD .270°﹣α 【解析】选C .由图可得, ∠1=90°+∠3,∵∠1=α,∴∠3=α﹣90°,∵∠3+∠2=90°,∴∠2=90°﹣∠3=90°﹣(α﹣90°)=90°﹣α+90°=180°﹣α.(2022•连云港中考)如图,将矩形ABCD 沿着GE 、EC 、GF 翻折,使得点A 、B 、D 恰好都落在点O 处,且点G 、O 、C 在同一条直线上,同时点E 、O 、F 在另一条直线上.小炜同学得出以下结论:①GF ∥EC ;②AB =4√35AD ;③GE =√6DF ;④OC =2√2OF ;⑤△COF ∽△CEG .其中正确的是( )A .①②③B .①③④C .①④⑤D .②③④【解析】选B .由折叠性质可得:DG =OG =AG ,AE =OE =BE ,OC =BC , ∠DGF =∠FGO ,∠AGE =∠OGE ,∠AEG =∠OEG ,∠OEC =∠BEC , ∴∠FGE =∠FGO +∠OGE =90°,∠GEC =∠OEG +∠OEC =90°, ∴∠FGE +∠GEC =180°, ∴GF ∥CE ,故①正确;设AD =2a ,AB =2b ,则DG =OG =AG =a ,AE =OE =BE =b , ∴CG =OG +OC =3a ,在Rt △CGE 中,CG 2=GE 2+CE 2,(3a )2=a 2+b 2+b 2+(2a )2,解得:b =√2a ,∴AB =√2AD ,故②错误; 在Rt △COF 中,设OF =DF =x ,则CF =2b ﹣x =2√2a ﹣x , ∴x 2+(2a )2=(2√2a ﹣x )2,解得:x =√22a ,∴√6DF =√6×√22a =√3a ,2√2OF =2√2×√22a =2a ,在Rt △AGE 中,GE =√AG 2+AE 2=√3a , ∴GE =√6DF ,OC =2√2OF ,故③④正确;无法证明∠FCO =∠GCE ,∴无法判断△COF ∽△CEG ,故⑤错误; 综上,正确的是①③④.(2022•泰安中考)如图,四边形ABCD 为矩形,AB =3,BC =4,点P 是线段BC 上一动点,点M 为线段AP 上一点,∠ADM =∠BAP ,则BM 的最小值为( )A .52B .125C .√13−32D .√13−2【解析】选D .如图,取AD 的中点O ,连接OB ,OM .∵四边形ABCD 是矩形, ∴∠BAD =90°,AD =BC =4, ∴∠BAP +∠DAM =90°, ∵∠ADM =∠BAP , ∴∠ADM +∠DAM =90°, ∴∠AMD =90°, ∵AO =OD =2, ∴OM =12AD =2,∴点M 的运动轨迹是以O 为圆心,2为半径的⊙O . ∵OB =√AB 2+AO 2=√32+22=√13, ∴BM ≥OB ﹣OM =√13−2, ∴BM 的最小值为√13−2(2022•达州中考)如图,点E 在矩形ABCD 的AB 边上,将△ADE 沿DE 翻折,点A 恰好落在BC 边上的点F 处,若CD =3BF ,BE =4,则AD 的长为( )A .9B .12C .15D .18【解析】选C .∵四边形ABCD 是矩形, ∴AD =BC ,∠A =∠EBF =∠BCD =90°, ∵将矩形ABCD 沿直线DE 折叠, ∴AD =DF =BC ,∠A =∠DFE =90°, ∴∠BFE +∠DFC =∠BFE +∠BEF =90°, ∴∠BEF =∠CFD , ∴△BEF ∽△CFD ,(2022•湖州中考)如图,已知BD是矩形ABCD的对角线,AB=6,BC=8,点E,F分别在边AD,BC上,连结BE,DF.将△ABE沿BE翻折,将△DCF沿DF翻折,若翻折后,点A,C分别落在对角线BD上的点G,H处,连结GF.则下列结论不正确的是()A.BD=10B.HG=2C.EG∥FH D.GF⊥BC【解析】选D.∵四边形ABCD是矩形,∴∠A=90°,BC=AD,∵AB=6,BC=8,∴BD=√AB2+AD2=√62+82=10,故A选项不符合题意;∵将△ABE沿BE翻折,将△DCF沿DF翻折,点A,C分别落在对角线BD上的点G,H处,∴AB=BG=6,CD=DH=6,∴GH=BG+DH﹣BD=6+6﹣10=2,故B选项不符合题意;∵四边形ABCD是矩形,∴∠A=∠C=90°,∵将△ABE沿BE翻折,将△DCF沿DF翻折,点A,C分别落在对角线BD上的点G,H处,∴∠A=∠BGE=∠C=∠DHF=90°,∴EG∥FH.故C选项不符合题意;(2022•黄冈中考)如图,在矩形ABCD 中,AB <BC ,连接AC ,分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧交于点M ,N ,直线MN 分别交AD ,BC 于点E ,F .下列结论: ①四边形AECF 是菱形; ②∠AFB =2∠ACB ; ③AC •EF =CF •CD ;④若AF 平分∠BAC ,则CF =2BF . 其中正确结论的个数是( )A .4B .3C .2D .1【解析】选B.根据题意知,EF 垂直平分AC ,在△AOE 和△COF 中,{∠EAO =∠FCO∠AOE =∠COF =90°AO =CO ,∴△AOE ≌△COF (AAS ),∴OE =OF ,∴AE =AF =CF =CE ,即四边形AECF 是菱形,故①结论正确; ∵∠AFB =∠FAO +∠ACB ,AF =FC ,∴∠FAO =∠ACB , ∴∠AFB =2∠ACB ,故②结论正确;2901 (2022•宜宾中考)如图,在矩形纸片ABCD 中,AB =5,BC =3,将△BCD 沿BD 折叠到△BED 位置,DE 交AB 于点F ,则cos ∠ADF 的值为( )A .817B .715C .1517D .815【解析】选C .∵四边形ABCD 是矩形,∴∠A =90°,AB ∥CD ,AD =BC =3,AB =CD =5,∴∠BDC =∠DBF , 由折叠的性质可得∠BDC =∠BDF , ∴∠BDF =∠DBF ,∴BF =DF , 设BF =x ,则DF =x ,AF =5﹣x , 在Rt △ADF 中,32+(5﹣x )2=x 2, ∴x =175,∴cos ∠ADF =3175=1517.(2022•陕西中考)在下列条件中,能够判定▱ABCD 为矩形的是( )A .AB =ACB .AC ⊥BDC .AB =ADD .AC =BD【解析】选D .A 、▱ABCD 中,AB =AC ,不能判定▱ABCD 是矩形,故选项A 不符合题意;B 、∵▱ABCD 中,AC ⊥BD ,∴▱ABCD 是菱形,故选项B 不符合题意;C 、∵▱ABCD 中,AB =AD ,∴▱ABCD 是菱形,故选项C 不符合题意;D 、∵▱ABCD 中,AC =BD ,∴▱ABCD 是矩形,故选项D 符合题意;【解析】选B .如图,该垃圾填埋场外围受污染土地的面积=80×3×2+60×3×2+32π=(840+9π)m 2(2022•荆州中考)如图,已知矩形ABCD 的边长分别为a ,b ,进行如下操作:第一次,顺次连接矩形ABCD 各边的中点,得到四边形A 1B 1C 1D 1;第二次,顺次连接四边形A 1B 1C 1D 1各边的中点,得到四边形A 2B 2C 2D 2;…如此反复操作下去,则第n 次操作后,得到四边形A n B n ∁n D n 的面积是( )A .ab 2nB .ab2n−1C .ab2n+1D .ab22n【解析】选A .如图,连接A 1C 1,D 1B 1,∵顺次连接矩形ABCD 各边的中点,得到四边形A 1B 1C 1D 1, ∴四边形A 1BCC 1是矩形,∴A 1C 1=BC ,A 1C 1∥BC , 同理,B 1D 1=AB ,B 1D 1∥AB , ∴A 1C 1⊥B 1D 1,∴S 1=12ab ,∵顺次连接四边形A 1B 1C 1D 1各边的中点,得到四边形A 2B 2C 2D 2, ∴C 2D 2=12A 1C 1,A 2D 2=12B 1D 1, ∴S 2=12A 1C 1×12B 1D 1=14ab , …… 依此可得S n =ab2n .A .3B .175C .72D .185【解析】选D .连接BF ,交AE 于O 点,∵将△ABE 沿AE 折叠得到△AFE ,∴BE =EF ,∠AEB =∠AEF ,AE 垂直平分BF ,∵点E 为BC 的中点,∴BE =CE =EF =3,∴∠EFC =∠ECF , ∵∠BEF =∠ECF +∠EFC ,∴∠AEB =∠ECF ,∴AE ∥CF , ∴∠BFC =∠BOE =90°,在Rt △ABE 中,由勾股定理得,AE =√AB 2+BE 2=√32+42=5, ∴BO =AB×BE AE =3×45=125,∴BF =2BO =245, 在Rt △BCF 中,由勾股定理得, CF =√BC 2−BF 2=√62−(245)2=185. (2022•绥化中考)如图,在矩形ABCD 中,P 是边AD 上的一个动点,连接BP ,CP ,过点B 作射线,交线段CP 的延长线于点E ,交边AD 于点M ,且使得∠ABE =∠CBP ,如果AB =2,BC =5,AP =x ,PM =y ,其中2<x ≤5.则下列结论中,正确的个数为( ) (1)y 与x 的关系式为y =x −4x ; (2)当AP =4时,△ABP ∽△DPC ; (3)当AP =4时,tan ∠EBP =35.A .0个B .1个C .2个D .3个【解析】选C .(1)过点P 作PF ⊥BC 于点F ,如图,∵四边形ABCD 是矩形,PF ⊥BC ,∴四边形ABFP 是矩形, ∴PF =AB =2,BF =AP =x ,∴AM =AP =PM =x ﹣y . ∵∠ABE =∠CBP ,∠A =∠PFB =90°,∴△ABM ∽△FBP ,∴AM PF=AB BF,∴x−y 2=2x.∴x 2﹣xy =4.∴y =x −4x .∴(1)的结论正确; (2)当AP =4时,DP =AD ﹣AP =5﹣4=1, ∵AB AP=24=12,DB CD=12,∴AB AP=DP DC.∵∠A =∠D =90°,∴△ABP ∽△DPC .∴(2)的结论正确; (3)由(2)知:当AP =4时,△ABP ∽△DPC ,∴∠ABP =∠DPC .∵∠BP A +∠ABP =90°,∴∠APB +∠DPC =90°.∴∠CPB =90°.∴∠BPE =90°.∴tan ∠EBP =PEPB . 由(1)知:PM =AP −4AP =3,BP =√AP 2+AB 2=2√5,CP =√CD 2+DP 2=√5.∵AD ∥BC ,∴PMBC =PEEC .∴35=PEPE+√5,解得:PE =3√52,∴tan ∠EBP =PE PB =3√522√5=34,∴(3)的结论错误,综上,正确的结论为:(1)(2).(2022•武威中考)如图,在四边形ABCD 中,AB ∥DC ,AD ∥BC ,在不添加任何辅助线的前提下,要想四边形ABCD成为一个矩形,只需添加的一个条件是 ∠A =90°(答案不唯一) .【解析】需添加的一个条件是∠A =90°,理由如下: ∵AB ∥DC ,AD ∥BC ,∴四边形ABCD 是平行四边形, 又∵∠A =90°,∴平行四边形ABCD 是矩形, 答案:∠A =90°(答案不唯一).【解析】∵四边形ABCD是矩形,∴AB=CD=6cm,∠ABC=∠C=90°,AB∥CD,∴∠ABD=∠BDC,∵AE=2cm,∴BE=AB﹣AE=6﹣2=4(cm),∵G是EF的中点,∴EG=BG=12EF,∴∠BEG=∠ABD,∴∠BEG=∠BDC,∴△EBF∽△DCB,∴EBDC =BFCB,∴46=BF9,∴BF=6,∴EF=√BE2+BF2=√42+62=2√13(cm),∴BG=12EF=√13(cm).答案:√13.(2022•滨州中考)如图,在矩形ABCD中,AB=5,AD=10.若点E是边AD上的一个动点,过点E作EF⊥AC且分别交对角线AC、直线BC于点O、F,则在点E移动的过程中,AF+FE+EC的最小值为252+5√52.【解析】如图,过点E作EH⊥BC于点H.∵四边形ABCD是矩形,∴∠B=∠BAD=∠BHE=90°,∴四边形ABHE是矩形,∴EH=AB=5,∵BC=AD=10,∴AC=√AB2+BC2=√52+102=5√5,∵EF⊥AC,∴∠COF=90°,∴∠EFH+∠ACB=90°,∵∠BAC+∠ACB=90°,∴∠EFH=∠BAC,∴△EHF∽△CBA,∴EHCB =FHAB=EFAC,∴510=FH5=EF5√5,∴FH=52,EF=5√52,设BF=x,则DE=10﹣x−52=152−x,∵EF是定值,∴AF+CE的值最小时,AF+EF+CE的值最小,∵AF +CE =√52+x 2+√(152−x)2+52,∴欲求AF +CE 的最小值相当于在x 轴上找一点P (x ,0),使得P 到A (0,5),B (152,5)的距离和最小,如图1中,作点A 关于x 轴的对称点A ′,连接BA ′交xz 轴于点P ,连接AP ,此时PA +PB 的值最小,最小值为线段A ′B 的长,∵A ′(0,﹣5),B (152,5),∴A ′B =√102+(152)2=252,∴AF +CE 的最小值为252,∴AF +EF +CE 的最小值为252+5√52. 解法二:过点C 作CC ′∥EF ,使得CC ′=EF ,连接C ′F .∵EF =CC ′,EF ∥CC ′,∴四边形EFC ′C 是平行四边形, ∴EC =FC ′,∴AF +EC =AF +FC ′≥AC ′=252,∴AF +EF +CE 的最小值为252+5√52.答案:252+5√52. (2022•自贡中考)如图,矩形ABCD 中,AB =4,BC =2,G 是AD 的中点,线段EF 在边AB 上左右滑动,若EF=1,则GE +CF 的最小值为 3√2 .【解析】如图,作G 关于AB 的对称点G ',在CD 上截取CH =1,然后连接HG '交AB 于E ,在EB 上截取EF =1,此时GE +CF 的值最小,∵CH =EF =1,CH ∥EF , ∴四边形EFCH 是平行四边形,(2022•丽水中考)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN .已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.AE =a ,DE =b ,且a >b . (1)若a ,b 是整数,则PQ 的长是 4 ; (2)若代数式a 2﹣2ab ﹣b 2的值为零,则S 四边形ABCDS矩形PQMN的值是 3+2√2 .【解析】(1)由图可知:PQ =a ﹣b , ∵a ,b 是整数,四个矩形的面积都是5, ∴①的另一条边也是整数,即5a 是整数,∴a =5, 同理b =1,∴PQ =5﹣1=4, 答案:4;(2)∵a 2﹣2ab ﹣b 2=0, ∴a 2﹣b 2=2ab ,(a ﹣b )2=2b 2, ∴a =b +√2b (负值舍),∵四个矩形的面积都是5.AE =a ,DE =b ,∴EP =5a ,EN =5b , 则S 四边形ABCDS矩形PQMN=(a+b)(5a +5b )(a−b)(5b −5a)=(a+b)⋅5b+5a ab (a−b)⋅5a−5bab=a 2+2ab+b 2a 2−2ab+b2=a 2b 2=(√2+1)2b 2b 2=3+2√2.答案:3+2√2.(2022•十堰中考)“美丽乡村”建设使我市农村住宅旧貌变新颜,如图所示为一农村民居侧面截图,屋坡AF ,AG 分别架在墙体的点B ,C 处,且AB =AC ,侧面四边形BDEC 为矩形.若测得∠FBD =55°,则∠A = 110 °.【解析】∵四边形BDEC 为矩形,∴∠DBC =90°,(2022•宜昌中考)如图,在矩形ABCD 中,E 是边AD 上一点,F ,G 分别是BE ,CE 的中点,连接AF ,DG ,FG ,若AF =3,DG =4,FG =5,矩形ABCD 的面积为 48 .【解析】∵四边形ABCD 是矩形,∴∠BAE =∠CDE =90°,AD ∥BC , ∵F ,G 分别是BE ,CE 的中点,AF =3,DG =4,FG =5, ∴BE =2AF =6,CE =2DG =8,BC =2FG =10,∴BE 2+CE 2=BC 2, ∴△BCE 是直角三角形,∠BEC =90°, ∴S △BCE =12⋅BE ⋅CE =12×6×8=24,∵AD ∥BC ,∴S 矩形ABCD =2S △BCE =2×24=48. 答案:4816.(2022•苏州中考)如图,在矩形ABCD 中,AB BC=23.动点M 从点A 出发,沿边AD 向点D 匀速运动,动点N 从点B 出发,沿边BC 向点C 匀速运动,连接MN .动点M ,N 同时出发,点M 运动的速度为v 1,点N 运动的速度为v 2,且v 1<v 2.当点N 到达点C 时,M ,N 两点同时停止运动.在运动过程中,将四边形MABN 沿MN 翻折,得到四边形MA ′B ′N .若在某一时刻,点B 的对应点B ′恰好与CD 的中点重合,则v 1v 2的值为35.【解析】如图,设AD 交AB ′于点Q .设BN =NB ′=x .∵AB CB=23,∴可以假设AB =2k ,CB =3k ,∵四边形ABCD 是矩形,∴AD =BC =3k ,CD =AB =2k ,∠C =∠D =90°, 在Rt △CNB ′中,CN 2+CB ′2=NB ′2, ∴(3k ﹣x )2+k 2=x 2,∴x =53k , ∴NB ′=53k ,CN =3k −53k =43k ,由翻折的性质可知∠A ′B ′N =∠B =90°,∴∠DB ′Q +∠CB ′N =90°,∠CB ′N +∠CNB ′=90°, ∴∠DB ′Q =∠CNB ′,∵∠D =∠C =90°,∴△DB ′Q ∽△CNB ′, ∴DQ :DB ′:QB ′=CB ′:CN :NB ′=3:4:5, ∵DB ′=k ,∴DQ =34k ,∵∠DQB ′=∠MQA ′,∠D =∠A ′, ∴△DQB ′∽△A ′QM ,∴A ′Q :A ′M :QM =DQ :DB ′:QB ′=3:4:5, 设AM =MA ′=y ,则MQ =54y ,∵DQ +QM +AM =3k ,∴34k +54y +y =3k ,∴y =k ,∴v 1v 2=AM BN=k53k =35,答案:35(2022•眉山中考)如图,点P 为矩形ABCD 的对角线AC 上一动点,点E 为BC 的中点,连接PE ,PB ,若AB =4,BC =4√3,则PE +PB 的最小值为 6 .【解析】如图,作点B 关于AC 的对称点B ',交AC 于点F ,连接B ′E 交AC 于点P ,则PE +PB 的最小值为B ′E 的长度,∵四边形ABCD 为矩形, ∴AB =CD =4,∠ABC =90°, 在Rt △ABC 中,AB =4,BC =4√3, ∴tan ∠ACB =ABBC =√33, ∴∠ACB =30°,由对称的性质可知,B 'B =2BF ,B 'B ⊥AC , ∴BF =12BC =2√3,∠CBF =60°, ∴B ′B =2BF =4√3, ∵BE =BF ,∠CBF =60°, ∴△BEF 是等边三角形, ∴BE =BF =B 'F , ∴△BEB '是直角三角形,∴B ′E =√B′B 2−BE 2=√(4√3)2−(2√3)2=6, ∴PE +PB 的最小值为6, 答案:6.(2022•雅安中考)如图,把一张矩形纸片沿对角线折叠,若BC =9,CD =3,那么阴影部分的面积为152.【解析】根据翻折的性质可知:∠FBD =∠DBC , 又∵AD ∥BC ,∴∠ADB =∠DBC , ∴∠ADB =∠FBD ,∴BF =DF , 设BF =DF =x ,∴AF =9﹣x ,∵四边形ABCD 是矩形,∴∠A =90°, ∴AF 2+AB 2=BF 2,(9﹣x )2+32=x 2, 解得x =5,∴S △FDB =12×5×2=152. 答案:152.交AB 于点G ,点P 是线段DG 上的一个动点,则△PEF 的周长最小值为 5+√37 .【解析】如图,在DC 上截取DT ,使得DT =DE ,连接FT ,过点T 作TH ⊥AB 于点H .∵四边形ABCD 是矩形,∴∠A =∠ADT =90°, ∵∠AHT =90°,∴四边形AHTD 是矩形, ∵AE =DE =12AD =3.AF =FB =12AB =4,∴AH =DT =3,HF =AF ﹣AH =4﹣3=1,HT =AD =6, ∴FT =√FH 2+TH 2=√12+62=√37,∵DG 平分∠ADC ,DE =DT ,∴E 、T 关于DG 对称,∴PE =PT , ∴PE +PF =PF +PT ≥FT =√37, ∵EF =√AE 2+AF 2=√32+42=5, ∴△EFP 的周长的最小值为5+√37. 答案:5+√37.(2022•龙东中考)在矩形ABCD 中,AB =9,AD =12,点E 在边CD 上,且CE =4,点P 是直线BC 上的一个动点.若△APE 是直角三角形,则BP 的长为313或154或6 .【解析】若△APE 是直角三角形,有以下三种情况: ①如图1,∠AEP =90°,∴∠AED +∠CEP =90°,∵四边形ABCD 是矩形,∴∠C =∠D =90°,∴∠CEP +∠CPE =90°,∴∠AED =∠CPE , ∴△ADE ∽△ECP ,∴AD CE=DECP ,即124=9−4CP,∴CP =53,∵BC =AD =12,∴BP =12−53=313;②如图2,∠P AE =90°,∵∠DAE +∠BAE =∠BAE +∠BAP =90°,∴∠DAE =∠BAP , ∵∠D =∠ABP =90°,∴△ADE ∽△ABP ,∴AD AB=DE PB,即129=5BP,∴BP =154; ③如图3,∠APE =90°,设BP =x ,则PC =12﹣x ,同理得:△ABP ∽△PCE ,∴AB PC=BP CE,即912−x=x4,∴x 1=x 2=6,∴BP =6,综上,BP 的长是313或154或6.答案:313或154或6.(2022•内江中考)如图,矩形ABCD 中,AB =6,AD =4,点E 、F 分别是AB 、DC 上的动点,EF ∥BC ,则AF +CE 的最小值是 10 .【解析】延长BC 到G ,使CG =EF ,连接FG ,∵EF ∥CG ,EF =CG , ∴四边形EFGC 是平行四边形, ∴CE =FG , ∴AF +CE =AF +FG ,∴当点A 、F 、G 三点共线时,AF +CE 的值最小为AG , 由勾股定理得,AG =√AB 2+BG 2=√62+(4+4)2=10, ∴AF +CE 的最小值为10. 答案:10.(2022•遂宁中考)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是AD的中点,连接OE,过点D作DF∥AC交OE的延长线于点F,连接AF.(1)求证:△AOE≌△DFE;(2)判定四边形AODF的形状并说明理由.【解析】(1)证明:∵E是AD的中点,∴AE=DE,∵DF∥AC,∴∠OAD=∠ADF,∵∠AEO=∠DEF,∴△AOE≌△DFE(ASA).(2)四边形AODF为矩形.理由:∵△AOE≌△DFE,∴AO=DF,∵DF∥AC,∴四边形AODF为平行四边形,∵四边形ABCD为菱形,∴AC⊥BD,即∠AOD=90°,∴平行四边形AODF为矩形.(2022•云南中考)如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°.(1)求证:四边形ABDF是矩形;(2)若AD=5,DF=3,求四边形ABCF的面积S.【解析】(1)证明:∵四边形ABCD是平行四边形,∴BA∥CD,∴∠BAE=∠FDE,∵点E是AD的中点,∴AE=DE,在△BEA和△FED中,{∠BAE=∠FDE AE=DE∠BEA=∠FED,∴△BEA≌△FED(ASA),∴EF=EB,又∵AE=DE,∴四边形ABDF是平行四边形,∵∠BDF=90°.∴四边形ABDF是矩形;(2)由(1)得四边形ABDF是矩形,∴∠AFD=90°,AB=DF=3,AF=BD,(2022•绍兴中考)如图,在矩形ABCD中,AB=6,BC=8,动点E从点A出发,沿边AD,DC向点C运动,A,D关于直线BE的对称点分别为M,N,连结MN.(1)如图,当E在边AD上且DE=2时,求∠AEM的度数.(2)当N在BC延长线上时,求DE的长,并判断直线MN与直线BD的位置关系,说明理由.(3)当直线MN恰好经过点C时,求DE的长.【解析】(1)∵DE=2,∴AE=AB=6,∵四边形ABCD是矩形,∴∠A=90°,∴∠AEB=∠ABE=45°.由对称性知∠BEM=45°,∴∠AEM=90°.(2)如图2,∵AB=6,AD=8,∴BD=10,∵当N落在BC延长线上时,BN=BD=10,∴CN=2.由对称性得,∠ENC=∠BDC,∴cos∠ENC=2EN =610,得EN=103,∴DE=EN=103.∵BM=AB=CD,MN=AD=BC,∴Rt△BMN≌Rt△DCB(HL),∴∠DBC=∠BNM,∴MN∥BD.(3)如图3,当E在边AD上时,∴∠BMC=90°,∴MC=√BC2−BM2=2√7.∵BM=AB=CD,∠DEC=∠BCE,∴△BCM≌△CED(AAS),∴DE=MC=2√7.如图4,点E在边CD上时,∵BM=6,BC=8,∴MC=2√7,CN=8−2√7.∵∠BMC=∠CNE=∠BCD=90°,∴△BMC∽△CNE,∴BMCN =MCEN,∴EN=MC⋅CNBM=8√7−143,∴DE=EN=8√7−143.综上所述,DE的长为2√7或8√7−143.(2022•德阳中考)如图,在菱形ABCD中,∠ABC=60°,AB=2√3cm,过点D作BC的垂线,交BC的延长线于点H.点F从点B出发沿BD方向以2cm/s向点D匀速运动,同时,点E从点H出发沿HD方向以1cm/s 向点D匀速运动.设点E,F的运动时间为t(单位:s),且0<t<3,过F作FG⊥BC于点G,连结EF.(1)求证:四边形EFGH是矩形;(2)连结FC,EC,点F,E在运动过程中,△BFC与△DCE是否能够全等?若能,求出此时t的值;若不能,请说明理由.【解析】(1)证明:∵EH⊥BC,FG⊥BC,∴EH∥FG,由题意知BF=2tcm,EH=tcm,∵在菱形ABCD中,∠ABC=60°,∴∠CBD=30°,(2022•南充中考)如图,在矩形ABCD中,点O是AB的中点,点M是射线DC上动点,点P在线段AM上(不与点A重合),OP=12 AB.(1)判断△ABP的形状,并说明理由.(2)当点M为边DC中点时,连接CP并延长交AD于点N.求证:PN=AN.(3)点Q在边AD上,AB=5,AD=4,DQ=85,当∠CPQ=90°时,求DM的长.【解析】(1)△ABP是直角三角形,理由如下:∵点O是AB的中点,∵OP=12 AB,∴OP=OA=OB,∴∠OBP=∠OPB,∠OAP=∠APO,∵∠OAP+∠APO+∠OBP+∠BPO=180°,∴∠APO+∠BPO=90°,∴∠APB=90°,∴△ABP是直角三角形;(2)证明:如图1,延长AM,BC交于点Q,∵M是CD的中点,∴DM=CM,∵∠D=∠MCQ=90°,∠AMD=∠QMC,∴△ADM≌△QCM(ASA),∴AD=CQ=BC,∵∠BPQ=90°,∴PC=12BQ=BC,∴∠CPB=∠CBP,∵∠OPB=∠OBP,∴∠OBC=∠OPC=90°,∴∠OPN=∠OP A+∠APN=90°,∵∠OAP+∠P AN=90°,∠OAP=∠OP A,∴∠APN=∠P AN,∴PN=AN;(3)分两种情况:①如图2,点M在CD上时,过点P作GH∥CD,交AD于G,交BC于H,设DM =x ,QG =a ,则CH =a +85,BH =AG =4−85−a =125−a , ∵PG ∥DM ,∴△AGP ∽△ADM ,∴PGDM =AG AD ,即PG x =125−a 4, ∴PG =35x −14ax , ∵∠CPQ =90°,∴∠CPH +∠QPG =90°,∵∠CPH +∠PCH =90°,∴∠QPG =∠PCH ,∴tan ∠QPG =tan ∠PCH ,即QG PG =PH CH , ∴PH •PG =QG •CH ,同理得:∠APG =∠PBH ,∴tan ∠APG =tan ∠PBH ,即AG PG =PH BH , ∴PG •PH =AG •BH =AG 2,∴AG 2=QG •CH ,即(125−a )2=a (85+a ), ∴a =910, ∵PG •PH =AG 2,∴(35x −940x )•(5−35x +940x )=(125−910)2, 解得:x 1=12(舍),x 2=43, ∴DM =43;②如图3,当M 在DC 的延长线上时,同理得:DM =12,综上,DM 的长是43或12(2022•十堰中考)如图,▱ABCD 中,AC ,BD 相交于点O ,E ,F 分别是OA ,OC 的中点.(1)求证:BE =DF ;(2)设ACBD =k ,当k 为何值时,四边形DEBF 是矩形?请说明理由.【解析】(1)证明:如图,连接DE ,BF ,∵四边形ABCD 是平行四边形,∴BO =OD ,AO =OC ,∵E ,F 分别为AO ,OC 的中点,∴EO =12OA ,OF =12OC ,∴EO =FO ,∵BO =OD ,EO =FO ,∴四边形BFDE 是平行四边形,∴DE =BF ;(2)当k =2时,四边形DEBF 是矩形;理由如下:当BD =EF 时,四边形DEBF 是矩形,∴当OD =OE 时,四边形DEBF 是矩形,∵AE =OE ,∴当k =2时,四边形DEBF 是矩形.答案:2.(2022•苏州中考)如图,将矩形ABCD 沿对角线AC 折叠,点B 的对应点为点E ,AE 与CD 交于点F .(1)求证:△DAF ≌△ECF ;(2)若∠FCE =40°,求∠CAB 的度数.【解析】(1)将矩形ABCD 沿对角线AC 折叠,则AD =BC =EC ,∠D =∠B =∠E =90°,在△DAF 和△ECF 中,{∠DFA =∠EFC∠D =∠E DA =EC,∴△DAF ≌△ECF (AAS );(2)∵△DAF ≌△ECF ,∴∠DAF =∠ECF =40°,∵四边形ABCD 是矩形,∴∠DAB =90°,(2022•天津中考)将一个矩形纸片OABC 放置在平面直角坐标系中,点O (0,0),点A (3,0),点C (0,6),点P 在边OC 上(点P 不与点O ,C 重合),折叠该纸片,使折痕所在的直线经过点P ,并与x 轴的正半轴相交于点Q ,且∠OPQ =30°,点O 的对应点O ′落在第一象限.设OQ =t .(Ⅰ)如图①,当t =1时,求∠O ′QA 的大小和点O ′的坐标;(Ⅱ)如图②,若折叠后重合部分为四边形,O ′Q ,O ′P 分别与边AB 相交于点E ,F ,试用含有t 的式子表示O ′E 的长,并直接写出t 的取值范围;(Ⅲ)若折叠后重合部分的面积为3√3,则t 的值可以是 3或103 (请直接写出两个不同的值即可).【解析】(Ⅰ)如图①中,过点O ′作O ′H ⊥OA 于点H .在Rt △POQ 中,∠OPQ =30°,∴∠PQO =60°,由翻折的性质可知QO =QO ′=1,∠PQO =∠PQO ′=60°,∴∠O ′QH =180°﹣60°﹣60°=60°,∴QH =QO ′•cos60°=12,O ′H =√3QH =√32,∴OH =OQ +QH =32,∴O ′(32,√32); (Ⅱ)如图②中,∵A (3,0),∴OA =3,∵OQ =t ,∴AQ =3﹣t .∵∠EQA =60°,∴QE =2QA =6﹣2t ,∵OQ ′=OQ =t ,∴EO ′=t ﹣(6﹣2t )=3t ﹣6(2<t <3);(Ⅲ)如图③中,当点Q 与A 重合时,重叠部分是△APF ,过点P 作PG ⊥AB 于点G .在Rt △PGF 中,PG =OA =3,∠PFG =60°,∴PF =PG sin60°=2√3, ∵∠OPA =∠APF =∠PAF =30°,∴FP =FA =2√3,∴S △APF =12•AF •PG =12×2√3×3=3√3, 观察图象可知当3≤t <2√3时,重叠部分的面积是定值3√3,∴满足条件的t 的值可以为3或103(答案不唯一). 答案:3或103 (2022•玉林中考)如图,在矩形ABCD 中,AB =8,AD =4,点E 是DC 边上的任一点(不包括端点D ,C ),过点A 作AF ⊥AE 交CB 的延长线于点F ,设DE =a .(1)求BF 的长(用含a 的代数式表示);(2)连接EF 交AB 于点G ,连接GC ,当GC ∥AE 时,求证:四边形AGCE 是菱形.【解析】(1)∵四边形ABCD 是矩形,∴∠ADE =∠ABF =∠BAD =90°,∴∠DAE +∠BAE =90°,∵AF ⊥AE ,∴∠BAF +∠BAE =90°,∴∠DAE =∠BAF ,∴△ADE ∽△ABF ,∴ADAB =DEBF ,即48=a BF ,∴BF =2a ,(2)证明:∵四边形ABCD 是矩形,∴AG ∥CE ,∵GC ∥AE ,∴四边形AGCE 是平行四边形.∴AG =CE =8﹣a ,∴BG =AB ﹣AG =8﹣(8﹣a )=a ,在Rt △BGF 中,GF 2=a 2+(2a )2=5a 2,在Rt △CEF 中,EF 2=(2a +4)2+(8﹣a )2=5a 2+80,在Rt△ADE中,AE2=42+a2=16+a2,如图,过点G作GM⊥AF于点M,∴GM∥AE,∴△MGF∽△AEF,∴GMAE=GFEF,∴GM2AE2=GF2EF2,∴GM216+a2=5a25a2+80,∴GM=a,∴GM=BG,又∵GM⊥AF,GB⊥FC,∴GF是∠AFB的角平分线,∴EA=EC,∴平行四边形AGCE是菱形.(2022•无锡中考)如图,已知四边形ABCD为矩形,AB=2√2,BC=4,点E在BC上,CE=AE,将△ABC 沿AC翻折到△AFC,连接EF.(1)求EF的长;(2)求sin∠CEF的值.【解析】(1)∵CE=AE,∴∠ECA=∠EAC,根据翻折可得:∠ECA=∠FCA,∠BAC=∠CAF,∵四边形ABCD是矩形,∴DA∥CB,∴∠ECA=∠CAD,∴∠EAC=∠CAD,∴∠DAF=∠BAE,∵∠BAD=90°,∴∠EAF=90°,设CE=AE=x,则BE=4﹣x,在△BAE中,根据勾股定理可得:BA2+BE2=AE2,即:(2√2)2+(4−x)2=x2,解得:x=3,在Rt△EAF中,EF=√AF2+AE2=√17.(2)过点F作FG⊥BC交BC于点G,设CG=x,则GB=3﹣x,∵FC=4,FE=√17,∴FG2=FC2﹣CG2=FE2﹣EG2,即:16﹣x2=17﹣(3﹣x)2,解得:x=4 3,∴FG=√FC2−CG2=8√2 3,∴sin∠CEF=FGEF=8√3451.(2022•哈尔滨中考)已知矩形ABCD的对角线AC,BD相交于点O,点E是边AD上一点,连接BE,CE,OE,且BE=CE.(1)如图1,求证:△BEO≌△CEO;(2)如图2,设BE与AC相交于点F,CE与BD相交于点H,过点D作AC的平行线交BE的延长线于点G,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(△AEF除外),使写出的每个三角形的面积都与△AEF的面积相等.【解析】(1)∵四边形ABCD是矩形,∴OA=OC=12AC,OB=OD=12BD,AC=BD,∴OB=OC=OA=OD,∵BE=CE,OE=OE,∴△BEO≌△CEO(SSS);(2)△DHE,△CHO,△DEG,△BFO都与△AEF的面积相等,理由:∵四边形ABCD是矩形,∴∠BAD=∠CDA=90°AB∥CD,AB=DC,∵BE=CE,∴Rt△BAE≌Rt△CDE(HL),∴∠AEB=∠DEC,AE=DE,∵OA=OD,∴∠OEA=∠OED=90°,∴∠BAD=∠OED=90°,∠ADC=∠AEO=90°,∴AB∥OE,DC∥OE,∴S△AEO=S△BEO,S△DEO=S△COE,(2022•鄂州中考)如图,在矩形ABCD中,对角线AC、BD相交于点O,且∠CDF=∠BDC、∠DCF=∠ACD.(1)求证:DF=CF;(2)若∠CDF=60°,DF=6,求矩形ABCD的面积.【解析】(1)∵四边形ABCD是矩形,∴OC=12AC,OD=12BD,AC=BD,∴OC=OD,∴∠ACD=∠BDC,∵∠CDF=∠BDC,∠DCF=∠ACD,∴∠CDF=∠DCF,∴DF=CF;(2)由(1)可知,DF=CF,∵∠CDF=60°,∴△CDF是等边三角形,∴CD=DF=6,∵∠CDF=∠BDC=60°,OC=OD,∴△OCD是等边三角形,∴OC=OD=6,∴BD=2OD=12,∵四边形ABCD是矩形,∴∠BCD=90°,∴BC=√BD2−CD2=√122−62=6√3,∴S矩形ABCD=BC•CD=6√3×6=36√3.(2022•泰州中考)如图,线段DE与AF分别为△ABC的中位线与中线.(1)求证:AF与DE互相平分;(2)当线段AF与BC满足怎样的数量关系时,四边形ADFE为矩形?请说明理由.【解析】(1)∵点D是AB的中点,∴AD=12AB,∵点E是AC的中点,点F是BC的中点,(2022•威海中考)(1)将两张长为8,宽为4的矩形纸片如图1叠放.①判断四边形AGCH的形状,并说明理由;②求四边形AGCH的面积.(2)如图2,在矩形ABCD和矩形AFCE中,AB=2√5,BC=7,CF=√5,求四边形AGCH的面积.【解析】(1)①四边形AGCH是菱形,理由如下:∵四边形ABCD和四边形AFCE是矩形,∴∠B=∠F=90°,AD∥BC,AF∥CE,∴四边形AGCH是平行四边形,∵S平行四边形AGCH=GC•AB=AG•CF,AB=CF,∴GC=AG,∴平行四边形AGCH是菱形;②由①可知,GC=AG,设GC=AG=x,则BG=8﹣x,在Rt△ABG中,AB=4,由勾股定理得:42+(8﹣x)2=x2,解得:x=5,∴GC=5,∴S菱形AGCH=GC•AB=5×4=20;(2)设GC=a,则BG=7﹣a,(2022•海南中考)如图1,矩形ABCD中,AB=6,AD=8,点P在边BC上,且不与点B、C重合,直线AP 与DC的延长线交于点E.(1)当点P是BC的中点时,求证:△ABP≌△ECP;(2)将△APB沿直线AP折叠得到△APB',点B'落在矩形ABCD的内部,延长PB'交直线AD于点F.①证明F A=FP,并求出在(1)条件下AF的值;②连接B'C,求△PCB'周长的最小值;③如图2,BB'交AE于点H,点G是AE的中点,当∠EAB'=2∠AEB'时,请判断AB与HG的数量关系,并说明理由.【解析】(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠BAP=∠E,∠B=∠BCE,∵点P是BC的中点,∴BP=CP,∴△ABP≌△ECP(AAS);(2)①∵四边形ABCD是矩形,∴AD∥BC,∴∠APB=∠F AP,由折叠得∠APB=∠APF,∴∠F AP=∠APF,∴F A=FP,矩形ABCD中,AB=6,AD=8,∴BC=AD=8,∵点P是BC的中点,∴BP=CP=4,由折叠得AB′=AB=6,PB′=PB=4,∠B=∠AB′P=∠AB′F=90°,设F A=x,则FP=x,∴FB′=x﹣4,在Rt△AB′F中,AF2=B′F2+B′A2,∴x2=(x﹣4)2+62,解得x=132,即AF=132;②由折叠得AB′=AB=6,PB′=PB=4,∴△PCB'的周长=CP+PB′+CB′=CB+CB′=8+CB′,连接B'C,AC,∵AB′+B′C>AC,∴当点B′恰好位于对角线AC上时,CB′+AB′最小,在Rt△ABC中,AB=6,BC=8,∴AC=√62+82=10,∴CB′的最小值=AC﹣AB′=4,∴△PCB'周长的最小值=8+CB′=8+4=12;③AB与HG的数量关系是AB=2HG.理由:如图,由折叠可知∠1=∠6,AB'=AB,BB'⊥AE,过点B'作B'M∥DE,交AE于点M,∴AB∥DE,∴AB∥DE∥B'M,∴∠l=∠6=∠5=∠AED,∴AB'=B'M=AB,∴点H是AM中点,∵∠EAB'=2∠AEB',即∠6=2∠8,∴∠5=2∠8.∵∠5=∠7+∠8,∴∠7=∠8.∴B'M=EM.∴B'M=EM=AB'=AB.∵点G为AE中点,点H是AM中点,∴AG=12AE,AH=12AM.∴HG=AG﹣AH=12(AE﹣AM)=12EM.∴HG=12AB.∴AB=2HG.【解析】(1)∵F 为BE 的中点, ∴BF =EF ,∵四边形ABCD 是矩形,∴AB ∥CD ,AB =CD∴∠BMF =∠ECF ,∵∠BFM =∠EFC ,∴△BMF ≌△ECF (AAS ),∴BM =CE ,∵点E 为CD 的中点,∴CE =DE ,∴BM =CE =DE ,∵AB =CD ,∴AM =CE ;(2)∵∠BMF =∠ECF ,∠BFM =∠EFC , ∴△BMF ∽△ECF ,∴BFEF =BMCE =12, ∵CE =3,∴BM =32,∴AM =92,∵CM ⊥MN ,∴∠CMN =90°,∴∠AMN +∠BMC =90°,∵∠AMN +∠ANM =90°,∴∠ANM =∠BMC ,∵∠A =∠MBC ,∴△ANM ∽△BMC ,。
2022年全国各省市中考数学真题汇编整式乘法与因式分解一、选择题1.(2022·山东省)计算(−a3)2的结果是( )A. a6B. −a6C. −a5D. a52.(2022·湖北省咸宁市)下列计算正确的是( )A. a2⋅a4=a8B. (−2a2)3=−6a6C. a4÷a=a3D. 2a+3a=5a23.(2022·贵州省黔东南苗族侗族自治州)下列运算正确的是( )A. a6÷a2=a3B. a2+a3=a5C. −2(a+b)=−2a+bD. (−2a2)2=4a44.(2022·全国)多项式39x2+5x−14可因式分解成(3x+a)(bx+c),其中a、b、c均为整数,求a+2c之值为何?( )A. −12B. −3C. 3D. 125.(2022·广西壮族自治区贺州市)下列运算正确的是( )A. x3+x3=x6B. x6÷x3=x2C. (3x3)2=6x5D. x2⋅x3=x56.(2022·湖南省永州市)下列因式分解正确的是( )A. ax+ay=a(x+y)+1B. 3a+3b=3(a+b)C. a2+4a+4=(a+4)2D. a2+b=a(a+b)7.(2022·陕西省)计算:2x⋅(−3x2y3)=( )A. 6x3y3B. −6x2y3C. −6x3y3D. 18x3y38.(2022·浙江省湖州市)下列各式的运算,结果正确的是( )A. a2+a3=a5B. a2⋅a3=a6C. a3−a2=aD. (2a)2=4a29.(2022·浙江省绍兴市)下列计算正确的是( )A. (a2+ab)÷a=a+bB. a2⋅a=a2C. (a+b)2=a2+b2D. (a3)2=a510.(2022·四川省泸州市)下列运算正确的是( )A.a2⋅a3=a6B. 3a−2a=1C. (−2a2)3=−8a6D. a6÷a2=a311.(2022·四川省成都市)下列计算正确的是( )A. m+m=m2B. 2(m−n)=2m−nC. (m+2n)2=m2+4n2D. (m+3)(m−3)=m2−912.(2022·湖南省娄底市)下列式子正确的是( )A. a3⋅a2=a5B. (a2)3=a5C. (ab)2=ab2D. a3+a2=a513.(2022·四川省眉山市)下列运算中,正确的是( )A. x3⋅x5=x15B. 2x+3y=5xyC. (x−2)2=x2−4D. 2x2⋅(3x2−5y)=6x4−10x2y14.(2022·四川省广元市)下列运算正确的是( )A. x2+x=x3B. (−3x)2=6x2C. 3y⋅2x2y=6x2y2D. (x−2y)(x+2y)=x2−2y215.(2022·四川省遂宁市)下列计算中正确的是( )A. a3⋅a3=a9B. (−2a)3=−8a3C. a10÷(−a2)3=a4D. (−a+2)(−a−2)=a2+4二、填空题16.(2022·湖南省常德市)分解因式,x3−9xy2=______.17.(2022·贵州省黔东南苗族侗族自治州)分解因式:2022x2−4044x+2022=______.18.(2022·天津市)计算m⋅m7的结果等于______.19.(2022·江苏省苏州市)已知x+y=4,x−y=6,则x2−y2=______.20.(2022·四川省乐山市)已知m2+n2+10=6m−2n,则m−n=______.21.(2022·江苏省扬州市)分解因式:3m2−3=______.22.(2022·湖南省株洲市)因式分解:x2−25=______.23.(2022·湖南省怀化市)因式分解:x2−x4=______.24.(2022·山东省滨州市)若m+n=10,mn=5,则m2+n2的值为______.25.(2022·甘肃省武威市)计算:3a3⋅a2=______.三、解答题26.(2022·四川省南充市)先化简,再求值:(x+2)(3x−2)−2x(x+2),其中x=√3−1.27.(2022·江苏省)先化简,再求值:(x+3)(x−3)−2(x−2)(2x−1),其中x=1.28.(2022·浙江省丽水市)先化简,再求值:(1+x)(1−x)+x(x+2),其中x=1.2 29.(2022·山东省)先简化,再求值(mn+2)(mn−2)−(mn−1)2,其中m=5,n=−1.230.(2022·山东省)先化简,后求值:(2x−3)2−(x+2y)(x−2y)−4y2,其中x=1,y=3.31.(2022·山东省)计算(1)已知:x+y=6,xy=4,求x2+y2的值;(2)已知10m=2,10n=3,求103m−n的值.32.(2022·河北省)发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证如,(2+1)2+(2−1)2=10为偶数.请把10的一半表示为两个正整数的平方和;探究设“发现”中的两个已知正整数为m,n,请论证“发现”中的结论正确.参考答案1.A2.C3.D4.A5.D6.B7.C8.D9.A10.C11.D12.A13.D14.C15.B16.x(x+3y)(x−3y)17.2022(x−1)218.m819.2420.421.3(m+1)(m−1)22.(x+5)(x−5)23.x2(1+x)(1−x)24.9025.3a526.解:原式=(x+2)(3x−2−2x)=(x+2)(x−2)=x2−4,当x=√3−1时,原式=(√3−1)2−4=−2√3.27.解:(x +3)(x −3)−2(x −2)(2x −1)=x 2−9−2(2x 2−x −4x +2)=x 2−9−4x 2+2x +8x −4=−3x 2+10x −13, 当x =1时,原式=−3×1+10×1−13=−3+10−13=−6.28.解:(1+x)(1−x)+x(x +2)=1−x 2+x 2+2x =1+2x ,当x =12时,原式=1+2×12=1+1=2.29.解:原式=m 2n 2−4−(m 2n 2−2mn +1)=m 2n 2−4−m 2n 2+2mn −1=2mn −5,当m =5,n =−12时, 原式=2×5×(−12)−5 =−10.30.解:原式=4x 2−12x +9−(x 2−4y 2)−4y 2=4x 2−12x +9−x 2+4y 2−4y 2 =3x 2−12x +9, 当x =1,y =3时, 原式=3−12+9=0.31.解:(1)x 2+y 2=(x +y)2−2xy =62−2×4=36−8=28;(2)∵10m =2,10n =3,∴103m−n =103m ÷10n =(10m )3÷10n =23÷3=83.32.解:两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.理由如下: (m +n)2+(m −n)2=m 2+2mn +n 2+m 2−2mn +n 2=2m2+2n2=2(m2+n2),故两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.。
(2022·安徽中考)在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是()A.B.C.D.【解析】选D.∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴;若a<0,则一次函数y=ax+a2是减函数,交y轴的正半轴,y=a2x+a是增函数,交y轴的负半轴,且两直线的交点的横坐标为1.(2022•泸州中考)如图,在平面直角坐标系xOy 中,矩形OABC 的顶点B 的坐标为(10,4),四边形ABEF是菱形,且tan ∠ABE =43.若直线l 把矩形OABC 和菱形ABEF 组成的图形的面积分成相等的两部分,则直线l 的解析式为( )A .y =3xB .y =−34x +152C .y =﹣2x +11D .y =﹣2x +12【解析】选D .连接OB ,AC ,它们交于点M ,连接AE ,BF ,它们交于点N ,则直线MN 为符合条件的直线l ,如图,∵四边形OABC 是矩形,∴OM =BM .∵B 的坐标为(10,4),∴M (5,2),AB =10,BC =4.∵四边形ABEF 为菱形,BE =AB =10.过点E 作EG ⊥AB 于点G ,在Rt △BEG 中,∵tan ∠ABE =43,∴EG BG =43, 设EG =4k ,则BG =3k ,∴BE =√EG 2+BG 2=5k ,∴5k =10,∴k =2,∴EG =8,BG =6,∴AG =4.∴E (4,12).∵B 的坐标为(10,4),AB ∥x 轴,∴A (0,4).∵点N 为AE 的中点,∴N (2,8).设直线l 的解析式为y =ax +b ,∴{5a +b =22a +b =8,解得:{a =−2b =12,A .青海湖水深16.4m 处的压强为188.6cmHgB .青海湖水面大气压强为76.0cmHgC .函数解析式P =kh +P 0中自变量h 的取值范围是h ≥0D .P 与h 的函数解析式为P =9.8×105h +76【解析】选A .由图象可知,直线P =kh +P 0过点(0,68)和(32.8,309.2),∴{P 0=6832.8k +P 0=309.2,解得{k ≈7.4P 0=68. ∴直线解析式为:P =7.4h +68.故D 错误,不符合题意;∴青海湖水面大气压强为68.0cmHg ,故B 错误,不符合题意;根据实际意义,0≤h ≤32.8,故C 错误,不符合题意;将h =16.4代入解析式,∴P =7.4×16.4+68=188.6,即青海湖水深16.4m 处的压强为188.6cmHg ,故A 正确,符合题意.(2022•抚顺中考)如图,在同一平面直角坐标系中,一次函数y =k 1x +b 1与y =k 2x +b 2的图象分别为直线l 1和直线l 2,下列结论正确的是( )A .k 1•k 2<0B .k 1+k 2<0C .b 1﹣b 2<0D .b 1•b 2<0【解析】选D .∵一次函数y =k 1x +b 1的图象过一、二、三象限,∴k 1>0,b 1>0,∵一次函数y =k 2x +b 2的图象过一、三、四象限,∴k 2>0,b 2<0,∴A 、k 1•k 2>0,故A 不符合题意;B 、k 1+k 2>0,故B 不符合题意;C 、b 1﹣b 2>0,故C 不符合题意;D 、b 1•b 2<0,故D 符合题意.(2022•德阳中考)如图,已知点A(﹣2,3),B(2,1),直线y=kx+k经过点P(﹣1,0).试探究:直线与线段AB有交点时k的变化情况,猜想k的取值范围是k≤﹣3或k≥13.【解析】当k<0时,∵直线y=kx+k经过点P(﹣1,0),A(﹣2,3),∴﹣2k+k=3,∴k=﹣3;∴k≤﹣3;当k>0时,∵直线y=kx+k经过点P(﹣1,0),B(2,1),∴2k+k=1,∴k=13.∴k≥13;综上,直线与线段AB有交点时,猜想k的取值范围是:k≤﹣3或k≥1 3.答案:k≤﹣3或k≥1 3.(2022•丽水中考)因疫情防控需要,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km /h .两车离甲地的路程s (km )与时间t (h )的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程s (km )与时间t (h )的函数表达式;(3)问轿车比货车早多少时间到达乙地?【解析】(1)∵货车的速度是60km /h ,∴a =9060=1.5(h );(2)由图象可得点(1.5,0),(3,150),设直线的表达式为s =kt +b ,把(1.5,0),(3,150)代入得:{1.5k +b =03k +b =150, 解得{k =100b =−150, ∴s =100t ﹣150;(3)由图象可得货车走完全程需要33060+0.5=6(h ),∴货车到达乙地需6h ,∵s =100t ﹣150,s =330,解得t =4.8,∴两车相差时间为6﹣4.8=1.2(h ),∴货车还需要1.2h 才能到达.答:轿车比货车早1.2h 到达乙地.(2022•成都中考)随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18km /h ,乙骑行的路程s (km )与骑行的时间t (h )之间的关系如图所示.(1)直接写出当0≤t ≤0.2和t >0.2时,s 与t 之间的函数表达式;(2)何时乙骑行在甲的前面?【解析】(1)当0≤t ≤0.2时,设s =at ,把(0.2,3)代入解析式得,0.2a =3,解得:a =15,∴s =15t ;当t >0.2时,设s =kt +b ,把(0.2,3)和(0.5,9)代入解析式,得{0.5k +b =90.2k +b =3,解得{k =20b =−1, ∴s =20t ﹣1,事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时. (1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB ,AB 分别表示大巴、轿车离开学校的路程s (千米)与大巴行驶的时间t (小时)的函数关系的图象.试求点B 的坐标和AB 所在直线的解析式;(3)假设大巴出发a 小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a 的值.【解析】(1)设轿车出发后x 小时追上大巴, 依题意得:40(x +1)=60x ,解得x =2. ∴轿车出发后2小时追上大巴,此时,两车与学校相距60×2=120(千米),答,轿车出发后2小时追上大巴,此时,两车与学校相距120千米; (2)∵轿车出发后2小时追上大巴,此时,两车与学校相距120千米, ∴大巴行驶了13小时, ∴B (3,120), 由图象得A (1,0),设AB 所在直线的解析式为y =kt +b , ∴{k +b =03k +b =120,解得{k =60b ==60, ∴AB 所在直线的解析式为y =60t ﹣60;(3)依题意得:40(a +1.5)=60×1.5,解得a =34. ∴a 的值为34【解析】(1)设直线AB 的解析式为y =kx +b ,把A (﹣8,19),B (6,5)代入,得{−8k +b =196k +b =5,解得{k =−1b =11,∴直线AB 的解析式为y =﹣x +11;(2)①由题意直线y =mx +n 经过点(2,0),∴2m +n =0;②∵线段AB 上的整数点有15个:(﹣8,19),(﹣7,18),(﹣6,17),(﹣5,16),(﹣4,15),(﹣3,14),(﹣2,13),(﹣1,12),(0,11),(1,10),(2,9),(3,8),(4,7),(5,6),(6,5). 当射线CD 经过(2,0),(﹣7,18)时,y =﹣2x +4,此时m =﹣2,符合题意, 当射线CD 经过(2,0),(﹣1,12)时,y =﹣4x +8,此时m =﹣4,符合题意, 当射线CD 经过(2,0),(1,10)时,y =﹣10x +20,此时m =﹣10,符合题意, 当射线CD 经过(2,0),(3,8)时,y =8x ﹣16,此时m =8,符合题意, 当射线CD 经过(2,0),(5,6)时,y =2x ﹣4,此时m =2,符合题意, 其他点都不符合题意.综上所述,符合题意的m 的值有5个.(2022•衡阳中考)冰墩墩(BingDwenDwen )、雪容融(ShueyRhonRhon )分别是2022年北京冬奥会、冬残奥会的吉祥物.冬奥会来临之际,冰墩墩、雪容融玩偶畅销全国.小雅在某网店选中两种玩偶.决定从该网店进货并销售.第一次小雅用1400元购进了冰墩墩玩偶15个和雪容融玩偶5个,已知购进1个冰墩墩玩偶和1个雪容融玩偶共需136元,销售时每个冰墩墩玩偶可获利28元,每个雪容融玩偶可获利20元. (1)求两种玩偶的进货价分别是多少?(2)第二次小雅进货时,网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍.小雅计划购进两种玩偶共40个,应如何设计进货方案才能获得最大利润,最大利润是多少元?【解析】(1)设冰墩墩的进价为x 元/个,雪容融的进阶为y 元/个, 由题意可得:{15x +5y =1400x +y =136,解得{x =72y =64,答:冰墩墩的进价为72元/个,雪容融的进阶为64元/个; (2)设冰墩墩购进a 个,则雪容融购进(40﹣a )个,利润为w 元, 由题意可得:w =28a +20(40﹣a )=8a +800, ∴w 随a 的增大而增大,∵网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍, ∴a ≤1.5(40﹣a ), 解得a ≤24,∴当a =24时,w 取得最大值,此时w =992,40﹣a =16,答:冰墩墩购进24个,雪容融购进16个时才能获得最大利润,最大利润是992元(2022·新疆生产建设兵团中考)A ,B 两地相距30km ,甲、乙两人分别开车从A 地出发前往B 地,其中甲先出发1h .如图是甲,乙行驶路程y 甲(km ),y 乙(km )随行驶时间x (h )变化的图象,请结合图象信息,解答下列问题:(1)填空:甲的速度为 60 km /h ;(2)分别求出y 甲,y 乙与x 之间的函数解析式; (3)求出点C 的坐标,并写出点C 的实际意义.【解析】(1)甲的速度为:300÷5=60(km /h ), 答案:60;(2)由(1)可知,出y 甲与x 之间的函数解析式为y 甲=60x (0<x ≤5);设y 乙与x 之间的函数解析式为y 乙=kx +b ,根据题意得:{k +b =04k +b =300,解得{k =100b =−100,∴y 乙=100x ﹣100(1<x ≤3); (3)根据题意,得60x =100x ﹣100, 解得x =2.5, 60×2.5=150(km ),∴点C 的坐标为(2.5,1500),故点C 的实际意义是甲车出发2.5小时后被乙车追上,此时两车行驶了150km(3)求线段MN 的函数解析式;(4)在乙运动的过程中,何时两人相距80米?(直接写出答案即可)【解析】(1)由图象知:当x =0时,y =1200, ∴A 、B 两地之间的距离是1200米;由图象知:乙经过20分钟到达A ,∴乙的速度为120020=60(米/分).答案:1200;60;(2)由图象知:当x =607时,y =0,∴甲乙二人的速度和为:1200÷607=140(米/分), 设甲的速度为x 米/分,则乙的速度为(140﹣x )米/分, ∴140﹣x ==60,∴x =80.∴甲的速度为80(米/分), ∵点M 的实际意义是经过c 分钟甲到达B 地,∴c =1200÷80=15(分钟),∴a =60×15=900(米).∵点M 的实际意义是经过20分钟乙到达A 地,∴b =900﹣(80﹣60)×5=800(米); 答案:900;800;15;(3)由题意得:M (15,900),N (20,800), 设直线MN 的解析式为y =kx +n ,∴{15k +n =90020k +n =800,解得:{k =−20n =1200,∴直线MN 的解析式为y =﹣20x +1200; (4)在乙运动的过程中,二人出发后第8分钟和第647分钟两人相距80米.理由:①相遇前两人相距80米时,二人的所走路程和为1200﹣80=1120(米), ∴1120÷140=8(分钟);②相遇后两人相距80米时,二人的所走路程和为1200+80=1280(米), ∴1280÷140=647(分钟). 综上,在乙运动的过程中,二人出发后第8分钟和第647分钟两人相距80米.(2)当15≤x ≤45时,请直接写出y 关于x 的函数表达式; (3)当小明离家2km 时,求他离开家所用的时间.【解析】(1)小明家离体育场的距离为2.5km ,小明跑步的平均速度为2.515=16km /min ;答案:2.5,16;(2)如图,B (30,2.5),C (45,1.5),设BC 的解析式为:y =kx +b ,则{30k +b =2.545k +b =1.5,解得:{k =−115b =4.5, ∴BC 的解析式为:y =−115x +4.5, ∴当15≤x ≤45时,y 关于x 的函数表达式为:y ={2.5(15≤x ≤30)−115x +4.5(30<x ≤45); (3)当y =2时,−115x +4.5=2,∴x =752,2÷16=12, ∴当小明离家2km 时,他离开家所用的时间为12min 或752min .50(2022•龙东中考)为抗击疫情,支援B 市,A 市某蔬菜公司紧急调运两车蔬菜运往B 市.甲、乙两辆货车从A市出发前往B 市,乙车行驶途中发生故障原地维修,此时甲车刚好到达B 市.甲车卸载蔬菜后立即原路原速返回接应乙车,把乙车的蔬菜装上甲车后立即原路原速又运往B 市.乙车维修完毕后立即返回A 市.两车离A 市的距离y (km )与乙车所用时间x (h )之间的函数图象如图所示. (1)甲车速度是 100 km /h ,乙车出发时速度是 60 km /h ;(2)求乙车返回过程中,乙车离A 市的距离y (km )与乙车所用时间x (h )的函数解析式(不要求写出自变量的取值范围);(3)乙车出发多少小时,两车之间的距离是120km ?请直接写出答案.【解析】(1)由图象可得,甲车的速度为:500÷5=100(km /h ), 乙车出发时速度是:300÷5=60(km /h ), 答案:100,60;(2)乙车返回过程中,设乙车离A 市的距离y (km )与乙车所用时间x (h )的函数解析式是y =kx +b , ∵点(9,300),(12,0)在该函数图象上, ∴{9k +b =30012k +b =0,解得{k =−100b =1200, 即乙车返回过程中,乙车离A 市的距离y (km )与乙车所用时间x (h )的函数解析式是y =﹣100x +1200; (3)设乙车出发m 小时,两车之间的距离是120km ,(2022•包头中考)由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x 天(x 取整数)时,日销售量y (单位:千克)与x 之间的函数关系式为y ={12x ,0≤x ≤10−20x +320,10<x ≤16,草莓价格m (单位:元/千克)与x 之间的函数关系如图所示.(1)求第14天小颖家草莓的日销售量;(2)求当4≤x ≤12时,草莓价格m 与x 之间的函数关系式;(3)试比较第8天与第10天的销售金额哪天多?【解析】(1)∵当10≤x ≤16时,y =﹣20x +320,∴当x =14时,y =﹣20×14+320=40(千克).答:第14天小颖家草莓的日销售量是40千克.(2)当4≤x ≤12时,设草莓价格m 与x 之间的函数关系式为m =kx +b ,∵点(4,24),(12,16)在m =kx +b 的图象上,∴{4k +b =2412k +b =16,解得:{k =−1b =28,∴函数解析式为m =﹣x +28. (3)当0≤x ≤10时,y =12x ,∴当x =8时,y =12×8=96,当x =10时,y =12×10=120;当4≤x ≤12时,m =﹣x +28,∴当x =8时,m =﹣8+28=20,当x =10时,m =﹣10+28=18∴第8天的销售金额为:96×20=1920(元),第10天的销售金额为:120×18=2160(元),∵2160>1920,∴第10天的销售金额多.(2022·牡丹江中考)2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了 1.9小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?【解析】(1)1.9;(2)设直线EF的解析式为y乙=kx+b,∵点E(1.25,0)、点F(7.25,480)均在直线EF上,(2022•吉林中考)李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快.在一段时间内,水温y (℃)与加热时间x (s )之间近似满足一次函数关系,根据记录的数据,画函数图象如下:(1)加热前水温是 20 ℃.(2)求乙壶中水温y 关于加热时间x 的函数解析式.(3)当甲壶中水温刚达到80℃时,乙壶中水温是 65 ℃.【解析】(1)由图象得x =0时y =20,∴加热前水温是20℃,答案:20.(2)设乙壶中水温y 关于加热时间x 的函数解析式为y =kx +b ,将(0,20),(160,80)代入y =kx +b 得{20=b 80=160k +b, 解得{k =38b =20, ∴y =38x +20.(3)甲水壶的加热速度为(60﹣20)÷80=12℃/s ,∴甲水壶中温度为80℃时,加热时间为(80﹣20)÷12=120s , 将x =120代入y =38x +20得y =65,答案:65。
2022中考真题分类——整式(参考答案)一、整式运算1.(2022·湖南永州)若单项式3m x y 的与62x y −是同类项,则m =______. 【答案】6【分析】由题意直接根据同类项的概念,进行分析求解即可. 【详解】解:∵单项式3m x y 与62x y −是同类项, ∴6m =. 故答案为:6.【点睛】本题主要考查同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”即相同字母的指数相同.2.(2022·西藏)下列计算正确的是( ) A .2ab−ab =ab B .2ab +ab =2a 2b 2 C .4a 3b 2−2a =2a 2b D .−2ab 2−a 2b =−3a 2b 2【答案】A【详解】A 、2ab −ab =(2−1)ab =ab ,选项正确,符合题意; B 、2ab +ab =(2+1)ab =3ab ,选项不正确,不符合题意;C 、4a 3b 2与−2a 不是同类项,不能合并,选项不正确,不符合题意;D 、−2ab 2与−a 2b 不是同类项,不能合并,选项不正确,不符合题意. 故选A .【点睛】本题考查整式的加减.在计算的过程中,把同类项进行合并,不能合并的直接写在结果中即可.3.(2022·江苏徐州)下列计算正确的是( ) A .268a a a ⋅= B .842a a a ÷= C .224236a a a += D .()2239a a −=−【答案】A【分析】根据同底数幂的乘法,同底数幂的除法,合并同类项,积的乘方逐项分析判断即可求解.【详解】解:A . 268a a a ⋅=,故该选项正确,符合题意; B . 844a a a ÷=,故该选项不正确,不符合题意; C . 222235a a a +=,故该选项不正确,不符合题意; D . ()2239a a −=,故该选项不正确,不符合题意; 故选A【点睛】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项,积的乘方,正确的计算是解题的关键.4.(2022·山东淄博)计算3262(2)3a b a b −−的结果是( ) A .−7a 6b 2 B .−5a 6b 2C .a 6b 2D .7a 6b 2【答案】C【分析】先根据积的乘方法则计算,再合并同类项. 【详解】解:原式62626243a b a b a b =−=, 故选:C .【点睛】本题主要考查了积的乘方,合并同类项,解题的关键是掌握相应的运算法则.5.(2022·江苏镇江)下列运算中,结果正确的是( ) A .224325a a a += B .3332a a a −=C .235a a a ⋅=D .()325a a =【答案】C【分析】根据合并同类项法则,同底数幂的乘法法则,幂的乘方法则逐项计算即可判断选择.【详解】222325a a a +=,故A 计算错误,不符合题意;3332a a a −=−,故B 计算错误,不符合题意;235a a a ⋅=,故C 计算正确,符合题意;()326a a =,故D 计算错误,不符合题意.故选C .【点睛】本题考查合并同类项,同底数幂的乘法,幂的乘方.熟练掌握各运算法则是解题关键.6.(2022·湖北黄石)下列运算正确的是( ) A .972a a a −= B .632a a a ÷= C .236a a a ⋅= D .()224224a ba b −=【答案】D【分析】根据合并同类项法则,同底数幂的乘处法法则以及积的乘方运算法则即可求出答案.【详解】解:A .9a 与7a 不是同类项,所以不能合并,故A 不符合题意 B .原式=3a ,故B 不符合题意 C .原式=5a ,故C 不符合题意 D .原式=424a b ,故D 符合题意. 故选:D .【点睛】本题考查合并同类项法则,同底数幂的乘处法法则以及积的乘方运算法则,本题属于基础题型.7.(2022·山东东营)下列运算结果正确的是( ) A .336325x x x += B .22(1)1x x +=+ C .842x x x ÷= D 2=8.(2022·辽宁鞍山)下列运算正确的是( )A =B .3412a a a ⋅=C .222()a b a b −=−D .()323628ab a b −=−9.(2022·四川资阳)下列计算正确的是( ) A .235a b ab += B .222()a b a b +=+ C .23a a a ⨯=D .()325a a =【答案】C【分析】分别根据合并同类项法则,完全平方公式,同底数幂的乘法法则以及幂的乘方运算法则逐一判断即可.【详解】A . 2a 与3b 不是同类项,所以不能合并,故选项A 不合题意; B . 222()2a b a ab b +=++,故选项B 不合题意; C . a 2×a =a 3,故选项C 符合题意; D . (a 2 )3=a 6,故选项D 不合题意. 故选:C .【点睛】此题考查合并同类项,同底数幂的乘法,幂的乘方,完全平方公式,熟练掌握相关运算法则及公式,是解题的关键.10.(2022·内蒙古鄂尔多斯)下列运算正确的是( ) A .a 3b 2+2a 2b 3=3a 5b 5 B .(−2a 2b )3=−6a 6b 3C .2−2=−14D =【答案】D【分析】把每一选项按照运算法则计算后判断结果即可. 【详解】A .a 3b 2与2a 2b 3不是同类项,不能合并,故A 错误; B .(−2a 2b )3=−8a 6b 3,故B 错误;故选:D .【点睛】本题主要考查了整式的运算和实数的运算,关键要掌握合并同类项、负整数指数幂、二次根式的混合运算.11.(2022·上海)下列运算正确的是( ) A .a ²+a ³=a 6 B .(ab )2 =ab 2C .(a +b )²=a ²+b ²D .(a +b )(a −b )=a ² −b 2【答案】D【分析】根据整式加法判定A ;运用积的乘方计算关判定B ;运用完全平方公式计算并判定C ;运用平方差公式计算并判定D .【详解】解:A .a ²+a ³没有同类项不能合并,故此选项不符合题意; B .(ab )2 =a 2b 2,故此选项不符合题意; C .(a +b )²=a ²+2ab +b ²,故此选项不符合题意 D .(a +b )(a −b )=a ² −b 2,故此选项符合题意 故选:D .【点睛】本题考查整理式加法,积的乘方,完全平方公式,平方差公式,熟练掌握积的乘方运算法则、完全平方公式、平方差公式是解题的关键.12.(2022·黑龙江哈尔滨)下列运算一定正确的是( ) A .()22346a b a b = B .22434b b b += C .()246a a = D .339a a a ⋅=【答案】A【分析】根据积的乘方运算、幂的乘方运算、合并同类项运算和同底数幂的乘法运算逐项验证即可得到结论.【详解】解:A 、根据积的乘方运算、幂的乘方运算法则可知()22346a b a b =,该选项符合题意;B 、根据合并同类项运算可知2224344b b b b +=≠,该选项不符合题意;C 、根据幂的乘方运算可知()244286⨯==≠a a a a ,该选项不符合题意;D 、根据同底数幂的乘法运算可知333369a a a a a +⋅==≠,该选项不符合题意; 故选:A .【点睛】本题考查整式的运算,涉及到积的乘方运算、幂的乘方运算、合并同类项运算和同底数幂的乘法运算等知识点,熟练掌握相关运算法则是解决问题的关键.13.(2022·辽宁锦州)下列运算正确的是( ) A .()222448ab a b −= B .633a a a −÷=−C .32622a a a ⋅=D .3362a a a +=【答案】B【分析】分别根据幂的乘方运算法则,同底数幂的乘法法则,同底数幂的除法法则以及合并同类项逐一判断即可. 【详解】解:A .()2224416ab a b −=,故本选项不合题意;B .633a a a −÷=−,故本选项符合题意;C .32522a a a ⋅=,故本选项不合题意;D .3332a a a +=,故本选项不合题意. 故选:B .【点睛】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记这些运算法则是解答本题的关键.14.(2022·四川眉山)下列运算中,正确的是( ) A .3515x x x ⋅= B .235x y xy +=C .22(2)4x x −=−D .()2242235610x x y x x y ⋅−=−【答案】D【分析】根据同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则分析选项即可知道答案.【详解】解:A . 根据同底数幂的乘法法则可知:358⋅=x x x ,故选项计算错误,不符合题意;B . 2x 和3y 不是同类项,不能合并,故选项计算错误,不符合题意;C . 根据完全平方公式可得:22(2)44−=+−x x x ,故选项计算错误,不符合题意;D . ()2242235610x x y x x y ⋅−=−,根据单项式乘多项式的法则可知选项计算正确,符合题意; 故选:D【点睛】本题考查同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则.15.(2022·青海)下列运算正确的是( ) A .235347x x x +=B .()222x y x y +=+C .()()2232394x x x +−=−D .()224212xy xy xy y +=+【答案】D【分析】根据合并同类项,完全平方公式,平方差公式,因式分解计算即可.【详解】A .选项,3x 2与4x 3不是同类项,不能合并,故该选项计算错误,不符合题意; B .选项,原式= ()2222x y x xy y +=++,故该选项计算错误,不符合题意; C .选项,原式= 249x −,故该选项计算错误,不符合题意; D .选项,原式=()212xy y +,故该选项计算正确,符合题意; 故选:D .【点睛】本题考查了合并同类项,完全平方公式,平方差公式,因式分解,注意完全平方公式展开有三项是解题的易错点.二、整体代入16.(2022·湖南邵阳)已知2310x x −+=,则2395x x −+=_________. 【答案】2【分析】将2395x x −+变形为23(31)+2x x −+即可计算出答案.【详解】22239539323(31)+2x x x x x x −+=−++=−+ ∵2310x x −+= ∴23950+2=2x x −+= 故答案为:2.【点睛】本题考查代数式的性质,解题的关键是熟练掌握代数式的相关知识.17.(2022·内蒙古赤峰)已知()()2221x x x +−−=,则2243x x −+的值为( ) A .13 B .8 C .-3 D .5【答案】A【分析】先化简已知的式子,再整体代入求值即可. 【详解】∵()()2221x x x +−−= ∴225x x −=∴222432(2)313x x x x −+=−+= 故选:A .【点睛】本题考查平方差公式、代数式求值,利用整体思想是解题的关键.18.(2022·江苏盐城)先化简,再求值:()()()2443x x x +−+−,其中2310x x −+=. 【答案】2267x x −−,-9【分析】根据平方差公式和完全平方公式可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】解:原式221669x x x =−+−+ 2267x x =−−. 2310x x −+=, 231x x ∴−=−,原式()()22372179x x =−−=⨯−−=−【点睛】本题考查整式的混合运算-化简求值,解答本题的关键是明确整式化简求值的方法.三、乘法公式19.(2022·广西)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是()A.222a b a ab b−=−+()2a b a ab b()2+=++B.222C.22ab a b=()()()a b a b a b+−=−D.222【答案】A【分析】根据大正方形的面积=边长为a的正方形的面积+两个长为a,宽为b的长方形的面积+边长为b的正方形的面积,即可解答.【详解】根据题意得:(a+b)2=a2+2ab+b2,故选:A.【点睛】本题考查了完全平方公式的几何背景,用整体和部分两种方法表示面积是解题的关键.20.(2022·黑龙江大庆)已知代数式22+−+是一个完全平方式,则实数t的值为(21)4a t ab b____________.21.(2022·山东滨州)若10m n +=,5mn =,则22m n +的值为_______. 【答案】90【分析】将22m n +变形得到()22m n mn +−,再把10m n +=,5mn =代入进行计算求解. 【详解】解:∵10m n +=,5mn =, ∴22m n + ()22m n mn =+− 21025=−⨯10010=− 90=.故答案为:90.【点睛】本题主要考查了代数式求值,完全平方公式的应用,灵活运用完全平方公式是解答关键.22.(2022·四川德阳)已知(x +y )2=25,(x −y )2=9,则xy =___. 【答案】4【分析】根据完全平方公式的运算即可. 【详解】∵()225x y +=,()29x y −= ∵()2x y ++()2x y −=4xy =16, ∴xy =4.【点睛】此题主要考查完全平方公式的灵活运用,解题的关键是熟知完全平方公式的应用.23.(2022·四川乐山)已知221062m n m n ++=−,则m n −=______. 【答案】4【分析】根据已知式子,凑完全平方公式,根据非负数之和为0,分别求得,m n 的值,进而代入代数式即可求解. 【详解】解:221062m n m n ++=−,2210620m n m n +−+∴+=, 即()()22310m n −++=,3,1m n ∴==−,()314m n ∴−=−−=,故答案为:4.【点睛】本题考查了因式分解的应用,掌握完全平方公式是解题的关键.24.(2022·湖北襄阳)先化简,再求值:(a +2b )2+(a +2b )(a −2b )+2a (b −a ),其中ab25.(2022·江苏泰州)已知22222,2,()a m mn b mn n c m n m n =−=−=−≠ 用“<”表示a b c 、、的大小关系为________.【答案】b<c<a【分析】利用作差法及配方法配成完全平方式再与0比较大小即可求解.【详解】解:由题意可知:222222222)(2))(()(22m n mn m n a b m mn mn n m n m n ,∵m n ≠,∴222()0m n m n ,∴b a <;22222223)()2)(4(2n m mn a c m mn n m m n n ,当且仅当002n m n 且时取等号,此时0m n ==与题意m n ≠矛盾,∴223()024n m n a ;22222223)()()24(2n m c b m n m n n m n n m n ,同理故答案为:b<c<a . 【点睛】本题考查了两代数式通过作差比较大小,将作差后的结果配成完全平方式,利用26.(2022·江苏南通)已知实数m ,n 满足222+=+m n mn ,则2(23)(2)(2)−++−m n m n m n 的最大值为( )A .24B .443C .163D .4−四、整式应用27.(2022·青海)木材加工厂将一批木料按如图所示的规律依次摆放,则第n个图中共有木料______根.(n++=n【点睛】本题考查了图形的变化类问题,仔细观察,分析,归纳并发现其中的规律是解本28.(2022·四川乐山)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD的周长为26,则正方形d的边长为______.29.(2022·贵州六盘水)已知()443223412345x y a x a x y a x y a xy a y +=++++,则12345a a a a a ++++的值是( )A .4B .8C .16D .12【答案】C【分析】令1,1x y ==,代入已知等式进行计算即可得.【详解】解:观察所求式子与已知等式的关系,令1,1x y ==,则412345(11)16a a a a a ++++=+=,故选:C .【点睛】本题考查了代数式求值,观察得出所求式子与已知等式的关系是解题关键.。
2022年中考数学真题分项汇编【全国通用】(第01期)专题02整式(共37题)一、单选题1.(2022·云南·中考真题)下列运算正确的是()A=B.30=0C.(−2a)3=−8a3D.a6÷a3=a2【答案】C【解析】【分析】根据合并同类二次根式判断A,根据零次幂判断B,根据积的乘方判断C,根据同底数幂的除法判断D.【详解】解:B.30=1,此选项运算错误,不符合题意;C.(−2a)3=−8a3,此选项运算正确,符合题意;D.a6÷a3=a3,此选项运算错误,不符合题意;故选:C.【点睛】本题考查了二次根式的加法、零次幂、积的乘方、同底数幂相除,熟练掌握运算法则是解题的关键.2.(2022·浙江金华·中考真题)计算a3⋅a2的结果是()A.a B.a6C.6a D.a5【答案】D【解析】【分析】根据同底数幂的乘法法则计算判断即可.【详解】∵a3⋅a2=a5,故选D.【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.3.(2022·安徽·中考真题)下列各式中,计算结果等于a9的是()A.a3+a6B.a3⋅a6C.a10−a D.a18÷a2【答案】B【解析】【分析】利用整式加减运算和幂的运算对每个选项计算即可.【详解】A.a3+a6,不是同类项,不能合并在一起,故选项A不合题意;B.a3⋅a6=a3+6=a9,符合题意;C.a10−a,不是同类项,不能合并在一起,故选项C不合题意;D.a18÷a2=a18−2=a16,不符合题意,故选B【点睛】本题考查了整式的运算,熟练掌握整式的运算性质是解题的关键.4.(2022·四川成都·中考真题)下列计算正确的是()A.m+m=m2B.2(m−n)=2m−nC.(m+2n)2=m2+4n2D.(m+3)(m−3)=m2−9【答案】D【解析】【分析】根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定.【详解】解:A.m+m=2m,故该选项错误,不符合题意;B.2(m−n)=2m−2n,故该选项错误,不符合题意;C.(m+2n)2=m2+4mn+4n2,故该选项错误,不符合题意;D.(m+3)(m−3)=m2−9,故该选项正确,符合题意;故选:D.【点睛】本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键.5.(2022·四川德阳·中考真题)下列计算正确的是()A.(a−b)2=a2−b2B=1C.a÷a⋅1a =a D.−12ab23=−16a3b6【答案】B【解析】【分析】根据完全平方公式、二次根式的化简、同底数幂的乘除法则、积的乘法法则逐项判断即可.【详解】A.(a−b)2=a2−2ab+b2,故本选项错误;=1,故本选项符合题意;C.a÷a⋅1a =1⋅1a=1a,故本选项错误;D.(−12ab2)3=(−12)3a3b2×3=−18a3b6,故本选项错误;故选:B.【点睛】本题考查了完全平方公式、二次根式的化简、同底数幂的乘除法则、积的乘法法则,熟练掌握同底数幂的乘除法则、积的乘法法则是解答本题的关键.6.(2022·四川遂宁·中考真题)下列计算中正确的是()A.a3⋅a3=a9B.(−2a)3=−8a3C.a10÷(−a2)3=a4D.(−a+2)(−a−2)=a2+4【答案】B【解析】【分析】分别根据同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则、幂的乘方法则以及平方差公式逐一判断即可.【详解】A. a3⋅a3=a3+3=a6,故本选项错误;B. (−2a)3=(−2)3a3=−8a3,故本选项符合题意;C. a10÷(−a2)3=−a10−2×3=−a4,故本选项错误;D. (−a+2)(−a−2)=(−a)2−22=a2−4,故本选项错误;故选:B.【点睛】本题主要考查了同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则、幂的乘方法则以及平方差公式,熟记相关运算法则是解答本题的关键.7.(2022·四川遂宁·中考真题)已知m为方程x2+3x−2022=0的根,那么m3+2m2−2025m+2022的值为()A.−2022B.0C.2022D.4044【答案】B【解析】【分析】根据题意有m2+3m−2022=0,即有m3+3m2−2022m=0,据此即可作答.【详解】∵m为x2+3x−2022=0的根据,∴m2+3m−2022=0,且m≠0,∴m3+3m2−2022m=0,则有原式=(m3+3m2−2022m)−(m2+3m−2022)=0−0=0,故选:B.【点睛】本题考查了利用未知数是一元二次方程的根求解代数式的值,由m为x2+3x−2022=0得到m2+3m−2022=0是解答本题的关键.8.(2022·重庆·中考真题)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9【解析】【分析】根据第①个图案中菱形的个数:1;第②个图案中菱形的个数:1+2=3;第③个图案中菱形的个数:1+2×2=5;…第n个图案中菱形的个数:1+2(n−1),算出第⑥个图案中菱形个数即可.【详解】解:∵第①个图案中菱形的个数:1;第②个图案中菱形的个数:1+2=3;第③个图案中菱形的个数:1+2×2=5;…第n个图案中菱形的个数:1+2(n−1),∴则第⑥个图案中菱形的个数为:1+2×(6−1)=11,故C正确.故选:C.【点睛】本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.9.(2022·云南·中考真题)按一定规律排列的单项式:x,3x²,5x³,7x4,9x5,……,第n个单项式是()A.(2n-1)x n B.(2n+1)x n C.(n-1)x n D.(n+1)x n【答案】A【解析】【分析】系数的绝对值均为奇数,可用(2n-1)表示;字母和字母的指数可用xn表示.【详解】解:依题意,得第n项为(2n-1)xn,故选:A.【点睛】本题考查的是单项式,根据题意找出规律是解答此题的关键.10.(2022·重庆·中考真题)对多项式x−y−z−m−n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x−y)−(z−m−n)=x−y−z+m+n,x−y−(z−m)−n=x−y−z+m−n,…,给①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为( )A .0B .1C .2D .3【答案】D【解析】【分析】给x−y 添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得x 的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.【详解】解:∵(x−y)−z−m−n =x−y−z−m−n∴①说法正确∵x−y−z−m−n−x +y +z +m +n =0又∵无论如何添加括号,无法使得x 的符号为负号∴②说法正确∵当括号中有两个字母,共有4种情况,分别是(x−y)−z−m−n 、x−(y−z)−m−n 、x−y−(z−m)−n 、x−y−z−(m−n);当括号中有三个字母,共有3种情况,分别是(x−y−z)−m−n 、x−(y−z−m)−n 、x−y−(z−m−n);当括号中有四个字母,共有1种情况,(x−y−z−m−n)∴共有8种情况∴③说法正确∴正确的个数为3故选D .【点睛】本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.11.(2022·山东滨州·中考真题)下列计算结果,正确的是( )A .(a 2)3=a 5B=C =2D .cos30°=12【答案】C【解析】【分析】根据幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值逐一进行计算即可.【详解】解:A、(a2)3=a2×3=a6,该选项错误;B=C2,该选项正确;D、cos30°=故选:C.【点睛】本题考查了幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值,熟练掌握运算法则是解题的关键.12.(2022·四川南充·中考真题)下列计算结果正确的是()A.5a−3a=2B.6a÷2a=3a C.a6÷a3=a2D.(2a2b3)3=8a6b9【答案】D【解析】【分析】根据单项式的减法、除法及同底数幂的除法、积的乘方运算依次计算判断即可.【详解】解:A、5a-3a=2a,选项错误;B、6a÷2a=3,选项错误;C、a6÷a3=a3,选项错误;D、(2a2b3)3=8a6b9,选项正确;故选:D.【点睛】题目主要考查单项式的减法、除法及同底数幂的除法、积的乘方运算,熟练掌握各个运算法则是解题关键.13.(2022·四川泸州·中考真题)下列运算正确的是()A.a2⋅a3=a6B.3a−2a=1C.(−2a2)3=−8a6D.a6÷a2=a3【答案】C【解析】【分析】根据整式的加减乘除运算法则逐个判断即可.【详解】解:选项A:a2⋅a3=a5,故选项A错误;选项B:3a−2a=a,故选项B错误;选项C:(−2a2)3=−8a6,故选项C正确;选项D:a6÷a2=a4,故选项D错误;故选:C.【点睛】本题考查了整式的加减乘除运算法则,属于基础题,熟练掌握运算法则即可求解.14.(2022·浙江丽水·中考真题)计算−a2⋅a的正确结果是()A.−a2B.a C.−a3D.a3【答案】C【解析】【分析】根据同底数幂的乘法法则进行运算,即可判定.【详解】解:−a2⋅a=−a3,故选:C.【点睛】本题考查了同底数幂的乘法法则,熟练掌握和运用同底数幂的乘法法则是解决本题的关键.15.(2022·四川南充·中考真题)下列计算结果为5的是()A.−(+5)B.+(−5)C.−(−5)D.−|−5|【答案】C【解析】【分析】根据去括号法则及绝对值化简依次计算判断即可.【详解】解:A、-(+5)=-5,不符合题意;B、+(-5)=-5,不符合题意;C、-(-5)=5,符合题意;D、−|−5|=−5,不符合题意;故选:C.【点睛】题目主要考查去括号法则及化简绝对值,熟练掌握去括号法则是解题关键.16.(2022·四川自贡·中考真题)下列运算正确的是()A.(−1)2=−2B.=1C.a6÷a3=a2D.−=0【答案】B【解析】【分析】根据乘方运算,平方差公式,同底数幂的除法法则,零指数幂的运算法则进行运算即可.【详解】A.(−1)2=1,故A错误;2−2=1,故B正确;B.+=C.a6÷a3=a3,故C错误;D.−=1,故D错误.故选:B.【点睛】本题主要考查了整式的运算和实数的运算,熟练掌握平方差公式,同底数幂的除法法则,零指数幂的运算法则,是解题的关键.17.(2022·重庆·中考真题)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C【解析】【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.二、填空题18.(2022·浙江金华·中考真题)因式分解:x2−9=______.【答案】(x+3)(x−3)【解析】【分析】根据平方差公式a2−b2=(a+b)(a−b)直接进行因式分解即可.【详解】解:x2−9=x2−32=(x+3)(x−3),故答案为:(x+3)(x−3).【点睛】本题考查利用公式法分解因式,熟练掌握平方差公式是解决问题的关键.19.(2022·四川德阳·中考真题)分解因式:ax2−a=______.【答案】a(x+1)(x-1)【解析】【分析】先提公因式a,再运用平方差公式分解即可.【详解】解:ax2-a=a(x2-1)=a(x+1)(x-1)故答案为:a(x+1)(x-1).【点睛】本题考查提公因式法与公式法综合运用,熟练掌握分解因式的提公因式法与公式法两种方法是解题的关键.20.(2022·江苏连云港·中考真题)计算:2a+3a=______.【答案】5a【解析】【分析】直接运用合并同类项法则进行计算即可得到答案.【详解】解:2a+3a=(2+3)a=5a.故答案为:5a.【点睛】本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.21.(2022·山东滨州·中考真题)若m+n=10,mn=5,则m2+n2的值为_______.【答案】90【解析】【分析】将m2+n2变形得到(m+n)2−2mn,再把m+n=10,mn=5代入进行计算求解.【详解】解:∵m+n=10,mn=5,∴m2+n2=(m+n)2−2mn=102−2×5=100−10=90.故答案为:90.【点睛】本题主要考查了代数式求值,完全平方公式的应用,灵活运用完全平方公式是解答关键.22.(2022·山东泰安·中考真题)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.【答案】不存在【解析】【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n个“○”“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1×(11)2;n=2时,“○”的个数是3=2×(21)2,n=3时,“○”的个数是6n=4时,“○”的个数是10=4×(41)2,……∴第n个“○”由图形中的“○”的个数和“.”个数差为2022∴3n−n(n1)2=2022①,n(n1)2−3n=2022②解①得:无解解②得:n12故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.23.(2022·江苏连云港·中考真题)若关于x的一元二次方程mx2+nx−1=0(m≠0)的一个解是x=1,则m+n 的值是___.【答案】1【解析】【分析】根据一元二次方程解的定义把x=1代入到mx2+nx−1=0(m≠0)进行求解即可.【详解】解:∵关于x的一元二次方程mx2+nx−1=0(m≠0)的一个解是x=1,∴m+n−1=0,∴m+n=1,故答案为:1.【点睛】本题主要考查了一元二次方程解的定义,代数式求值,熟知一元二次方程解的定义是解题的关键.24.(2022·四川德阳·中考真题)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是1+2=3,第三个三角形数是1+2+3=6,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是1+3=4,第三个正方形数是1+3+5=9,……由此类推,图④中第五个正六边形数是______.【答案】45【解析】【分析】根据题意找到图形规律,即可求解.【详解】根据图形,规律如下表:由上表可知第n个M边形数为:S=(1+2+⋯+n)+[1+2+⋯+(n−1)](m−3),整理得:S=(1n)n2+n(n−1)(m−3)2,则有第5个正六边形中,n=5,m=6,代入可得:S=(1n)n2+n(n−1)(m−3)2=(15)52+5(5−1)(6−3)2=45,故答案为:45.【点睛】本题考查了整式--图形类规律探索,理解题意是解答本题的关键.25.(2022·四川遂宁·中考真题)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【解析】【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.26.(2022·浙江丽水·中考真题)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN,已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.AE=a,DE=b,且a>b.(1)若a,b是整数,则PQ的长是___________;(2)若代数式a2−2ab−b2的值为零,则S四边形ABCDS矩形PQMN的值是___________.【答案】a−b3+【解析】【分析】(1)根据图象表示出PQ即可;(2)根据a2−2ab−b2=0分解因式可得(a−b=0,继而求得a=b,根据这四个矩形的面积都是5,可得EP=5a ,EN=5b,再进行变形化简即可求解.【详解】(1)∵①和②能够重合,③和④能够重合,AE=a,DE=b,∴PQ=a−b,故答案为:a−b;(2)∵a2−2ab−b2=0,∴a2−2ab+b2−2b2=(a−b)2−2b2=(a−b+=0,∴a−b=0或=0,即a=(负舍)或a=b+∵这四个矩形的面积都是5,∴EP=5a ,EN=5b,∴S四边形ABCD S矩形PQMN =(a b)⋅5(a b)ab(a−b)⋅5(a−b)ab2b22a2b2,3+【点睛】本题考查了代数式及其分式的化简求值,准确理解题意,熟练掌握知识点是解题的根据.三、解答题27.(2022·浙江丽水·中考真题)先化简,再求值:(1+x)(1−x)+x(x+2),其中x=12.【答案】 1+2x;2【解析】【分析】先利用平方差公式,单项式与多项式乘法化简,然后代入x=12即可求解.【详解】(1+x)(1−x)+x(x+2)=1−x2+x2+2x=1+2x当x=12时,原式=1+2x=1+2×12=2.【点睛】本题考查了整式的化简求值,正确地把代数式化简是解题的关键.28.(2022·重庆·中考真题)计算:(1)(x+2)2+x(x−4);−1÷a2−b22b.【答案】(1)2x2+4(2)2a b【解析】【分析】(1)先计算乘法,再合并,即可求解;(2)先计算括号内的,再计算除法,即可求解.(1)解:原式=x2+4x+4+x2−4x=2x2+4(2)解:原式=a−bb ×2b(a b)(a−b)=2a+b【点睛】本题主要考查了整式的混合运算,分式的混合运算,熟练掌握相关运算法则是解题的关键.29.(2022·四川南充·中考真题)先化简,再求值:(x+2)(3x−2)−2x(x+2),其中x.【答案】x 2−4;【解析】【分析】利用多项式乘以多项式及单项式乘以多项式运算法则进行化简,然后代入求值即可.【详解】解:原式=3x 2−2x +6x−4−2x 2−4x =x 2−4;当x时,原式=2−4=3+1-=-【点睛】题目主要考查整式的乘法及加减化简求值及二次根式混合运算,熟练掌握运算法则是解题关键.30.(2022·山东泰安·中考真题)(1)若单项式x m−n y 14与单项式−12x 3y 3m−8n 是一多项式中的同类项,求m 、n 的值;(2÷1x 2−1,其中x =.【答案】(1)m =2,n =-1;(2)x 2+1,【解析】【分析】(1)根据同类项的概念列二元一次方程组,然后解方程组求得m 和n 的值;(2)先通分算小括号里面的,然后算括号外面的,最后代入求值.【详解】解:(1)由题意可得m−n =3①3m−8n =14②,②−①×3,可得:−5n =5,解得:n =−1,把n =−1代入①,可得:m−(−1)=3,解得:m =2,∴m 的值为2,n 的值为−1;(2)原式=[x(x−1)(x1)(x1)(x−1)]⋅(x+1)(x−1)=x2−x+x+1(x+1)(x−1)⋅(x+1)(x−1)=x2+1,当x时,原式=2+1=+1=【点睛】本题考查同类项,解二元一次方程组,分式的化简求值,二次根式的混合运算,理解同类项的概念,掌握消元法解二元一次方程组的步骤以及完全平方公式(a+b)2=a2+2ab+b2的结构是解题关键.31.(2022·重庆·中考真题)计算:(1)(x+y)(x−y)+y(y−2);(2)1−【答案】(1)x2−2y(2)2m−2【解析】【分析】(1)根据平方差公式和单项式乘多项式法则进行计算,再合并同类项即可;(2)先将括号里通分计算,所得的结果再和括号外的分式进行通分计算即可.(1)解:(x+y)(x−y)+y(y−2)=x2−y2+y2−2y=x2−2y(2)解:1−m ÷(m−2)2(m2)(m−2)=2 m2×(m2)(m−2)(m−2)2=2 m−2【点睛】本题考查了平方差公式、单项式乘多项式、合并同类项、分式的混合运算等知识点,熟练掌握运算法则是解答本题的关键.32.(2022·浙江金华·中考真题)如图1,将长为2a+3,宽为2a的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.(1)用关于a的代数式表示图2中小正方形的边长.(2)当a=3时,该小正方形的面积是多少?【答案】(1)a+3(2)36【解析】【分析】(1)分别算出直角三角形较长的直角边和较短的直角边,再用较长的直角边减去较短的直角边即可得到小正方形面积;(2)根据(1)所得的小正方形边长,可以写出小正方形的面积代数式,再将a的值代入即可.(1)×2a=a,解:∵直角三角形较短的直角边=12较长的直角边=2a+3,∴小正方形的边长=2a+3−a=a+3;(2)解:S小正方形=(a+3)2=a2+6a+9,当a=3时,S小正方形=(3+3)2=36.【点睛】本题考查割补思想,属性结合思想,以及整式的运算,能够熟练掌握割补思想是解决本题的关键.33.(2022·安徽·中考真题)某地区2020年进出口总额为520亿元.2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:年份进口额/亿元出口额/亿元进出口总额/亿元2020x y5202021 1.25x 1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额度分别是多少亿元?【答案】(1)1.25x+1.3y(2)2021年进口额400亿元,出口额260亿元.【解析】【分析】(1)根据进出口总额=进口额+出口额计算即可;(2)根据2021年进出口总额比2020年增加了140亿元,列方程1.25x+1.3y=520+140,然后联立方程组x+y=5201.25x+1.3y=520+140,解方程组即可.(1)解:年份进口额/亿元出口额/亿元进出口总额/亿元2020x y5202021 1.25x 1.3y 1.25x+1.3y故答案为:1.25x+1.3y;(2)解:根据题意1.25x+1.3y=520+140,∴x+y=5201.25x+1.3y=520+140,解得:x=320y=200,2021年进口额1.25x=1.25×320=400亿元,2021年出口额是1.3y=1.3×200=260亿元.【点睛】本题考查列二元一次方程组解应用题,列代数式,掌握列二元一次方程组解应用题的方法与步骤是解题关键.34.(2022·安徽·中考真题)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2−(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2−(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2−(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2−(5×8)2,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【答案】(1)(2×5+1)2=(6×10+1)2−(6×10)2(2)(2n+1)2=[(n+1)⋅2n+1]2−[(n+1)⋅2n]2,证明见解析【解析】【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;(2)观察相同位置的数变化规律可以得出第n个等式为(2n+1)2=[(n+1)⋅2n+1]2−[(n+1)⋅2n]2,利用完全平方公式和平方差公式对等式左右两边变形即可证明.(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:(2×5+1)2=(6×10+1)2−(6×10)2,故答案为:(2×5+1)2=(6×10+1)2−(6×10)2;(2)解:第n个等式为(2n+1)2=[(n+1)⋅2n+1]2−[(n+1)⋅2n]2,证明如下:等式左边:(2n+1)2=4n2+4n+1,等式右边:[(n+1)⋅2n+1]2−[(n+1)⋅2n]2=[(n +1)⋅2n +1+(n +1)⋅2n ]⋅[(n +1)⋅2n +1−(n +1)⋅2n ]=[(n +1)⋅4n +1]×1=4n 2+4n +1,故等式(2n +1)2=[(n +1)⋅2n +1]2−[(n +1)⋅2n ]2成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.35.(2022·四川凉山·中考真题)阅读材料:材料1:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,则x 1+x 2=−ba ,x 1x 2=ca 材料2:已知一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,求m 2n +mn 2的值.解:∵一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,∴m +n =1,mn =-1,则m 2n +mn 2=mn (m +n )=-1×1=-1根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x 2-3x -1=0的两个根为x 1,x 2,则x 1+x 2=;x 1x 2=.(2)类比应用:已知一元二次方程2x 2-3x -1=0的两根分别为m 、n ,求nm +mn 的值.(3)思维拓展:已知实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,且s ≠t ,求1s −1t 的值.【答案】(1)32;−12(2)−132【解析】【分析】(1)根据一元二次方程根与系数的关系直接进行计算即可;(2)根据根与系数的关系先求出m +n =32,mn =−12,然后将nm +mn 进行变形求解即可;(3)根据根与系数的关系先求出s +t =32,st =−12,然后求出s -t 的值,然后将1s −1t 进行变形求解即可.(1)解:∵一元二次方程2x 2-3x -1=0的两个根为x 1,x 2,∴x 1+x 2=−ba =−−32=32,x 1⋅x 2=ca =−12.故答案为:32;−12.(2)∵一元二次方程2x 2-3x -1=0的两根分别为m 、n ,∴m +n =−ba =−−32=32,mn =ca =−12,∴nm +m n==(m +n )2−2mn mn =−12=−132(3)∵实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,∴s 、t 可以看作方程2x 2-3x -1=0的两个根,∴s +t =−ba =−−32=32,st =ca =−12,∵(t−s )2=(t +s )2−4st=−4×−=94+2=174∴t−s t−s =当t−s时,1s −1t =t−s st2−12当t−s =时,1s −1t =t−s st=2−12综上分析可知,1s −1t 的值为【点睛】本题主要考查了一元二次方程根与系数的关系,完全平方公式的变形计算,根据根与系数的关系求出t−s t−s=36.(2022·重庆·中考真题)若一个四位数M的个位数字与十位数字的平方和恰好是M去掉个位与十位数字后得到的两位数,则这个四位数M为“勾股和数”.例如:M=2543,∵32+42=25,∴2543是“勾股和数”;又如:M=4325,∵52+22=29,29≠43,∴4325不是“勾股和数”.(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记G(M)=P(M)=G(M),P(M)均是整数时,求出所有满足条件的M.【答案】(1)2022不是“勾股和数”,5055是“勾股和数”;理由见解析(2)8109或8190或4536或4563.【解析】【分析】(1)根据“勾股和数”的定义进行验证即可;(2)由“勾股和数”的定义可得10a+b=c2+d2,根据G(M),P(M)均是整数可得c+d=9,c2+d2=81−2cd为3的倍数,据此得出符合条件的c,d的值,然后即可确定出M.(1)解:2022不是“勾股和数”,5055是“勾股和数”;理由:∵22+22=8,8≠20,∴1022不是“勾股和数”;∵52+52=50,∴5055是“勾股和数”;(2)∵M为“勾股和数”,∴10a+b=c2+d2,∴0<c2+d2<100,∵G(M)=c d为整数,9∴c+d=9,∵P(M)|10a b−10c−d|3∴c2+d2=81−2cd为3的倍数,∴①c=0,d=9或c=9,d=0,此时M=8109或8190;②c=3,d=6或c=6,d=3,此时M=4536或4563,综上,M的值为8109或8190或4536或4563.【点睛】本题以新定义为背景考查了整式混合运算的应用以及学生应用知识的能力,解题关键是要理解新定义,能根据条件找出合适的“勾股和数”.37.(2022·重庆·中考真题)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30⋯⋯4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中任为整数,求出满足条选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若F(A)G(A)16件的所有数A.【答案】(1)357不是15“和倍数”,441是9的“和倍数”;理由见解析(2)数A可能为732或372或516或156【解析】【分析】(1)根据题目中给出的“和倍数”定义进行判断即可;(2)先根据三位数A是12的“和倍数”得出a+b+c=12,根据a>b>c,F(A)是最大的两位数,G(A)是=k(k为整数),结合a+b+c=12得出最小的两位数,得出F(A)+G(A)=10a+2b+10c,F(A)G(A)16b=15−2k,根据已知条件得出1<b<6,从而得出b=3或b=5,然后进行分类讨论即可得出答案.(1)解:∵357÷(3+5+7)=357÷15=23⋅⋅⋅⋅⋅⋅12,∴357不是15“和倍数”;∵441÷(4+4+1)=441÷9=49,∴441是9的“和倍数”.(2)∵三位数A是12的“和倍数”,∴a+b+c=12,∵a>b>c,∴在a,b,c中任选两个组成两位数,其中最大的两位数F(A)=10a+b,最小的两位数G(A)=10c+b,∴F(A)+G(A)=10a+b+10c+b=10a+2b+10c,∵F(A)G(A)为整数,16=k(k为整数),=k,则10a2b10c16整理得:5a+5c+b=8k,根据a+b+c=12得:a+c=12−b,∵a>b>c,∴12−b>b,解得b<6,∵“和倍数”是各数位上的数字均不为0的三位自然数,∴a>b>c>0,∴b>1,∴1<b<6,把a+c=12−b代入5a+5c+b=8k得:5(12−b)+b=8k,整理得:b=15−2k,∵1<b<6,k为整数,∴b=3或b=5,当b=3时,a+c=12−3=9,∵a>b>c>0,∴a>3,0<c<3,∴a=7,b=3,c=2,或a=8,b=3,c=1,要使三位数A是12的“和倍数”,数A必须是一个偶数,当a=7,b=3,c=2时,组成的三位数为732或372,∵732÷12=61,∴732是12的“和倍数”,∵372÷12=31,∴372是12的“和倍数”;当a=8,b=3,c=1时,组成的三位数为318或138,∵318÷12=26⋅⋅⋅⋅⋅⋅6,∴318不是12的“和倍数”,∵138÷12=11⋅⋅⋅⋅⋅⋅6,∴138不是12的“和倍数”;当b=5时,a+c=12−5=7,∵a>b>c>0,∴5<a<7,∴a=6,b=5,c=1,组成的三位数为516或156,∵516÷12=43,∴516是12的“和倍数”,∵156÷12=13,∴156是12的“和倍数”;综上分析可知,数A可能为732或372或516或156.【点睛】本题主要考查了新定义类问题,数的整除性,列代数式,利用数位上的数字特征和数据的整除性,是解题的关键,分类讨论是解答本题的重要方法,本题有一定的难度.。
专题02整式运算及因式分解(解析版)三年(2022-2024)中考数学真题分类汇编(全国通用)【考点归纳】一、考点01代数式及其应用--------------------------------------------------------------------------------------------------------------1二、考点02整式及其运算-----------------------------------------------------------------------------------------------------------------6三、考点03因式分解----------------------------------------------------------------------------------------------------------------------20考点01代数式及其应用一、考点01代数式及其应用1.(2024·四川广安·中考真题)代数式3x -的意义可以是()A .3-与x 的和B .3-与x 的差C .3-与x 的积D .3-与x 的商【答案】C【分析】本题考查了代数式的意义,用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.根据3x -中的运算关系解答即可.【详解】解:代数式3x -的意义可以是3-与x 的积.故选C .2.(2023·湖南常德·中考真题)若2340a a +-=,则2263a a +-=()A .5B .1C .1-D .0【答案】A【分析】把2340a a +-=变形后整体代入求值即可.【详解】∵2340a a +-=,∴234+=a a ∴()222632332435a a a a +-=+-=⨯-=,故选:A .【点睛】本题考查代数式求值,利用整体思想是解题的关键.3.(2023·山东·中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,34131111nn na a a a a a +++==-- ,,,若12a =,则2023a 的值是()A .12-B .13C .3-D .24.(2023·甘肃兰州·中考真题)关于x 的一元二次方程20x bx c ++=有两个相等的实数根,则()2212b c -+=()A .-2B .2C .-4D .4【答案】A【分析】由一元二次方程根的情况可得240b c -=,再代入式子即可求解.【详解】∵关于x 的一元二次方程20x bx c ++=有两个相等的实数根∴240b c ∆=-=∴()2221242022b c b c -+=--=-=-,故选:A.【点睛】本题考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.5.(2023·江苏·中考真题)若圆柱的底面半径和高均为a ,则它的体积是(用含a 的代数式表示).【答案】3πa 【详解】根据圆柱的体积=圆柱的底面积⨯圆柱的高,可得23ππV a a a == .故答案为:3πa .【点睛】本题主要考查代数式和整式的乘法运算,牢记整式乘法的运算性质是解题的关键.6.(2023·江苏·中考真题)若210a b +-=,则36a b +的值是.【答案】3【分析】根据已知得到2=1a b +,再代值求解即可.【详解】解:∵210a b +-=,∴2=1a b +,∴()36323a b a b +=+=,故答案为:3.【点睛】本题考查代数式求值,利用整体思想求解是解答的关键.7.(2024·山东济宁·中考真题)已知2210a b -+=,则241ba +的值是.8.(2023·江苏宿迁·中考真题)若实数m 满足()()22202320242025m m -+-=,则()()20232024m m --=.【答案】1012-【分析】根据完全平方公式得()()2222[(2023)(2024)][(2023)(2024)]20232024m m m m m m -=-+---+--,再代值计算即可.【详解】解: ()()22202320242025m m -+-=()()2222[(2023)(2024)][(2023)(2024)]20232024m m m m m m ∴=-+--+----12025=-2024=-()()220232021041m m ∴=---故答案为:1012-.【点睛】本题考查完全平方公式的应用,求代数式值,掌握完全平方公式222()2a b a ab b ±=±+及其变式是解题本题的关键.9.(2024·江苏苏州·中考真题)若2a b =+,则()2b a -=.【答案】4【分析】本题考查了求代数式的值,把2a b =+整体代入化简计算即可.【详解】解:∵2a b =+,∴()2b a -()22b b ⎡⎤=-+⎣⎦()22b b =--()22=-4=,故答案为:4.10.(2024·四川成都·中考真题)若m ,n 为实数,且()240m +=,则()2m n +的值为.11.(2024·广东广州·中考真题)若2250a a --=,则2241a a -+=.【答案】11【分析】本题考查了已知字母的值求代数式的值,得出条件的等价形式是解题关键.由2250a a --=,得225a a -=,根据对求值式子进行变形,再代入可得答案.【详解】解:2250a a --= ,225a a ∴-=,()2224122125111a a a a ∴-+=-+=⨯+=,故答案为:11.12.(2024·四川广安·中考真题)若2230x x --=,则2241x x -+=.【答案】7【分析】本题考查了求代数式的值.对已知等式变形得到2246x x -=,再整体代入计算求解即可.【详解】解:∵2230x x --=,∴223x x -=,∴2246x x -=,∴2241617x x -+=+=,故答案为:7.13.(2023·西藏·中考真题)按一定规律排列的单项式:5a ,28a ,311a ,414a ,⋯.则按此规律排列的第n 个单项式为.(用含有n 的代数式表示)【答案】()32nn a+【分析】根据系数和字母的次数与单项式的序号关系写出即可.【详解】解:5a 系数为3125⨯+=,次数为1;28a 系数为3228⨯+=,次数为2;311a 系数为33211⨯+=,次数为3;414a 系数为34214⨯+=,次数为4;∴第n 个单项式的系数可表示为:32n +,字母a 的次数可表示为:n ,∴第n 个单项式为:()32nn a +.【点睛】本题考查数字变化类规律探究,掌握单项式的系数和次数并发现其变化规律是解题的关键.14.(2024·四川成都·中考真题)在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为;若24n =,则k 的值为.【答案】9144【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n 为偶数或奇数时的不同取法是解答的关键.先根据前几个n 值所对应k 值,找到变化规律求解即可.【详解】解:当2n =时,只有{}1,2一种取法,则1k =;15.(2024·四川成都·中考真题)若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为.考点02整式及其运算二、考点02整式及其运算16.(2024·甘肃兰州·中考真题)计算:22(1)2a a a --=()A .aB .a-C .2aD .2a-【答案】D【分析】本题主要考查了整式的混合运算,先计算单项式乘以多项式,再合并同类项即可.【详解】解:22(1)2a a a --22222a a a =--2a=-故选:D .17.(2024·贵州·中考真题)计算23a a +的结果正确的是()A .5aB .6aC .25a D .26a 【答案】A【分析】本题主要考查合并同类项,根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变即可得.【详解】解:235a a a +=,故选:A .18.(2024·四川内江·中考真题)下列单项式中,3ab 的同类项是()A .33ab B .232a b C .22a b -D .3a b【答案】A【分析】本题主要考查的是同类项的定义,掌握同类项的定义是解题的关键.依据同类项的定义:所含字母相同,相同字母的次数相同,据此判断即可.【详解】解:A .是同类项,此选项符合题意;B .字母a 的次数不相同,不是同类项,故此选项不符合题意;C .相同字母的次数不相同,不是同类项,故此选项不符合题意;D .相同字母的次数不相同,不是同类项,故此选项不符合题意.故选:A .19.(2024·四川广元·中考真题)如果单项式23m x y -与单项式422n x y -的和仍是一个单项式,则在平面直角坐标系中点(),m n 在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】本题主要考查同类项和确定点的坐标,根据同类项的性质求出,m n 的值,再确定点(),m n 的位置即可【详解】解:∵单项式23m x y -与单项式422n x y -的和仍是一个单项式,∴单项式23m x y -与单项式422n x y -是同类项,∴24,23m n =-=,解得,2,1m n ==-,∴点(),m n 在第四象限,故选:D20.(2024·河北·中考真题)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A .“20”左边的数是16B .“20”右边的“□”表示5C .运算结果小于6000D .运算结果可以表示为41001025a +【答案】D【分析】本题考查了整式的加法运算,整式的乘法运算,理解题意,正确的逻辑推理时解决本题的关键.设一个三位数与一个两位数分别为10010x y z ++和10m n +,则20,5,2,mz nz ny nx a ====,即4=m n ,可确定1,2n y ==时,则4,5,m z x a ===,由题意可判断A 、B 选项,根据题意可得运算结果可以表示为:()1000411002541001025a a a +++=+,故可判断C 、D 选项.【详解】解:设一个三位数与一个两位数分别为10010x y z ++和10m n +如图:则由题意得:20,5,2,mz nz ny nx a ====,∴4mznz=,即4=m n ,∴当2,1n y ==时, 2.5z =不是正整数,不符合题意,故舍;当1,2n y ==时,则4,5,m z x a ===,如图:,A 、“20”左边的数是248⨯=,故本选项不符合题意;、“20”右边的“□”表示4,故本选项不符合题意;a 上面的数应为4a ,如图:∴运算结果可以表示为:()1000411002541001025a a a +++=+,∴D 选项符合题意,当2a =时,计算的结果大于6000,故C 选项不符合题意,故选:D .21.(2024·云南·中考真题)下列计算正确的是()A .33456x x x +=B .635x x x ÷=C .()327a a =D .()333ab a b =【答案】D【分析】本题考查了合并同类项、幂的乘方、积的乘方、同底数幂的除法,熟练掌握运算法则是解答的关键.利用合并同类项法则、幂的乘方运算法则、同底数幂的除法运算法则、积的乘方运算法则进行运算,并逐项判断即可.【详解】解:A 、33356x x x +=,选项计算错误,不符合题意;B 、633x x x ÷=,选项计算错误,不符合题意;C 、()326a a =,选项计算错误,不符合题意;D 、()333ab a b =,选项计算正确,符合题意;故选:D .22.(2024·河北·中考真题)下列运算正确的是()A .734a a a -=B .222326a a a ⋅=C .33(2)8a a -=-D .44a a a÷=【答案】C【分析】本题考查整式的运算,根据合并同类项,单项式乘以单项式,积的乘方,同底数幂的除法依次对各选项逐一分析判断即可.解题的关键是掌握整式运算的相关法则.【详解】解:A .7a ,4a 不是同类项,不能合并,故此选项不符合题意;B .224326a a a ⋅=,故此选项不符合题意;C .()3328a a -=-,故此选项符合题意;D .441a a ÷=,故此选项不符合题意.故选:C .23.(2024·广东·中考真题)下列计算正确的是()A .2510a a a ⋅=B .824a a a ÷=C .257a a a-+=D .()5210a a =【答案】D【分析】本题主要考查了同底数幂乘除法计算,幂的乘方计算,合并同类项,熟知相关计算法则是解题的关键.【详解】解:A 、257a a a ⋅=,原式计算错误,不符合题意;B 、826a a a ÷=,原式计算错误,不符合题意;C 、253a a a -+=,原式计算错误,不符合题意;D 、()5210a a =,原式计算正确,符合题意;故选:D .24.(2024·辽宁·中考真题)下列计算正确的是()A .2352a a a +=B .236a a a ⋅=C .()325a a =D .2(1)a a a a+=+【答案】D【分析】根据合并同类项、同底数幂的乘法、幂的乘方、单项式乘以多项式等知识点进行判定即可.【详解】A .3332a a a +=,故本选项原说法不符合题意;B .235a a a ⋅=,故本选项原说法不合题意;C .236()a a =,故本选项原说法不合题意;D .2(1)a a a a +=+,故本选项符合题意.故选:D .【点睛】此题考查了整式的运算,涉及的知识有:合并同类项、同底数幂的乘法、幂的乘方、单项式乘以多项式的运算,熟练掌握运算法则是解本题的关键.25.(2024·青海·中考真题)计算1220x x -的结果是()A .8xB .8x -C .8-D .2x 【答案】B【分析】此题考查了合并同类项.根据合并同类项法则计算即可.【详解】解:12208x x x -=-,故选:B .26.(2024·山东烟台·中考真题)下列运算结果为6a 的是()A .23a a ⋅B .122a a ÷C .33a a +D .()32a 【答案】D【分析】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方,解题的关键是熟练掌握以上运算法则;根据同底数幂的乘法同底数幂的除法,合并同类项,幂的乘方,运算法则计算即可【详解】A .23235a a a a +⋅==,故选项不符合题意;B .12212210a a a a -÷==,故选项不符合题意;C .3332a a a +=,故选项不符合题意;D .()32236a a a ⨯==,故选项符合题意;故选:D .27.(2022·山东德州·中考真题)已知2M a a =-,2N a =-(a 为任意实数),则M N -的值()A .小于0B .等于0C .大于0D .无法确定【答案】C【分析】本题主要考查了非负数的性质.熟练掌握整式的加减,完全平方式与配方法,非负数的性质,是解题的关键.根据完全平方式利用配方法把M N -的代数式变形,根据偶次方的非负性判断即可.【详解】M N -()22a a a -=--222a a =-+()211a =-+,∵()210a -≥,∴()2111a -+≥,∴M N -大于0,故选:C .28.(2024·广东广州·中考真题)若0a ≠,则下列运算正确的是()A .235a a a+=B .325a a a ⋅=C .235a a a⋅=D .321a a ÷=【答案】B【分析】本题考查了分式的乘法,同底数幂乘法与除法,掌握相关运算法则是解题关键.通分后变为同分29.(2024·河北·中考真题)若a ,b 是正整数,且满足8282222222a ba a ab b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是()A .38a b +=B .38a b=C .83a b +=D .38a b=+【答案】A【分析】本题考查了同底数幂的乘法,幂的乘方的运算的应用,熟练掌握知识点是解题的关键.由题意得:()8822a b ⨯=,利用同底数幂的乘法,幂的乘方化简即可.【详解】解:由题意得:()8822a b ⨯=,∴38222a b ⨯=,∴38a b +=,故选:A .30.(2024·湖南长沙·中考真题)下列计算正确的是()A .642x x x ÷=B =C .325()x x =D .222()x y x y +=+31.(2024·四川德阳·中考真题)若一个多项式加上234y xy +-,结果是2325xy y +-,则这个多项式为.【答案】21-y 【分析】本题考查整式的加减运算,根据题意“一个多项式加上234y xy +-,结果是2325xy y +-”,进行列出式子:()()2232534xy y y xy +--+-,再去括号合并同类项即可.【详解】解:依题意这个多项式为()()2232534xy yy xy +--+-2232534xy y y xy =+---+21y =-.故答案为:21-y 32.(2024·河南·中考真题)请写出2m 的一个同类项:.【答案】m (答案不唯一)【分析】本题考查的是同类项的含义,根据同类项的定义直接可得答案.【详解】解:2m 的一个同类项为m ,故答案为:m33.(2024·重庆·中考真题)一个各数位均不为0的四位自然数M abcd =,若满足9a d b c +=+=,则称这个四位数为“友谊数”.例如:四位数1278,∵18279+=+=,∴1278是“友谊数”.若abcd 是一个“友谊数”,且1b a c b -=-=,则这个数为;若M abcd =是一个“友谊数”,设()9M F M =,且()13F M ab cd++是整数,则满足条件的M 的最大值是.34.(2023·江苏泰州·中考真题)若230a b -+=,则2(2)4a b b +-的值为.【答案】6-【分析】由230a b -+=,可得23a b -=-,根据()2(2)422a b b a b +-=-,计算求解即可.【详解】解:由230a b -+=,可得23a b -=-,∴()2(2)442442226a b b a b b a b a b +-=+-=-=-=-,故答案为:6-.【点睛】本题考查了代数式求值.解题的关键在于正确的运算.35.(2024·天津·中考真题)计算86x x ÷的结果为.【答案】2x 【分析】本题考查同底数幂的除法,掌握同底数幂的除法,底数不变,指数相减是解题的关键.【详解】解:862x x x ÷=,故答案为:2x .36.(2024·上海·中考真题)计算:()324x =.【答案】664x 【分析】本题考查了积的乘方以及幂的乘方,掌握相关运算法则是解题关键.先将因式分别乘方,再结合幂的乘方计算即可.【详解】解:()326464x x =,故答案为:664x .37.(2024·江苏苏州·中考真题)计算:32x x ⋅=.【答案】5x 【分析】利用同底数幂的乘法解题即可.【详解】解:32325x x x x +⋅==,故答案为:5x .【点睛】本题考查了同底数幂的乘法,掌握相应的运算法则是解题的关键.38.(2023·江苏·中考真题)先化简,再求值:2(1)2(1)x x +-+,其中x =.【答案】21x -;1【分析】利用完全平方公式和整式加减的运算法则进行化简,根据平方根的性质即可求得答案.【详解】原式22122x x x =++--39.(2023·湖南·中考真题)先化简,再求值:()()233(3)a b a b a b -++-,其中3,3a b =-=.40.(2024·北京·中考真题)已知10a b --=,求代数式222a ab b -+的值.41.(2024·陕西·中考真题)先化简,再求值:()()22x y x x y ++-,其中1x =,=2y -.【答案】222x y +,6【分析】本题考查了整式的混合运算以及求值.根据完全平方公式和单项式乘以多项式法则进行运算,再合并同类项,最后代入即可求解.【详解】解:()()22x y x x y ++-22222x xy y x xy=+++-222x y =+;当1x =,=2y -时,原式()22212246=⨯+-=+=.42.(2024·湖南长沙·中考真题)先化简,再求值:()()()2233m m m m m --++-,其中52m =.43.(2023·湖南·中考真题)先化简,再求值:()()()222233a a a a a -+-++,其中3a =-.345.(2022·吉林·中考真题)下面是一道例题及其解答过程的一部分,其中A 是关于m 的多项式.请写出多项式A ,并将该例题的解答过程补充完整.例先去括号,再合并同类项:m (A )6(1)m -+.解:m (A )6(1)m -+2666m m m =+--=.【答案】6A m =+,解答过程补充完整为26m -【分析】利用26m m +除以m 可得A ,再根据合并同类项法则补充解答过程即可.【详解】解:观察第一步可知,()26A m m m =+÷,解得6A m =+,将该例题的解答过程补充完整如下:(6)6(1)m m m +-+2666m m m =+--26m =-,故答案为:26m -.【点睛】本题考查了多项式的乘除法、合并同类项,熟练掌握整式的运算法则是解题关键.46.(2024·山东济宁·中考真题)先化简,再求值:(4)(2)(2)x y x x y x y -++-,其中12x =,2y =.47.(2024·甘肃·中考真题)先化简,再求值:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦,其中2a =,1b =-.【答案】2a b +,3【分析】本题主要考查了整式的化简求值,先根据平方差公式和完全平方公式去小括号,然后合并同类项,再根据多项式除以单项式的计算法则化简,最后代值计算即可.【详解】解:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦()()22224442a ab b a b b⎡⎤=++--÷⎣⎦()22224442a ab b a b b =++-+÷()2422ab b b=+÷2a b =+,当2a =,1b =-时,原式()2213=⨯+-=.考点03因式分解三、考点03因式分解48.(2024·云南·中考真题)分解因式:39a a -=()A .()()33a a a -+B .()29a a +C .()()33a a -+D .()29a a -【答案】A【分析】本题考查了提取公因式和公式法进行因式分解,熟练掌握知识点是解题的关键.将39a a -先提取公因式,再运用平方差公式分解即可.【详解】解:()()()329933a a a a a a a -=-=+-,故选:A .49.(2024·广西·中考真题)如果3a b +=,1ab =,那么32232a b a b ab ++的值为()A .0B .1C .4D .9【答案】D【分析】本题考查因式分解,代数式求值,先将多项式进行因式分解,利用整体代入法,求值即可.【详解】解:∵3a b +=,1ab =,∴()32232222a b a b ab ab a ab b ++=++()2ab a b =+213=⨯9=;故选D .50.(2023·山东·中考真题)下列各式从左到右的变形,因式分解正确的是()A .22(3)69+=++a a a B .()24444a a a a -+=-+C .()()22555ax ay a x y x y -=+-D .()()22824a a a a --=-+【答案】C【分析】根据因式分解的概念可进行排除选项.【详解】解:A 、22(3)69+=++a a a ,属于整式的乘法,故不符合题意;B 、()24444a a a a -+=-+,不符合几个整式乘积的形式,不是因式分解;故不符合题意;C 、()()22555ax ay a x y x y -=+-,属于因式分解,故符合题意;D 、因为()()22242828a a a a a a -+=+-≠--,所以因式分解错误,故不符合题意;故选C .【点睛】本题主要考查因式分解,熟练掌握因式分解的概念是解题的关键.51.(2023·河北·中考真题)若k 为任意整数,则22(23)4k k +-的值总能()A .被2整除B .被3整除C .被5整除D .被7整除【答案】B 【分析】用平方差公式进行因式分解,得到乘积的形式,然后直接可以找到能被整除的数或式.【详解】解:22(23)4k k +-(232)(232)k k k k =+++-3(43)k =+,3(43)k +能被3整除,∴22(23)4k k +-的值总能被3整除,故选:B .【点睛】本题考查了平方差公式的应用,平方差公式为22()()a b a b a b -=-+通过因式分解,可以把多项式分解成若干个整式乘积的形式.52.(2024·山东·中考真题)因式分解:22x y xy +=.【答案】()2xy x +【分析】本题考查了因式分解,直接提取公因式xy 即可.【详解】解:原式()2xy x =+,故答案为:()2xy x +.53.(2024·四川遂宁·中考真题)分解因式:4ab a +=.【答案】()4a b +【分析】本题主要考查了提公因式分解因式,提公因式a 即可解答.【详解】解:()44ab a a b +=+故答案为:()4a b +54.(2024·山东威海·中考真题)因式分解:()()241x x +++=.【答案】()23x +【分析】本题主要考查了用完全平方公式分解因式,先按照多项式乘以多项式展开,然后利用完全平方公式分解因式即可.【详解】解:()()241x x +++24281x x x =++++269x x =++()23x =+故答案为:()23x +.55.(2024·浙江·中考真题)因式分解:27a a -=【答案】()7a a -【分析】本题考查了提公因式法因式分解,先提公因式a 是解题的关键.【详解】解:()277a a a a -=-.故答案为:()7a a -.56.(2024·北京·中考真题)分解因式:325x x -=.【答案】()()55x x x +-【分析】先提取公因式,再套用公式分解即可.本题考查了因式分解,熟练掌握先提取公因式,再套用公式分解是解题的关键.【详解】()()()32225555x x x x x x x -=-=+-.故答案为:()()55x x x +-.57.(2024·甘肃临夏·中考真题)因式分解:214x -=.58.(2023·广东深圳·中考真题)已知实数a ,b ,满足6a b +=,7ab =,则22a b ab +的值为.【答案】42【分析】首先提取公因式,将已知整体代入求出即可.【详解】22a b ab +()ab a b =+76=⨯42=.故答案为:42.【点睛】此题考查了求代数式的值,提公因式法因式分解,整体思想的应用,解题的关键是掌握以上知识点.59.(2024·福建·中考真题)已知实数,,,,a b c m n 满足3,b c m n mn a a+==.(1)求证:212b ac -为非负数;(2)若,,a b c 均为奇数,,m n 是否可以都为整数?说明你的理由.60.(2024·安徽·中考真题)数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-LL 一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +--;(2)()224k m k m -+-【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解;(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【详解】(1)(ⅰ)由规律可得,222475=-,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+--,故答案为:()()2211n n +--;(2)解:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()()22222221214x y k m k m k m -=+-+=-+-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m -+-.。
整式与因式分解一.选择题C.(a3)4=a7D.a3+a5=a8考点:平方差公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 分析:A:根据同底数幂的乘法法则判断即可. 2 2 B:平方差公式: (a+b) (a﹣b)=a ﹣b ,据此判断即可. C:根据幂的乘方的计算方法判断即可. D:根据合并同类项的方法判断即可.2 3 5 解答:解:∵a a =a , ∴选项 A 不正确;2 2 ∵(﹣a+b) (a+b)=b ﹣a , ∴选项 B 正确;∵(a ) =a , ∴选项 C 不正确;3 4 12.∵a +a ≠a ∴选项 D 不正确. 故选:B. 点评: (1)此题主要考查了平方差公式,要熟练掌握,应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方;③公式中的 a 和 b 可以是具体数,也可以是单项式或多项式;④对形如两数和与这两数差相乘的算式,都可以运用这个公式计算,且会比用多项式乘以多项式法则简便. (2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加. (3)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a ) =a (m,n 是正整数) ;②(ab) =a b (n 是正整数) . (4)此题还考查了合并同类项的方法,要熟练掌握. 4. (2022 聊城,第 5 题 3 分)下列运算正确的是( ) 3 2 6 2 3 5 A.a +a =a B. (﹣a ) =a C. ab2 3a2b=3a2b2 D.﹣2a6÷a2=﹣2a3 考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;整式的除法. 分析:根据合并同类项法则、幂的乘方、单项式乘除法的运算方法,利用排除法求解. 2 3 解答:解:A、a 与 a 不是同类项,不能合并,故本选项错误; 3 2 6 B、 (﹣a ) =a ,正确;2 23 3 C、应为 ab 3a b=3a b ,故本选项错误; 6 24 D、应为﹣2a ÷a =﹣2a ,故本选项错误. 故选:B. 点评:本题主要考查了合并同类项的法则,幂的乘方的性质,单项式的乘除法法则,熟练掌握运算法则是解题的关键..358mnmnnn n5.(2022 恩施州第5题3分)下列计算正确的是( ) 3 2 6 4 3 7 A.4x 2x =8x B.a +a =aC.(﹣x2)5=﹣x10第 2 页共 31 页D.(a﹣b)2=a2﹣b26.(2022 恩施州第11题3分)随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原8.(2022·湖北省潜江市、天门市、仙桃市、江汉油田第4 题3分)计算(﹣2ab)的结果2310.(2022 海南,第2题3分)下列运算中,正确的是()246632426246A. a+a=a B. a÷a=a C.(﹣a)=a D. a a=a考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.246解答:解:A、a a=a,故错误;633B、a÷a=a,故错误;428C、(﹣a)=a,故错误;D、正确;故选:D.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题. 11.(2022 海南,第3题3分)已知x=1,y=2,则代数式x﹣y的值为() A. 1 B.﹣1 C. 2 D.﹣3考点:代数式求值.分析:根据代数式的求值方法,把x=1,y=2代入x﹣y,求出代数式x﹣y的值为多少即可.解答:解:当x=1,y=2时, x﹣y=1﹣2=﹣1,即代数式x﹣y的值为﹣1.故选:B.点评:此题主要考查了代数式的求法,采用代入法即可,要熟练掌握,解答此题的关键是要明确:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简. 12.( 1月份产值为x万元,210%,3月份比2 ).(1﹣10%)(1+15%)x万元 B.(1﹣10%+15%)x C.)(x+15% D(1+10%﹣15%)x考点:分析:月份、1月份与2解答:解:(1﹣10%)()x 故选A点评: 132022 鄂州, )4282462232A. a a=a B.(a)=a C.(ab)=ab D. 2a÷a=2a考点:整式的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法、幂的乘方、积的乘方、整式的除法,即可解答.426解答:解:A、a a=a,故错误;248B、(a)=a,故错误;222C、(ab)=ab,故错误;D、正确;故选:D.点评:本题考查了同底数幂的乘法、幂的乘方、积的乘方、整式的除法,解决本题的关键是熟记相关法则. 14.(2022 湖北, 第5题3分)下列运算中正确的是()A. a﹣a=a B. a a=a C. a÷a=a D.(﹣a)=﹣a考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.323412623236分析:根据合并同类项,可判断A;根据同底数幂的乘法,可判断B;根据同底数幂的除法,可判断C;根据积的乘方,可判断D.解答:解:A、合并同类项系数相加字母部分不变,故A错误; B、同底数幂的乘法底数不变指数相加,故B错误; C、同底数幂的除法底数不变指数相减,故C错误; D、积的乘方等于乘方的积,故D正确;故选:D.点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键. 15.(2022 衡阳, 第2题3分)下列计算正确的是()33333527A. a+a=2a B. b b=2b C. a÷a=a D.(a)=a考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解.解答:解:A、a+a=2a,故本选项正确;333+36B、b b=b=b,故本选项错误;3﹣12C、=a525×2D、(a=a=a 故选A.点评:(2题3236A. B. 5a﹣C. a aD22=a+b 考点:同分析:根解答:解:A、2a与.5a﹣2a=3a 235C.a a=a,错误;222D.(a+b)=a+2ab+b,错误;故选B.点评:此题考查同类项、同底数幂的乘法和完全平方公式,关键是根据法则进行计算.%教育出版网17. (2022 江苏宿迁,第3题3分)计算(﹣a)的结果是()5566A.﹣a B. a C.﹣a D.a 考点:幂的乘方与积的乘方.分析:根据幂的乘方计算即可.326解答:解:(﹣a)=a,故选D点评:此题考查幂的乘方问题,关键是根据法则进行计算.18. (2022 江苏盐城,第3题3分)下列运算正确的是()32A. a b=(ab) B. a a=a C. a÷a=a D.(a)=a 考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析: A、原式利用积的乘方运算法则变形得到结果,即可做出判断; B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断; C、原式利用同底数幂的除法法则计算得到结果,即可做出判断; D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.333236632235解答:解:A、原式=(ab),正确;5B、原式=a,错误;3C、原式=a,错误;6D、原式=a,错误,故选A.点评:此题考查了同底数幂的乘法,除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.319.2022 济南,第4题3 ) A. a2 a=a3 a3)2=6C.(2a2)2=4a4 D.a2÷a2a考点:根据同底数幂相乘,幂的乘方,积的乘方,解答:解:A、a2 a=a2+1=3,故本选项错误; B、(a3)2=a3×2=a6,故本选项错误;C、2)2=22 (a2)2D、应为a2÷a2=a22=a0=1,故本选项正确.﹣故选D.点评:本题考查了同底数幂的乘法,积的乘方的性质,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.20. (2022 烟台,第4题3分)下列式子不一定成立的是() A.1 b 0) B. a3 a 5 2(a 0) C. a2 4b2 (a 2b)(a 2b) D.a( 2a3)2 4a621.(2022 枣庄,第7题3分)如图,边长为a,b的矩形的周长为14,面积为10,则ab+ab的值为()22分析:各项利用题中的新定义计算得到结果,即可做出判断.解答:解:根据题意得:2 (﹣2)=2×(1+2)=6,选项①正确; a b=a(1﹣b)=a﹣ab,b a=b(1﹣a)=b﹣ab,不一定相等,选项②错误;(a a)+(b b)=a(1﹣a)+b(1﹣b)=a+b﹣a﹣b≠2ab,选项③错误;若a b=a(1﹣b)=0,则a=0或b=1,选项④正确,故选A 点评:此题考查了整式的混合运算,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.23.(2022 湖南湘西州,第9题,4分)下列运算正确的是()222236A.a+2a=2a B. += C.(x﹣3)=x﹣9 D.(x)=x考点:幂的乘方与积的乘方;实数的运算;合并同类项;完全平方公式.22分析:分别根据合并同类项的法则、完全平方公式及幂的乘方与积的乘方法则对各选项进行逐一计算即可.2解答:解:A、a+2a=2a≠2a,故本选项错误;B、与不是同类项,不能合并,故本选项错误;22C、(x﹣3)=x﹣6x+9,故本选项错误;236D、(x)=x,故本选项正确.故选D.点评:本题考查的是幂的乘方与积的乘方法则,熟知幂的乘方法则是底数不变,指数相乘是解答此题的关键.24.(2022 江苏镇江,第15题,3分)计算﹣3(x﹣2y)+4(x﹣2y)的结果是() A.x﹣2y B. x+2y C.﹣x﹣2y D.﹣x+2y 考点:整式的加减.专题:计算题.分析:原式去括号合并即可得到结果.解答:解:原式=﹣3x+6y+4x﹣8y=x﹣2y,点评:此题考查幂的乘方、同底数幂的乘法、同类项和同底数幂的除法,关键是根据法则进行计算. 26.(3分)(2022 毕节市)(第2题)下列计算正确的是()6236212621222A. a÷a=a B. a a=a C.(a)=a D.(a﹣3)=a﹣9考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.专题:计算题.分析: A、原式利用同底数幂的除法法则计算得到结果,即可做出判断; B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断; C、原式利用幂的乘方运算法则计算得到结果,即可做出判断; D、原式利用完全平方公式展开得到结果,即可做出判断.4解答:解:A、原式=a,错误;8B、原式=a,错误;12C、原式=a,正确;2D、原式=a﹣6a+9,错误,故选C.熟练掌握运算法则是解本题的关键. 27.(2022 怀化,第2题4分)下列计算正确的是()2353362223A. x+x=x B.(x)=x C. x x=x D. x(2x)=4x考点:单项式乘单项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、原式不能合并,错误;9B、原式=x,错误;3C、原式=x,错误;3D、原式=4x,正确,故选D点评:此题考查了单项式乘以单项式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键. 28.( 3 )6322339222A. a÷a=a B5a﹣3a.(a)=a D.(a﹣b)=a﹣b考点:专题:计算题.分析:解答:解:A、原式=a2B、原式=2a,错误;9C=a,正确;22D=a+b﹣2ab 故选C.全平方公式,熟练掌握运算法则是解本题的关键.329.(2022 娄底,第7题3分)已知a+2a=1,则代数式2a+4a﹣1的值为()A. 0 B. 1 C.﹣1 D.﹣2 考点:代数式求值.专题:计算题.分析:原式前两项提取变形后,将已知等式代入计算即可求出值.22解答:解:∵a+2a=1,2∴原式=2(a+2a)﹣1=2﹣1=1,故选B2点评:此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键. 30.(2022 长沙,第2题3分)下列运算中,正确的是()34236222A. x+x=x B.(x)=x C. 3x﹣2x=1 D.(a﹣b)=a﹣b 考点:幂的乘方与积的乘方;合并同类项;完全平方公式.分析:根据同类项、幂的乘方和完全平方公式计算即可.解答:解:A、x与x不能合并,错误;236B、(x)=x,正确;C、3x﹣2x=x,错误;222D、(a﹣b)=a﹣2ab+b,错误;故选B点评:此题考查同类项、幂的乘方和完全平方公式,关键是根据法则进行计算. 31.(2022 本溪,第3题3分)下列运算正确的是()2235A. 5m+2m=7m B.﹣2m m=2m236322(﹣ab=﹣ab D.)(2a﹣b)=b﹣4a考点:分析:AB、依据单项式乘单项式法则计算即可;C 解答:解:A、5m+2m=(5+2)m=7m,故A错误;35B=2m,故B2363a﹣ab,故C正确;22b+2a)﹣b)=(2a+b)(2a﹣b,故D C.点评:乘方法则以及平方差公式是解题的关键. 324分)(2022 (第4题)下列运算正确()55753A. a a=a B. a÷a=a3332C.(2a)=6a D. 10ab÷(﹣5ab)=﹣2b考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;整式的除法.分析: A:根据同底数幂的乘法法则判断即可. B:根据同底数幂的除法法则判断即可. C:根据积的乘方的运算方法判断即可. D:根据整式的除法的运算方法判断即可.3解答:解:∵a a=a,∴选项A不正确;∵a÷a=a,∴选项B不正确;75256∵(2a)=8a,∴选项C不正确;∵10ab÷(﹣5ab)=﹣2b,∴选项D正确.故选:D.点评:(1)此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.34.(3分)(2022 毕节市)(第10题)下列因式分解正确的是()3332A. ab﹣6ab+9ab=ab(a﹣6a+9) B. x﹣x+=(x﹣) C. x﹣2x+4=(x﹣2)D. 4x﹣y=(4x+y)(4x﹣y)考点:因式分解-运用公式法;因式分解-提公因式法.专题:计算题.分析:原式各项分解得到结果,即可做出判断.2222解答:解:A、原式=ab(a﹣6a+9)=ab(a﹣3),错误;42322222222B、原式=(x﹣),正确;C、原式不能分解,错误;D、原式=(2x+y)(2x﹣y),错误,故选B点评:此题考查了因式分解﹣运用公式法,以及提公因式法,熟练掌握因式分解的方法是解本题的关键.35.(2022 青海西宁第2题3分)下列计算正确的是()33432257222A.a a=a B. a+a=a C.(a)=a D.(﹣ab)=ab考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析: A:根据同底数幂的乘法法则判断即可. B:根据合并同类项的方法判断即可. C:根据幂的乘方的运算方法判断即可. D:根据积的乘方的运算方法判断即可.34解:∵a=a,∴选项432∵a+a≠a,B2a)=a,22abb, D D.点评:(1mnmnnnn确:①(a)=a(m,n是正整数);②()=ab(n是正整数)(2①底数必须相同;②不变,指数相加.(3)此题还考查了合并同类项的方法,要熟练掌握.中国教育出&版~%网251036.(2022 四川攀枝花第5题3分)下列计算正确的是()32236A.+= B. a÷a=a C. a a=aD.(ab)=ab2222考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;二次根式的加减法.分析:根据同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;积的乘方,先把积的每一个因式分别乘方,再把所得的幂相乘,对各选项分析判断即可得解.解答:解:A、+不能计算,故本选项错误;B、a÷a=a=a,故本选项正确;232+35C、a a=a=a,故本选项错误;2242D、(ab)=ab,故本选项错误.故选B.点评:本题考查了二次根式的计算,同底数幂的乘法,积的乘方的性质,同底数幂的除法,323﹣2熟练掌握运算性质和法则是解题的关键.37.(2022 四川遂宁第2题4分)下列运算正确的是()A.a a=a B. 2(a﹣b)=2a﹣b C.(a)=a D.a﹣2a=﹣a 考点:幂的乘方与积的乘方;合并同类项;去括号与添括号;同底数幂的乘法.分析:根据同底数幂的乘法、幂的乘方和同类项进行计算.解答:解:A、a a=a,错误; B、2(a﹣b)=2a﹣2b,错误;33325222来&源:%中国教育出版网#]C、(a)=a,错误;222D、a﹣2a=﹣a,正确;故选D点评:此题考查同底数幂的乘法、幂的乘方和同类项,关键是根据法则进行计算.38.(2022 通辽,第5题3分)下列说法中,正确的是() A.﹣x的系数是 B.πa的系数是32622C. 3ab.考点:分析:根据单项式的概念求解.解答: x的系数是﹣πa的系数是π2222C、3ab的系数是3D、xy的系数,故本选项正确.点评:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.39.(2022东营,第2题3分)下列计算正确的是()632222A.﹣= B. a÷a=a C.(a+b)=a+b D. 2a+3b=5ab2考点:二次根式的加减法;合并同类项;同底数幂的除法;完全平方公式.分析:分别利用二次根式的性质化简以及利用同底数幂的除法运算法则和完全平方公式化简求出即可.解答:解:A、﹣=,故此选项正确;633B、a÷a=a,故此选项错误;222C、(a+b)=a+b+2ab,故此选项错误;D、2a+3b无法计算,故此选项错误;故选:A.点评:此题主要考查了二次根式的性质化简以及利用同底数幂的除法运算法则和完全平方公式等知识,正确化简各式是解题关键.41. 云南下列运算正确的是()25100222A.a a=a B.(π﹣3.14)=0 C.﹣2= D.(a+b)=a+b 考点:二次根式的加减法;同底数幂的乘法;完全平方公式;零指数幂.分析:根据同底数幂的乘法、零指数幂、二次根式的加减和完全平方公式计算判断即可.257解答:解:A、a a=a,错误;B、(π﹣3.14)=1,错误;C、,正确;222D、(a+b)=a+2ab+b,错误;故选C.点评:此题考查同底数幂的乘法、零指数幂、二次根式的加减和完全平方公式,关键是根据法则进行计算.42.(2022 昆明第5题,3分)下列运算正确的是() A.=﹣3B.a a=a46C.(2a)=2a236D.(a+2)=a+422考点:幂的乘方与积的乘方;算术平方根;同底数幂的乘法;完全平方公式.分析:根据同底数幂的乘法的性质,积的乘方的性质,二次根式的性质,完全平分公式,对各选项分析判断后利用排除法求解.解答:解:A、=3,故错误:B、正确;236C、(2a)=8a,故正确;22D、(a+2)=a+4a+4,故错误;故选:B.点评:本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.43.(2022 曲靖第3题,3分)下列运算正确的是()22734248A. 4a﹣2a=2 B. a÷a=a C. 5a a=5a D.23245 (ab)=ab考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.分析:根据同类项、同底数幂的除法、单项式的乘法和积的乘方计算即可.解答:解:A、4a﹣2a=2a,错误;734B、a÷a=a,正确;246C、5a a=5a,错误;23246D、(ab)=ab,错误;故选B.点评:此题考查同类项、同底数幂的除法、单项式的乘法和积的乘方,关键是根据法则进行计算判断.44. (2022年浙江衢州第3题3分)下列运算正确的是【】a2 325222x2 x5 C. 2a6 aa2 D.3x3 x25【答案】D.【考点】合并同类项;幂的乘方;单项式的除法;同底幂乘法.【分析】根据合并同类项,幂的乘方,单项式的除法,同底幂乘法运算法则逐一计算作出判断:A. a3与a2是不同类项,不能合并,故本选项运算错误;B.根据“幂的乘方,底数不变,指数相乘”的幂的乘方法则得:x2 x2 3 x6 x5,故本选项运算错误;3C.根据“把单项式的系数、同底数幂分别相除后,作为商的因式”的单项式除法法则得2a a 2 1 a636 22a4 2a2,故本选项运算错误;323 2D. 根据“同底数幂相乘,底数不变,指数相加”的乘法法则得:x x x故本选项运算正确. 故选D.x5,48、(2022年浙江省义乌市中考,4,4分)下面是一位同学做的四道题:①2a 3b 5ab;②(3a) 6a;③a6 a2 a3;④a2 a3 a5,其中做对的一道题的序号是A. ① B. ② C.③ D. ④考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方..分析:①根据合并同类项,可判断①,②根据积的乘方,可得答案;③根据同底数幂的除法,可得答案;④根据同底数幂的乘法,可得答案.解答:解:①不是同类项不能合并,故①错误;②积的乘方等于乘方的积,故②错误;③同底数幂的除法底数不变指数相减,故③错误;④同底数幂的乘法底数不变指数相加,故④正确;故选:D.点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.)D.) D、4a32651. (2022江苏连云港第2题3分)下列运算正确的是A.2a+3b=5ab B.5a-2a=3a C.a2·a3=a6 D.(a+b)2=a2+b2 【思路分析】整式的加减必须是同类项才可以进一步运算,系数相加减,字母及其字母的指数不变。
2022中考数学试卷分类解析—第3章整式与因式分解第3章整式与因式分解一、选择题1. (2020安徽,3,4分)运算32)2(x -的结果是( )A.52x -B. 68x -C.62x -D.58x -解析:依照积的乘方和幂的运算法则可得.解答:解:6323328)()2()2(x x x -=-=- 故选B .点评:幂的几种运算不要混淆,当底数不变时,指数运算要相应的降一级,还要弄清符号,这些差不多上易错的地点,要熟练把握,关键是明白得乘方运算的意义.2. (2020安徽,4,4分)下面的多项式中,能因式分解的是()A.n m +2B. 12+-m mC. n m -2D.122+-m m 解析:依照分解因式的方法,第一是提公因式,然后考虑用公式,假如项数较多,要分组分解,本题给出四个选项,问哪个能够分解,对比选项中的多项式,试用所学的方法分解.就能判定出只有D 项能够.解答:解:22)1(12-=+-m m m 故选D .点评:在进行因式分解时,第一是提公因式,然后考虑用公式,(两项考虑用平方差公式,三项用完全平方公式,因此符合公式才能够.)假如项数较多,要分组分解,最后一定要分解到每个因式不能再分为止.3. (2020安徽,5,4分)某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A.(a -10%)(a +15%)万元B. a (1-10%)(1+15%)万元C.(a -10%+15%)万元D. a (1-10%+15%)万元解析:依照4月份比3月份减少10﹪,可得4月份产值是(1-10﹪)a, 5月份比4月份增加15﹪,可得5月份产值是(1-10﹪)(1+15﹪)a,解答:A .点评:此类题目关键是弄清晰谁是“基准”,把“基准”看作“单位1”,在此基础上增加依旧减少,就能够用那个基准量表示出来了.4.(2020福州)下列运算正确的是A .a +a =2aB .b 3·b 3=2b 3C .a 3÷a =a 3D .(a 5)2=a 7 考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 专题:运算题.分析:分别依照合并同类项、同底数幂的除法与乘法、幂的乘方与积的乘方法则对各选项进行逐一运算即可.解答:解:A 、a +a =2a ,故本选项正确;B、b3•b3=b6,故本选项错误;C、a3÷a=a2,故本选项错误;D、(a5)2=a10,故本选项错误.故选A.点评:本题考查的是合并同类项、同底数幂的除法与乘法、幂的乘方与积的乘方法则,熟知以上知识是解答此题的关键.5.(2020•广州)下面的运算正确的是()A.6a﹣5a=1 B.a+2a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b考点:去括号与添括号;合并同类项。
专题02 整式与因式分解一.选择题1.(2022·福建)化简()223a 的结果是( )A .29aB .26aC .49aD .43a【答案】C【分析】根据幂的乘方和积的乘方进行计算即可. 【详解】()()222224339a a a ==,故选:C .【点睛】本题考查幂的乘方和积的乘方,熟记幂的运算法则是解题的关键. 2.(2022·湖南永州)下列因式分解正确的是( ) A .()1ax ay a x y +=++ B .()333a b a b +=+C .()22444a a a ++=+ D .()2a b a a b +=+【答案】B【分析】根据因式分解的方法,提公因式法及公式法依次进行计算判断即可. 【详解】解:A 、ax +ay =a (x +y ),故选项计算错误; B 、3a +3b =3(a +b ),选项计算正确; C 、()22442a a a ++=+,选项计算错误;D 、2a b +不能进行因式分解,选项计算错误;故选:B .【点睛】题目主要考查因式分解的判断及应用提公因式法与公式法进行因式分解,熟练掌握因式分解的方法是解题关键.3.(2022·四川内江)下列运算正确的是( )A .a 2+a 3=a 5B .(a 3)2=a 6C .(a ﹣b )2=a 2﹣b 2D .x 6÷x 3=x 2 【答案】B【分析】根据合并同类项法则,幂的乘方和同底数幂的除法法则,完全平方公式,进行判断即可. 【详解】A.a 2和a 3不是同类项,不能合并,故A 不符合题意; B.(a 3)2=a 6,故B 符合题意;C.(a ﹣b )2=a 2﹣2ab +b 2,故C 不符合题意;D.63633x x x x ÷==﹣,故D 不符合题意.故选:B .【点睛】本题主要考查了整式的运算,熟练掌握合并同类项法则,幂的乘方和同底数幂的除法法则,完全平方公式,是解题的关键. 4.(2022·山东临沂)计算()1a a a +-的结果是( ) A .1 B .2aC .22a a +D .21a a -+【答案】B【分析】先计算单项式乘以多项式,再合并同类项即可. 【详解】解:()1a a a +-22a a a a .故选B【点睛】本题考查的是整式的混合运算,单项式乘以多项式,掌握“单项式乘以多项式的运算”是解本题的关键.5.(2022·内蒙古赤峰)已知()()2221x x x +--=,则2243x x -+的值为( ) A .13 B .8C .-3D .5【答案】A【分析】先化简已知的式子,再整体代入求值即可. 【详解】∵()()2221x x x +--= ∴225x x -=∴222432(2)313x x x x -+=-+=故选:A .【点睛】本题考查平方差公式、代数式求值,利用整体思想是解题的关键. 6.(2022·江苏泰州)下列计算正确的是( )A .325ab ab ab +=B .22523y y -=C .277a a a +=D .2222m n mn mn -=- 【答案】A【分析】运用合并同类项的法则∶1.合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母连同它的指数不变.字母不变,系数相加减.2.同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.即可得出答案.【详解】解:A 、325ab ab ab +=,故选项正确,符合题意; B 、222523y y y -=,故选项错误,不符合题意; C 、78a a a +=,故选项错误,不符合题意;D 、222m n mn 和不是同类项,不能合并,故选项错误,不符合题意;故选:A .【点睛】本题考查合并同类项,解题的关键是知道如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,还要掌握合并同类项的运算法则. 7.(2022·湖北鄂州)下列计算正确的是( ) A .b +b 2=b 3 B .b 6÷b 3=b 2 C .(2b )3=6b 3 D .3b ﹣2b =b【答案】D【分析】根据积的乘方“把积的每一个因式分别乘方,再把所得的幂相乘”,合并同类项“把同类项的系数相减,所得的结果作为系数,字母和字母的指数不变”,同底数幂的除法“底数不变,指数相减”进行计算即可得.【详解】解:A 、22b b b b +=+,选项说法错误,不符合题意; B 、63633b b b b -÷==,选项说法错误,不符合题意; C 、33(2)8b b =,选项说法错误,不符合题意; D 、32b b b -=,选项说法正确,符合题意;故选D .【点睛】本题考查了积的乘方,合并同类项,同底数幂的除法,解题的关键是掌握这些知识点. 8.(2022·辽宁锦州)下列运算正确的是( ) A .236a a a ⋅=B .22(2)4x x -=C .22m mnn-= D .2ab ab b -=【答案】B【分析】由同底数幂乘法、积的乘方、负整数指数幂的乘法、合并同类项,分别进行判断,即可得到答案. 【详解】解:235a a a ⋅=,故A 错误; 22(2)4x x -=,故B 正确; 22mmn n -=,故C 错误; 2ab ab -不能合并,不D 错误;故选:B .【点睛】本题考查了同底数幂乘法、积的乘方、负整数指数幂的乘法、合并同类项,解题的关键是掌握运算法则,正确的进行判断.9.(2022·广西贵港)下例计算正确的是( ) A .22a a -= B .2222a b a b +=C .33(2)8a a -=D .()236a a -=【答案】D【分析】分别根据合并同类项、单项式除以单项式、同底数幂的乘法、幂的乘方法则进行计算即可求解.【详解】解:A. 2a −a =a ,故原选项计算错误,不符合题意;B. 2222a b a b +≠,不是同类项不能合并,故原选项计算错误,不符合题意;C. 33(2)-8a a -=,故原选项计算错误,不符合题意;D. (-a 3)2=a 6,故原选项计算正确,符合题意.故选:D .【点睛】本题考查了合并同类项、单项式除以单项式、同底数幂的乘法、幂的乘方等运算,熟知运算法则是解题关键.10.(2022·湖北恩施)下列运算正确的是( ) A .236a a a ⋅= B .321a a ÷= C .32a a a -=D .()236a a =【答案】D【分析】根据同底数幂的乘除法、合并同类项法则、幂的乘方法则逐项判断即可得. 【详解】解:A 、235a a a ⋅=,则此项错误,不符题意; B 、32a a a ÷=,则此项错误,不符题意;C 、3a 与2a 不是同类项,不可合并,则此项错误,不符题意;D 、()236a a =,则此项正确,符合题意;故选:D .【点睛】本题考查了同底数幂的乘除法、合并同类项、幂的乘方,熟练掌握各运算法则是解题关键. 11.(2022·黑龙江哈尔滨)下列运算一定正确的是( ) A .()22346a b a b =B .22434b b b +=C .()246a a =D .339a a a ⋅=【答案】A【分析】根据积的乘方运算、幂的乘方运算、合并同类项运算和同底数幂的乘法运算逐项验证即可得到结论.【详解】解:A 、根据积的乘方运算、幂的乘方运算法则可知()22346a b a b =,该选项符合题意;B 、根据合并同类项运算可知2224344b b b b +=≠,该选项不符合题意;C 、根据幂的乘方运算可知()244286⨯==≠a a a a ,该选项不符合题意;D 、根据同底数幂的乘法运算可知333369a a a a a +⋅==≠,该选项不符合题意;故选:A .【点睛】本题考查整式的运算,涉及到积的乘方运算、幂的乘方运算、合并同类项运算和同底数幂的乘法运算等知识点,熟练掌握相关运算法则是解决问题的关键. 12.(2022·内蒙古包头)若42222m ⨯=,则m 的值为( ) A .8B .6C .5D .2【答案】B【分析】根据同底数幂的乘法运算计算4242622222m +⨯===,即可求解. 【详解】4242622222m +⨯===,6m ∴=,故选:B .【点睛】本题考查了同底数幂的乘法运算,即m n m n a a a +⋅=(m 、n 为正整数),熟练掌握运算法则是解题的关键.13.(2022·湖南长沙)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( ) A .8x 元 B .10(100)x -元 C .8(100)x -元 D .(1008)x -元【答案】C【分析】根据题意列求得购买乙种读本()100x -本,根据单价乘以数量即可求解.【详解】解:设购买甲种读本x 本,则购买乙种读本()100x -本,乙种读本的单价为8元/本,则则购买乙种读本的费用为8(100)x -元故选C【点睛】本题考查了列代数式,理解题意是解题的关键. 14.(2022·山东聊城)下列运算正确的是( ) A .()22233xy x y -=B .2243474x x x +=+C .()2323131t t t t t -+=-+D .()()43341a a -÷-=-【答案】D【分析】A 选项根据积的乘方等于乘方的积即可判断;B 选项合并同类型:字母和字母的指数比不变,系数相加;C 选项利用乘方的分配律;D 选项先用幂的乘方化简,在运用整式的除法法则. 【详解】解:A 、原式229x y =,不合题意; B 、原式27x =,不合题意; C 、原式323t t t =-+,不合题意; D 、原式=-1,符合题意;故选:D .【点睛】本题考查积的乘方、幂的乘方、合并同类型、乘法分配律、整式的除法,掌握相应的运算法则是解题的关键,其中每一项的符号是易错点.15.(2022·湖南岳阳)下列运算结果正确的是( )A .23a a a += B .55a a a ÷= C .236a a a ⋅=D .437()a a =【答案】A【分析】根据合并同类项判断A 选项;根据同底数幂的除法判断B 选项;根据同底数幂的乘法判断C 选项;根据幂的乘方判断D 选项.【详解】解:A 选项,原式3=a ,故该选项符合题意; B 选项,原式4a =,故该选项不符合题意; C 选项,原式5a =,故该选项不符合题意;D 选项,原式12a =,故该选项不符合题意;故选A .【点睛】本题考查了合并同类项,同底数幂的乘除法,幂的乘方与积的乘方,掌握()m n mn a a =是解题的关键. 16.(2022·内蒙古包头)若a ,b 互为相反数,c 的倒数是4,则334a b c +-的值为( ) A .8- B .5- C .1- D .16【答案】C【分析】根据a ,b 互为相反数,可得0a b +=,c 的倒数是4,可得14c = ,代入即可求解. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c 的倒数是4,∴14c =, ∴334a b c +-()34a b c =+-130414=⨯-⨯=-,故选:C 【点睛】本题考查了代数式的求值问题,利用已知求得0a b +=,14c =是解题的关键. 17.(2022·贵州遵义)下列运算结果正确的是( ) A .3412a a a ⋅= B .321ab ab -=C .()232624ab a b -= D .()222a b a b -=-【答案】C【分析】分别利用同底数幂的乘法法则,合并同类项的法则,积的乘方法则及完全平方公式分别判断即可. 【详解】A .347a a a ⋅=,故此选项计算错误,不符合题意; B .32ab ab ab -=,故此选项计算错误,不符合题意; C .()232624ab a b -=,此选项计算正确,符合题意;D .()2222a b a ab b -=-+,故此选项计算错误,不符合题意;故选:C .【点睛】本题考查同底数幂的乘法法则,合并同类项的法则,积的乘方法则及完全平方公式,熟练掌握相关计算法则是解答本题的关键.同底数幂相乘,底数不变,指数相加;合并同类项时,只把系数相加,所得结果作为合并后的系数,字母和字母的指数不变;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;222()2a b a ab b +=++与222()2a b a ab b -=-+都叫做完全平方公式,为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.18.(2022·广西)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是( )A .222()2a b a ab b +=++B .222()2a b a ab b -=-+C .22()()a b a b a b +-=-D .222()ab a b =【答案】A【分析】根据大正方形的面积=边长为a 的正方形的面积+两个长为a ,宽为b 的长方形的面积+边长为b 的正方形的面积,即可解答.【详解】根据题意得:(a +b )2=a 2+2ab +b 2,故选:A .【点睛】本题考查了完全平方公式的几何背景,用整体和部分两种方法表示面积是解题的关键. 19.(2022·广东深圳)下列运算正确的是( ) A .268a a a ⋅= B .()3326a a -=C .()22a b a b +=+D .235a b ab +=【答案】A【分析】分别根据同底数幂的乘法法则,积的乘方运算法则,单项式乘多项式及合并同类项的法则逐一判断即可.【详解】解:268a a a ⋅=,计算正确,故此选项符合题意; B 、33(2)8a a -=-,原计算错误,故此选项不符合题意; C 、2()22a b a b +=+,原计算错误,故此选项不符合题意;D 、23a b +,不是同类项不能合并,原计算错误,故此选项不符合题意.故选:A .【点睛】本题考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.20.(2022·上海)下列运算正确的是……( )A .a ²+a ³=a 6 B .(ab )2 =ab 2 C .(a +b )²=a ²+b ² D .(a +b )(a -b )=a ² -b 2【答案】D【分析】根据整式加法判定A ;运用积的乘方计算关判定B ;运用完全平方公式计算并判定C ;运用平方差公式计算并判定D .【详解】解:A.a ²+a ³没有同类项不能合并,故此选项不符合题意; B.(ab )2 =a2b 2,故此选项不符合题意; C.(a +b )²=a ²+2ab +b ²,故此选项不符合题意D.(a +b )(a -b )=a ² -b 2,故此选项符合题意故选:D .【点睛】本题考查整理式加法,积的乘方,完全平方公式,平方差公式,熟练掌握积的乘方运算法则、完全平方公式、平方差公式是解题的关键. 二.填空题21.(2022·湖南长沙)当今大数据时代,“二维码”具有存储量大.保密性强、追踪性高等特点,它己被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”己经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中小方格专门用做纠错码和其他用途的编码,这相当于1000个方格只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成2002个不同的数据二维码,现有四名网友对2002的理解如下: YYDS (永远的神):2002就是200个2相乘,它是一个非常非常大的数; DDDD (懂的都懂):2002等于2200; JXND (觉醒年代):2002的个位数字是6;QGYW (强国有我):我知道10321024,101000==,所以我估计2002比6010大. 其中对2002的理解错误的网友是___________(填写网名字母代号). 【答案】DDDD【分析】根据乘方的含义即可判断YYDS (永远的神)的理解是正确的;根据积的乘方的逆用,将2002化为1002(2),再与2200比较,即可判断DDDD (懂的都懂)的理解是错误的;根据2的乘方的个位数字的规律即可判断JXND (觉醒年代)的理解是正确的;根据积的乘方的逆用可得2001020603202(2),10(10)==,即可判断QGYW (强国有我)的理解是正确的.【详解】2002是200个2相乘,YYDS (永远的神)的理解是正确的;200100222(2)200=≠,DDDD (懂的都懂)的理解是错误的;1234522,24,28,216,232=====,∴2的乘方的个位数字4个一循环,200450÷=,∴2002的个位数字是6,JXND (觉醒年代)的理解是正确的;2001020603202(2),10(10)==,10321024,101000==,且103210>20060210∴>,故QGYW (强国有我)的理解是正确的;故答案为:DDDD .【点睛】本题考查了乘方的含义,幂的乘方的逆用等,熟练掌握乘方的含义以及乘方的运算法则是解题的关键.22.(2022·内蒙古包头)若一个多项式加上2328xy y +-,结果得2235xy y +-,则这个多项式为___________. 【答案】23y xy -+【分析】设这个多项式为A ,由题意得:22(328)235A xy y xy y ++-=+-,求解即可. 【详解】设这个多项式为A ,由题意得:22(328)235A xy y xy y ++-=+-, 22222(235)(328)2353283A xy y xy y xy y xy y y xy ∴=+--+-=+---+=-+,故答案为:23y xy -+.【点睛】本题考查了整式的加减,准确理解题意,列出方程是解题的关键.23.(2022·黑龙江大庆)已知代数式22(21)4a t ab b +-+是一个完全平方式,则实数t 的值为____________. 【答案】52或32-【分析】直接利用完全平方公式求解.【详解】解:∵代数式22(21)4a t ab b +-+是一个完全平方式, ∴()()()222222(21)4222a t ab b a b a b a b +-+++±=±±⋅⋅=, ∴214t -=±, 解得52t =或32t =-,故答案为:52或32- 【点睛】本题考查了完全平方公式的运用,熟记完全平方公式的特点是解题的关键. 24.(2022·四川广安)已知a +b =1,则代数式a 2﹣b 2 +2b +9的值为________. 【答案】10【分析】根据平方差公式,把原式化为()()29a b a b b +-++,可得9a b ++,即可求解. 【详解】解:a 2﹣b 2 +2b +9()()29a b a b b =+-++29a b b =-++9a b =++19=+10=故答案为:10【点睛】本题主要考查了平方差公式的应用,利用整体代入思想解答是解题的关键.25.(2022·吉林)篮球队要购买10个篮球,每个篮球m 元,一共需要__________元.(用含m 的代数式表示) 【答案】10m【分析】根据“总费用=购买篮球的数量⨯每个篮球的价格”即可得. 【详解】解:由题意得:一共需要的费用为10m 元, 故答案为:10m .【点睛】本题考查了列代数式,正确找出等量关系是解题关键.26.(2022·湖北恩施)观察下列一组数:2,12,27,…,它们按一定规律排列,第n 个数记为n a ,且满足21112n n n a a a +++=.则4a =________,2022a =________. 【答案】15 13032【分析】由已知推出1211111n n n n a a a a +++-=-,得到202220211132a a -=,202120201132a a -=,431132a a -=,211132a a -=,上述式子相加求解即可.【详解】解:∵21112n n n a a a +++=;∴1211111n n n n a a a a +++-=-,∵21111113212222a a -=-=-=, ∵43411113227a a a -=-=,∴a 4=15,∴202220211132a a -=,202120201132a a -=,211132a a -=, 把上述2022-1个式子相加得2022111320212a a ⨯-=, ∴a 2022=13032, 故答案为:15,13032.【点睛】此题主要考查数字的变化规律,关键是得出1211111n n n n a a a a +++-=-,利用裂项相加法求解. 27.(2022·江苏常州)计算:42÷=m m _______. 【答案】2m【分析】根据同底数幂的除法运算法则即可求出. 【详解】解:422m m m ÷=.故答案为:2m .【点睛】本题主要考查同底数幂的除法,掌握同底数幂的除法法则是解题的关键. 28.(2022·辽宁锦州)分解因式:2232x y xy y -+=____________. 【答案】2()y x y -【分析】先提取公因数y ,再利用完全平方公式进行二次分解.完全平方公式:(a ±b )2=a 2±2ab +b 2.【详解】解:222223(2)(2)=-++=--x y xy y x xy y y x y y ;故答案为:2()y x y -【点睛】本题考查了提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式. 29.(2022·江苏常州)分解因式:22x y xy +=______.【答案】xy (x +y )【分析】利用提公因式法即可求解.【详解】22()x y y y xy x x =++,故答案为:()xy x y +.【点睛】本题考查了用提公因式法分解因式的知识,掌握提公因式法是解答本题的关键.30.(2022·四川内江)分解因式:a 4﹣3a 2﹣4=_____.【答案】(a 2+1)(a +2)(a ﹣2)【分析】首先利用十字相乘法分解为()()2214a a +- ,然后利用平方差公式进一步因式分解即可.【详解】解:a 4﹣3a 2﹣4=(a 2+1)(a 2﹣4)=(a 2+1)(a +2)(a ﹣2),故答案为:(a 2+1)(a +2)(a ﹣2).【点睛】本题考查利用因式分解,解决问题的关键是掌握解题步骤:一提二套三检查.31.(2022·贵州遵义)已知4a b +=,2a b -=,则22a b -的值为__________.【答案】8【分析】根据平方差公式直接计算即可求解.【详解】解:∵4a b +=,2a b -=,∴22a b -()()428a b a b =+-=⨯= 故答案为:8【点睛】本题考查了因式分解的应用,掌握平方差公式是解题的关键.32.(2022·北京)分解因式:2xy x -=______.【答案】()()11x y y +-【分析】首先提取公因式,再根据平方差公式计算,即可得到答案.【详解】2xy x -()21x y =-()()11x y y =+-故答案为:()()11x y y +-.【点睛】本题考查了因式分解的知识;解题的关键是熟练掌握平方差公式的性质,从而完成求解. 33.(2022·湖北恩施)因式分解:3269x x x -+=_______.【答案】2(3)x x -【分析】先提公因式,再利用完全平方公式解题.【详解】解:322269(69)(3)x x x x x x x x -+=-+=-故答案为:2(3)x x -.【点睛】本题考查因式分解,涉及提公因式、完全平方公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.34.(2022·山东临沂)因式分解2242x x -+=______.【答案】22(1)x -.【详解】解:2242x x -+=22(21)x x -+=22(1)x -,故答案为22(1)x -.35.(2022·浙江台州)分解因式:21a -=____.【答案】()()11a a +-.【分析】利用平方差公式分解因式即可得到答案【详解】解:()()2111a a a -=+-.故答案为:()()11a a +-【点睛】本题考查的是利用平方差公式分解因式,掌握利用平方差公式分解因式是解题的关键. 36.(2022·江苏苏州)计算:3a a ⋅= _______.【答案】a 4【分析】本题须根据同底数幂乘法,底数不变指数相加,即可求出答案.【详解】解:a 3•a ,=a 3+1,=a 4.故答案为:a 4.【点睛】本题主要考查了同底数幂的乘法,在解题时要能灵活应用同底数幂的乘法法则,熟练掌握运算性质是解题的关键.37.(2022·黑龙江牡丹江)如图所示,以O 为端点画六条射线后OA ,OB ,OC ,OD ,OE ,O 后F ,再从射线OA 上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线___上.【答案】OC 【详解】解∶∵1在射线OA 上,2在射线OB 上,3在射线OC 上,4在射线OD 上,5在射线OE 上,6在射线OF 上,7在射线OA 上,…∴每六个一循环.∵2013÷6=335…3,∴所描的第2013个点在射线和3所在射线一样.∴所描的第2013个点在射线OC 上.故答案为:OC38.(2022·吉林)计算:2a a ⋅=____.【答案】3a【详解】试题分析:根据同底数幂的乘法性质,底数不变,指数相加,可直接结算,2123a a a a +⋅==. 考点:同底数幂的乘法39.(2022·黑龙江牡丹江)下列图形是将等边三角形按一定规律排列,则第5个图形中所以等边三角形的个数是__________.【答案】485【详解】解: 由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形,第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形,第五个图形中161×3+2=485个正三角形.故答案为:48540.(2022·湖北十堰)如图,某链条每节长为2.8cm ,每两节链条相连接部分重叠的圆的直径为1cm ,按这种连接方式,50节链条总长度为_________cm .【答案】91【分析】通过观察图形可知,1节链条的长度是2.8cm ,2节链条的长度是(2.8×2-1)cm ,3节链条的长度是(2.8×3-1×2)cm ,n 节链条的长度是2.8n -1×(n -1)cm ,据此解答即可求解.【详解】解:2节链条的长度是(2.8×2-1)cm ,3节链条的长度是(2.8×3-1×2)cm ,n 节链条的长度是2.8n -1×(n -1)cm ,所以50节链条的长度是:2.8×50-1×(50-1)=140-1×49=91(cm)故答案为:91【点睛】此题考查的图形类规律,关键是找出规律,得出n 节链条长度为2.5×n -0.8×(n -1).41.(2022·广西贺州)因式分解:2312m -=__________.【答案】3(2)(2)m m +-【分析】首先提取公因数3,进而利用平方差公式进行分解即可.【详解】解:原式=3(x 2−4)=3(x +2)(x −2);故答案为:3(x +2)(x −2).【点睛】此题主要考查了提取公因式以及公式法分解因式,正确应用平方差公式是解题关键.42.(2022·广西玉林)计算:3a a -=_____________.【答案】2a【分析】按照合并同类项法则合并即可.【详解】3a -a =2a ,故答案为:2a .【点睛】本题考查了合并同类项,解题关键是熟练运用合并同类项法则进行计算.43.(2022·广东)单项式3xy 的系数为___________.【答案】3【分析】单项式中数字因数叫做单项式的系数,从而可得出答案.【详解】3xy 的系数是3,故答案为:3.【点睛】此题考查了单项式的知识,解答本题的关键是掌握单项式系数的定义.44.(2022·黑龙江大庆)观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是____________.【答案】49【分析】根据题意可知:第1个图案中有六边形图形:1+2+1=4个,第2个图案中有六边形图形:2+3+2=7个,……由规侓即可得答案.【详解】解:∵第1个图案中有六边形图形:1+2+1=4个,第2个图案中有六边形图形:2+3+2=7个,第3个图案中有六边形图形:3+4+3=10个,第4个图案中有六边形图形:4+5+4=13个,……∴第16个图案中有六边形图形:16+17+16=49个,故答案为:49.【点睛】此题考查图形的变化规律,解题的关键是找出图形之间的运算规律,利用规律解决问题. 45.(2022·江苏泰州)已知22222,2,()a m mn b mn n c m n m n =-=-=-≠ 用“<”表示a b c 、、的大小关系为________.【答案】b c a <<【分析】利用作差法及配方法配成完全平方式再与0比较大小即可求解.【详解】解:由题意可知:222222222)(2))(()(22m n mn m n a b m mn mn n m n m n ,∵m n ≠,∴222()0m n m n , ∴b a <; 22222223)()2)(4(2n m mn a c m mn n m m n n ,当且仅当002n m n 且时取等号,此时0m n ==与题意m n ≠矛盾, ∴223()024n m n∴c a <;22222223)()()24(2n m c b m n m n n m n n m n ,同理b c <, 故答案为:b c a <<.【点睛】本题考查了两代数式通过作差比较大小,将作差后的结果配成完全平方式,利用完全平方式总是大于等于0的即可与0比较大小.46.(2022·黑龙江绥化)因式分解:()()269m n m n +-++=________.【答案】()23m n +-【分析】将m n 看做一个整体,则9等于3得的平方,逆用完全平方公式因式分解即可.【详解】解:()()269m n m n +-++ ()()22233m n m n =+-⨯⨯++()23m n =+-.【点睛】本题考查应用完全平方公式进行因式分解,整体思想,能够熟练逆用完全平方公式是解决本题的关键.47.(2022·广西梧州)若1x =,则32x -=________.【答案】1【分析】将1x =代入代数式求解即可.【详解】解:∵1x =,∴323121x -=⨯-=,故答案为:1.【点睛】本题考查了代数式求值.解题的关键在于正确的计算.48.(2022·贵州黔东南)分解因式:2202240442022x x -+=_______.【答案】()220221x -【分析】先提公因式,然后再根据完全平方公式可进行因式分解.【详解】解:原式=()()2220222120221x x x -+=-; 故答案为()220221x -.【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键.49.(2022·黑龙江绥化)某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元,则有______种购买方案.【答案】3##三【分析】设购买甲种奖品x 件,乙种奖品y 件,列出关系式,并求出3124y x =-,由于1≥x ,1y ≥且x ,y 都是正整数,所以y 是4的整数倍,由此计算即可.【详解】解:设:购买甲种奖品x 件,乙种奖品y 件,4348x y +=,解得3124y x =-, ∵1≥x ,1y ≥且x ,y 都是正整数,∴y 是4的整数倍,∴4y =时,341294x ⨯=-=, 8y =时,381264x ⨯=-=, 12y =时,3121234x ⨯=-=, 16y =时,3161204x ⨯=-=,不符合题意, 故有3种购买方案,故答案为:3.【点睛】本题考查列关系式,根据题意判断出y 是4的整数倍是解答本题的关键.50.(2022·海南)因式分解:ax ay +=___________.【答案】()a x y +【分析】原式直接提取a 即可.【详解】解:ax ay +=()a x y +.故答案为:()a x y +.【点睛】本题主要考查了分解因式,正确确定公因式是解答本题的关键.三.解答题51.(2022·广西)先化简,再求值2()()(2)x x y x y xy xy x +-+-+,其中11,2x y ==. 【答案】x 3-2xy +x ,1【分析】首先运用平方差公式计算,再运用单项式乘以多项式计算,最后合并同类项,即可化简,然后把x 、y 值代入计算即可.【详解】解:2()()(2)x x y x y xy xy x +-+-+=x (x 2-y 2)+xy 2-2xy +x=x 3-xy 2+xy 2-2xy +x=x 3-2xy +x ,当x =1,y =12时,原式=13-2×1×12+1=1.【点睛】本题考查整式化简求值,熟练掌握整式混合运算法则是解题的关键.52.(2022·湖南岳阳)已知2210a a -+=,求代数式()()()4111a a a a -++-+的值.【答案】-2【分析】先化简所求的式子,再结合已知求解即可.【详解】解:()()()4111a a a a -++-+22411a a a =-+-+224a a =-()222a a =-, ∵2210a a -+=,∴221a a -=-,∴原式()212=⨯-=-.【点睛】本题考查代数式的运算,熟练掌握单项式乘多项式,平方差公式是解题的关键.53.(2022·江苏无锡)计算:(1)(21cos 602-⨯-;(2)()()()()23a a a b a b b b +-+---.【答案】(1)1(2)2a +3b【分析】(1)先化简绝对值和计算乘方,并把特殊角的三角函数值代入,再计算乘法,最后算加减即可求解;(2)先运用单项式乘以多项式法则和平方差公式计算,再合并同类项即可.(1)解:原式=11322⨯- =3122- =1;(2)解:原式=a 2+2a -a 2+b 2-b 2+3b=2a +3b .【点睛】本题考查实数混合运算,整式混合运算,熟练掌握实数运算法则和单项式乘以多项式法则,熟记特殊角的三角函数值、平方差公式是解题的关键.54.(2022·广西梧州)(125(3)(2)+-⨯-(2)化简:232()23a a a a a +--⋅.【答案】(1)14-;(2)24a a -【分析】(1(2)先去括号和计算乘法运算,然后合并同类项即可.【详解】解:(1)解:原式=235(3)(2)-+-⨯-=35(3)4-+-⨯=3512--=14-;(2)原式=223226a a a a +--=24a a -.【点睛】本题考查了实数的运算以及整式的混合运算,正确掌握相关运算法则是解题的关键. 55.(2022·北京)已知2220x x +-=,求代数式2(2)(1)x x x +++的值.【答案】5【分析】先根据2220x x +-=,得出222x x +=,将2(2)(1)x x x +++变形为()2221x x ++,最后代入求值即可.【详解】解:∵2220x x +-=,∴222x x +=,∴2(2)(1)x x x +++22221x x x x =++++2241x x =++()2221x x =++221=⨯+5=【点睛】本题主要考查了代数式求值,完全平方公式,单项式乘多项式,将2(2)(1)x x x +++变形为()2221x x ++,是解题的关键. 56.(2022·江苏常州)计算:(1)201(3)3---+π;(2)2(1)(1)(1)+--+x x x .【答案】(1)43(2)2x +2 【分析】(1)利用负指数公式化简,零指数公式化简,平方根定义化简,合并后即可求出值; (2)利用完全平方,以及平方差计算,再合并即可求出值.(1)201(3)3---+π=2﹣1+13=43; (2)2(1)(1)(1)+--+x x x=22211x x x ++-+=2x +2.【点睛】此题考查了乘法公式,以及实数的运算,实数的运算涉及的知识有:零指数公式,负指数公式,绝对值的代数意义,以及平方根的定义.57.(2022·吉林)下面是一道例题及其解答过程的一部分,其中A 是关于m 的多项式.请写出多项式A ,并将该例题的解答过程补充完整.【答案】6A m =+,解答过程补充完整为26m -【分析】利用26m m +除以m 可得A ,再根据合并同类项法则补充解答过程即可.【详解】解:观察第一步可知,()26A m m m =+÷,解得6A m =+,将该例题的解答过程补充完整如下:(6)6(1)m m m +-+2666m m m =+--26m =-,故答案为:26m -.【点睛】本题考查了多项式的乘除法、合并同类项,熟练掌握整式的运算法则是解题关键.58.(2022·吉林长春)先化简,再求值:()()()221a a a a +-++,其中4a =.【答案】4a +【分析】根据平方差公式与单项式乘以单项式进行计算,然后将4a =代入求值即可求解.【详解】解:原式=224a a a -++4a =+当4a =时,原式44==【点睛】本题考查了整式的混合运算,实数的运算,代数式求值,正确的计算是解题的关键.。