专题15 计算题2(电与磁)-2017年高考题和高考模拟题物理分项版汇编(原卷版)
- 格式:doc
- 大小:288.50 KB
- 文档页数:6
学会解题分享再难丢分,2017物理高考题汇编解析:电与磁
计算题
高考物理电磁学计算一直作为压轴题而存在,好多学生一旦面对此类题型就会一筹莫展,无从下笔。
具体还是需要对这部分知识点理解清晰,在头脑中形成完整思路。
本部分考纲要求如下:
1、知道电磁感应现象中的电路问题、力学问题、图像问题及能量转化问题;
2、知道常见电磁感应现象中与电学相关问题的一般分析思维方法,会画等效电路图
3、知道电磁感应现象中与力学相关的运动和平衡问题的分析思路;
4、理解安培力做功在电磁感应现象中能量转化方面所起的作用;
下面是收集整理的2017年高考物理试卷的电磁学计算部分的考题与各校模拟题,押题汇编与详细解析,另外有原题文档,需要全部可编辑打印文档的可回复或私信输入“052”索取。
大家喜欢我的文章的话可以顺手点个赞,更可以加关注,我会经常发些初高中学习与教育方面的文章来供大家阅读与参考,如有不当之处也多请大家包涵,谢谢!。
I1 电场的力的性质22.E3、B4、I1[2017·北京卷] 如图5所示,长l =1 m 的轻质细绳上端固定,下端连接一个可视为质点的带电小球,小球静止在水平向右的匀强电场中,绳与竖直方向的夹角θ=37°.已知小球所带电荷量q =1.0×10-6 C ,匀强电场的场强E =3.0×103 N/C ,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:图5(1)小球所受电场力F 的大小; (2)小球的质量m ;(3)将电场撤去,小球回到最低点时速度v 的大小. 22.[答案] (1)3.0×10-3 N (2)4.0×10-4 kg(3)2.0 m/s[解析] (1)F =qE =3.0×10-3 N(2)由qE mg=tan 37°得m =4.0×10-4 kg (3)由mgl (1-cos 37°)=12m v 2得v =2gl (1-cos 37°)=2.0 m/s20.I1、I2(多选)[2017·全国卷Ⅰ] 在一静止点电荷的电场中,任一点的电势φ与该点到点电荷的距离r 的关系如图所示.电场中四个点a 、b 、c 和d 的电场强度大小分别E a 、E b 、E c 和E d .点a 到点电荷的距离r a 与点a 的电势φa 已在图中用坐标(r a ,φa )标出,其余类推.现将一带正电的试探电荷由a 点依次经b 、c 点移动到d 点,在相邻两点间移动的过程中,电场力所做的功分别为W ab 、W bc 和W cd .下列选项正确的是( )图1A .E a ∶E b =4∶1B .E c ∶E d =2∶1C .W ab ∶W bc =3∶1D .W bc ∶W cd =1∶320.AC [解析] 由点电荷的场强公式E =kQr 2,可得E a ∶E b =4∶1,E c ∶E d =4∶1,选项A 正确,选项B 错误;电场力做功W =qU ,U ab ∶U bc =3∶1,则W ab ∶W bc =3∶1,又有U bc ∶U cd =1∶1,则W bc ∶W cd =1∶1,选项C 正确,选项D 错误.21.I1、I2(多选)[2017·全国卷Ⅲ] 一匀强电场的方向平行于xOy 平面,平面内a 、b 、c 三点的位置如图所示,三点的电势分别为10 V 、17 V 、26 V .下列说法正确的是( )图1A .电场强度的大小为2.5 V/cmB .坐标原点处的电势为1 VC .电子在a 点的电势能比在b 点的低7 eVD .电子从b 点运动到c 点,电场力做功为9 eV21.ABD [解析] 由题目可得:φa =10 V ,φb =17 V ,φc =26 V ,则可知ab 与Oc 交点电势满足φa +φb 2=φO +φc2,故φO =φa +φb -φc =1 V ,故B 正确;从a 到b 移动电子,电场力做功W =U ab (-e )=7 eV ,电场力做正功,电势能减小,故电子在a 点电势能比在b 点高7 eV ,故C 错误;从b 到c 移动电子,电场力做功W ′=-eU bc =9 eV ,故D 正确;如图所示,过b 点作bd 垂直于Oc ,则由几何关系有x cd =6×35 cm =185 cm ,故φc -φO x cO =φc -φd x cd,则d 点的电势为φd =17 V ,故bd 为等势线,从而电场线沿cO 方向,故E =U cO x cO =2510 V/cm=2.5 V/cm ,故A 正确.I2 电场的能的性质20.L1、L2(多选)[2017·全国卷Ⅰ] 在一静止点电荷的电场中,任一点的电势φ与该点到点电荷的距离r 的关系如图所示.电场中四个点a 、b 、c 和d 的电场强度大小分别E a 、E b 、E c 和E d .点a 到点电荷的距离r a 与点a 的电势φa 已在图中用坐标(r a ,φa )标出,其余类推.现将一带正电的试探电荷由a 点依次经b 、c 点移动到d 点,在相邻两点间移动的过程中,电场力所做的功分别为W ab 、W bc 和W cd .下列选项正确的是( )图1A .E a ∶E b =4∶1B .E c ∶E d =2∶1C .W ab ∶W bc =3∶1D .W bc ∶W cd =1∶320.AC [解析] 由点电荷的场强公式E =kQr 2,可得E a ∶E b =4∶1,E c ∶E d =4∶1,选项A 正确,选项B 错误;电场力做功W =qU ,U ab ∶U bc =3∶1,则W ab ∶W bc =3∶1,又有U bc ∶U cd =1∶1,则W bc ∶W cd =1∶1,选项C 正确,选项D 错误.21.I1、I2(多选)[2017·全国卷Ⅲ] 一匀强电场的方向平行于xOy 平面,平面内a 、b 、c 三点的位置如图所示,三点的电势分别为10 V 、17 V 、26 V .下列说法正确的是( )图1A .电场强度的大小为2.5 V/cmB .坐标原点处的电势为1 VC .电子在a 点的电势能比在b 点的低7 eVD .电子从b 点运动到c 点,电场力做功为9 eV21.ABD [解析] 由题目可得:φa =10 V ,φb =17 V ,φc =26 V ,则可知ab 与Oc 交点电势满足φa +φb 2=φO +φc2,故φO =φa +φb -φc =1 V ,故B 正确;从a 到b 移动电子,电场力做功W =U ab (-e )=7 eV ,电场力做正功,电势能减小,故电子在a 点电势能比在b 点高7 eV ,故C 错误;从b 到c 移动电子,电场力做功W ′=-eU bc =9 eV ,故D 正确;如图所示,过b 点作bd 垂直于Oc ,则由几何关系有x cd =6×35 cm =185 cm ,故φc -φO x cO =φc -φd x cd,则d 点的电势为φd =17 V ,故bd 为等势线,从而电场线沿cO 方向,故E =U cO x cO =2510 V/cm=2.5 V/cm ,故A 正确.I3 电容器 带电粒子在电场中的匀变速运动4.I3[2017·江苏卷] 如图所示,三块平行放置的带电金属薄板A 、B 、C 中央各有一小孔,小孔分别位于O 、M 、P 点.由O 点静止释放的电子恰好能运动到P 点.现将C 板向右平移到P ′点,则由O 点静止释放的电子( )图1A .运动到P 点返回B .运动到P 和P ′点之间返回C .运动到P ′点返回D .穿过P ′点4.A [解析] C 板在P 点时,由静止释放的电子从O 到P 过程中合外力做的总功为零.当C 板移到P ′时,根据E =U d =Q Cd =Q εr S 4πkd d =4πkQ εr S,可知B 、C 板间的电场强度不变,由静止释放的电子从O 到P 过程中合外力做的总功仍然为零,所以电子运动到P 点时速度为零,然后返回,故A 正确.I4 带电粒子在电场中的非匀变速运动 I5 实验:用描迹法画出电场中平面上的等势线 I6 实验:练习使用示波器 I7 电场综合8.I7(多选)[2017·江苏卷] 在x 轴上有两个点电荷q 1、q 2,其静电场的电势φ在x 轴上分布如图所示.下列说法正确的有( )图1A .q 1和q 2带有异种电荷B .x 1处的电场强度为零C .负电荷从x 1移到x 2,电势能减小D .负电荷从x 1移到x 2,受到的电场力增大8.AC [解析] φ -x 图像的斜率表示电场强度,由图像可知,x 2左侧电场强度方向向左,x 2右侧电场强度向右,x 1处电场强度大于零,x 2处电场强度等于零,故q 1和q 2带有异种电荷,A 正确,B 错误.负电荷从x 1处移到x 2处,电势升高,电场强度减小,故电势能减小,电场力减小,C 正确,D 错误.25.I7[2017·全国卷Ⅱ] 如图,两水平面(虚线)之间的距离为H ,其间的区域存在方向水平向右的匀强电场.自该区域上方的A 点将质量均为m 、电荷量分别为q 和-q (q >0)的带电小球M 、N 先后以相同的初速度沿平行于电场的方向射出.小球在重力作用下进入电场区域,并从该区域的下边界离开.已知N 离开电场时的速度方向竖直向下;M 在电场中做直线运动,刚离开电场时的动能为N 刚离开电场时的动能的1.5倍.不计空气阻力,重力加速度大小为g .求:图1(1)M 与N 在电场中沿水平方向的位移之比; (2)A 点距电场上边界的高度; (3)该电场的电场强度大小. 25.[答案] (1)3∶1 (2)13H (3)mg 2q[解析] (1)设小球M 、N 在A 点水平射出时的初速度大小为v 0,则它们进入电场时的水平速度仍然为v 0.M 、N 在电场中运动的时间t 相等,电场力作用下产生的加速度沿水平方向,大小均为a ,在电场中沿水平方向的位移分别为s 1和s 2.由题给条件和运动学公式得v 0-at =0 ① s 1=v 0t +12at 2 ②s 2=v 0t -12at 2 ③联立①②③式得 s 1s 2=3 ④ (2)设A 点距电场上边界的高度为h ,小球下落h 时在竖直方向的分速度为v y ,由运动学公式得v 2y =2gh ⑤ H =v y t +12gt 2 ⑥M 进入电场后做直线运动,由几何关系知 v 0v y =s 1H⑦ 联立①②⑤⑥⑦式可得 h =13H ⑧ (3)设电场强度的大小为E ,小球 M 进入电场后做直线运动,则 v 0v y =qEmg⑨ 设M 、N 离开电场时的动能分别为E k1、E k2,由动能定理得 E k1=12m (v 20+v 2y )+mgH +qEs 1 ⑩ E k2=12m (v 20+v 2y )+mgH -qEs 2 ⑪ 由已知条件 E k1=1.5E k2 ⑫联立④⑤⑦⑧⑨⑩⑪⑫式得 E =mg2q⑬ 7.I7(多选)[2017·天津卷] 如图所示,在点电荷Q 产生的电场中,实线MN 是一条方向未标出的电场线,虚线AB 是一个电子只在静电力作用下的运动轨迹.设电子在A 、B 两点的加速度大小分别为a A 、a B ,电势能分别为E p A 、E p B .下列说法正确的是( )图1A .电子一定从A 向B 运动B .若a A >a B ,则Q 靠近M 端且为正电荷C .无论Q 为正电荷还是负电荷一定有E p A <E p BD .B 点电势可能高于A 点电势7.BC [解析] 通过电子的运动轨迹可判断电子的受力方向,但无法判断电子的运动方向,根据点电荷的电场规律可知,加速度越大的位置就是离点电荷越近的位置,A 错误,B 正确;电子从A 到B 电场力做负功,电势能增加,B 点的电势低于A 点的电势,C 正确,D 错误.1.[2017·郑州一中入学考试] 如图K221所示,在倾角为α的光滑绝缘斜面上放两个质量分别为m 1和m 2的带电小球A 、B (均可视为质点),m 1=2m 2,两球相距为L .两球同时由静止开始释放时,B 球的初始加速度恰好等于零.经过一段时间后,当两球距离为L ′时,A 、B 的加速度大小之比为a 1∶a 2=3∶2,则L ′∶L 等于( )图K221A .3∶2B .2∶1 C.10∶5 D .5∶101.B [解析] 由题意,三个小球均处于静止状态,对c 球而言,a 、b 两球在c 球所在位置处产生的合场强与匀强电场的场强等大反向,故匀强电场的场强大小E =2kq l 2cos 30°=3kql 2,B 正确. 2.[2017·安徽六校教育研究会联考] 水平面上A 、B 、C 三点固定着三个电荷量均为Q的正点电荷,将另一质量为m 的带正电的小球(可视为点电荷)放置在O 点,OABC 恰构成一棱长为L 的正四面体,如图K212所示.已知静电力常量为k ,重力加速度为g ,为使小球能静止在O 点,小球所带的电荷量为( )图K212A.mgL 23kQB.23mgL 29kQ C.6mgL 26kQ D.22mgL 26kQ2.C [解析] 对小球进行受力分析,小球受重力和A 、B 、C 处正点电荷施加的库仑力.将A 、B 、C 处正点电荷施加的库仑力正交分解到水平方向和竖直方向.设α是A 、B 、C 处正点电荷施加的库仑力方向与竖直方向的夹角,将库仑力分解到水平方向与竖直方向,根据竖直方向平衡条件得:3F cos α=mg ,F =kQq L 2,根据几何关系得cos α=63,解得q =6mgL 26kQ ,C 项正确.3.[2017·湖北孝感一模] 在一半径为R 的圆周上均匀分布有N 个带电小球(可视为质点)无间隙排列,其中A 点的小球带电荷量为+3q ,其余小球带电荷量为+q ,此时圆心O 点的电场强度大小为E ,现仅撤去A 点的小球,则O 点的电场强度大小为( )图K213A .E B.E 2 C.E 3 D.E43.B [解析] 假设圆周上均匀分布的都是电荷量为+q 的小球,由于圆周的对称性,根据电场的叠加原理知,圆心O 处场强为0,所以圆心O 点的电场强度大小等效于A 点处电荷量为+2q 的小球在O 点产生的场强,则有E =k 2qr 2,A 处电荷量为+q 的小球在圆心O点产生的场强大小为E 1=k qr 2,方向水平向左,则其余带电荷量为+q 的所有小球在O 点处产生的合场强为E 2=E 1=k q r 2=E 2,所以仅撤去A 点的小球,则O 点的电场强度等于E 2=E2.4.[ 2017·合肥一中阶段考试] 如图K234所示,在真空中固定两个等量异号点电荷+Q 和-Q ,图中O 点为两点电荷的连线中点,P 点为连线上靠近-Q 的一点,MN 为过O 点的一条线段,且M 点与N 点关于O 点对称,下列说法正确的是( )图K234A .同一个试探电荷在M 、N 两点所受的电场力相同B .M 、N 两点的电势相同C .将带正电的试探电荷从M 点沿直线移到N 点的过程中,电荷的电势能先增大后减小D .只将-Q 移到P 点, 其他点在空间的位置不变,则O 点的电势升高4.A [解析] 等量异种点电荷的电场的分布具有一定的对称性,故M 、N 两点的电场强度相同,同一个试探电荷在M 、N 两点所受的电场力相同,故A 正确;在两点电荷连线的垂直平分线的两侧,正电荷一边的电势要高于负电荷一边的电势,故M 点的电势高于N 点的电势,故B 错误;将带正电的试探电荷从M 点沿直线移到N 点的过程中,电场力一直做正功,故电势能一直减小,故C 错误;等量异种点电荷连线的中垂线是一条等势线,故O 点的电势为零;只将-Q 移到P 点,其他点在空间的位置不变,此时两个点电荷连线的中点在O 点的左侧,故O 点的电势变为负值,故O 点的电势降低,故D 错误.5.[2017·福建闽粤联考] 如图K255所示,有一矩形区域abcd ,水平边长为s = 3 m ,竖直边长为h =1 m ,当该区域只存在大小为E =10 N/C 、方向竖直向下的匀强电场时,一比荷为qm =0.1 C/kg 的正粒子由a 点沿ab 方向以速率v 0进入该区域, 粒子运动轨迹恰好通过该区域的几何中心.当该区域只存在匀强磁场时,另一个比荷也为qm =0.1 C/kg 的负粒子由c 点沿cd 方向以同样的速率v 0进入该区域,粒子运动轨迹也恰好通过该区域的几何中心.不计粒子的重力,则( )图K255A .正粒子离开矩形区域时的速率为32m/s B .磁感应强度大小为32T ,方向垂直纸面向外 C .正、负粒子通过矩形区域所用时间之比为6π D .正、负粒子离开矩形区域时的动能相等5.C [解析] 正粒子在电场中做类平抛运动,在水平方向有s 2=v 0t 1,在竖直方向有h 2=12at 21,加速度a =qE m =0.1×10 m/s 2=1 m/s 2,联立解得v 0=32 m/s ,由动能定理得qEh =12m v 2-12m v 20,解得正粒子离开矩形区域时的速率为v =v 20+2qEh m =112m/s ,故A 错误.负粒子在磁场中做匀速圆周运动,负粒子进入磁场后所受的洛伦兹力向上,由左手定则可知磁场的方向垂直纸面向里,设负粒子的轨迹半径为r ,由几何关系得⎝⎛⎭⎫s 22+⎝⎛⎭⎫r -h 22=r 2,解得r=1 m ,由洛伦兹力提供向心力,得q v 0B =m v 20r,解得B =5 3 T ,故B 错误.设正粒子通过矩形区域所用时间为t E ,则有h =12at 2E,解得t E = 2 s ,因r =h ,所以负粒子轨迹的圆心在b 点,则其通过磁场的时间为t B =T 4=πm 2qB =π3,故t E t B =6π,故C 正确.负粒子通过磁场时洛伦兹力不做功,动能不变,而正粒子通过电场时电场力做正功,动能增大,但正、负粒子的质量大小关系不确定,即初动能大小关系不确定,所以正、负粒子离开矩形区域时的动能大小关系不确定,故D 错误.6.[2017·湖北孝感一模] 在xOy 直角坐标系中,三个边长都为2 m 的正方形如图K266所示排列,第一象限正方形区域ABOC 中有水平向左的匀强电场,电场强度的大小为E 0,在第二象限正方形COED 的对角线CE 左侧CED 区域内有竖直向下的匀强电场,三角形OEC 区域内无电场,正方形DENM 区域内无电场,现有一带电荷量为+q 、质量为m 的带电粒子(重力不计)从AB 边上的A 点由静止释放,其恰好能通过E 点.(1)求CED 区域内的匀强电场的电场强度的大小E 1;(2)保持第(1)问中电场强度不变,若在正方形区域ABOC 中某些点由静止释放与上述相同的带电粒子,要使所有粒子都经过E 点,则释放点的坐标值x 、y 间应满足什么关系?(3)若CDE 区域内的电场强度大小变为E 2=43E 0,其他条件都不变,则在正方形区域ABOC 中某些点由静止释放与上述相同的带电粒子,要使所有粒子都经过N 点,则释放点的坐标值x 、y 间又应满足什么关系?图K2665.(1)4E 0 (2)y =x (3)y =3x -4 m[解析] (1)设粒子出第一象限电场时速度为v在第一象限中加速时,由动能定理得E 0qx 0=12m v 2,其中x 0=2 m 要使粒子过E 点,在第二象限电场中偏转时,竖直方向位移为y ,水平方向位移为x 0,则y =12·E 1q m ⎝⎛⎭⎫x 0v 2又x 0=y =2 m解得E 1=4E 0.(2)设坐标为(x ,y ),通过第一象限电场过程中,出电场时速度为v 1在第一象限电场中加速时,由动能定理得E 0qx =12m v 21 同上,要使粒子过E 点,在第二象限电场中偏转时,竖直方向位移为y ,水平方向位移也为y ,则y =12·E 1q m ⎝⎛⎭⎫y v 12解得y =x .(3)如图所示为其中一条轨迹图,从DE 出电场时与DE 交于Q ,进入CDE 电场后,初速度延长线与DE 交于G ,出电场时速度反向延长线与初速度延长线交于P 点,设在第一象限出发点的坐标为(x 、y )由图可知,在CED 中带电粒子的水平位移为y ,设偏转位移为y ′则y ′=12·E 2q m ⎝⎛⎭⎫y v 22而y ′y -y ′=GP NE其中GP =y 2,NE =2 m 在第一象限加速过程中,有E 0qx =12m v 22 解得y =3x -4 m.。
专题15 选修3-31.(2019·新课标全国Ⅰ卷)(5分)某容器中的空气被光滑活塞封住,容器和活塞绝热性能良好,空气可视为理想气体。
初始时容器中空气的温度与外界相同,压强大于外界。
现使活塞缓慢移动,直至容器中的空气压强与外界相同。
此时,容器中空气的温度__________(填“高于”“低于”或“等于”)外界温度,容器中空气的密度__________(填“大于”“小于”或“等于”)外界空气的密度。
【答案】低于 大于【解析】由题意可知,容器与活塞绝热性能良好,容器内气体与外界不发生热交换,故0Q ∆=,但活塞移动的过程中,容器内气体压强减小,则容器内气体正在膨胀,体积增大,气体对外界做功,即0W <,根据热力学第一定律可知:0U Q W ∆=∆+<,故容器内气体内能减小,温度降低,低于外界温度。
最终容器内气体压强和外界气体压强相同,根据理想气体状态方程:PV nRT =,又mVρ=,m 为容器内气体质量。
联立得:PmnRTρ=,取容器外界质量也为m 的一部分气体,由于容器内温度T 低于外界温度,故容器内气体密度大于外界。
2.(2019·新课标全国Ⅰ卷)(10分)热等静压设备广泛用于材料加工中。
该设备工作时,先在室温下把惰性气体用压缩机压入到一个预抽真空的炉腔中,然后炉腔升温,利用高温高气压环境对放入炉腔中的材料加工处理,改善其性能。
一台热等静压设备的炉腔中某次放入固体材料后剩余的容积为0.13 m 3,炉腔抽真空后,在室温下用压缩机将10瓶氩气压入到炉腔中。
已知每瓶氩气的容积为3.2×10-2 m 3,使用前瓶中气体压强为1.5×107 Pa ,使用后瓶中剩余气体压强为2.0×106 Pa ;室温温度为27 ℃。
氩气可视为理想气体。
(1)求压入氩气后炉腔中气体在室温下的压强;(2)将压入氩气后的炉腔加热到1 227 ℃,求此时炉腔中气体的压强。
电场1.【2017·江苏卷】如图所示,三块平行放置的带电金属薄板A、B、C中央各有一小孔,小孔分别位于O、M、P点.由O点静止释放的电子恰好能运动到P点.现将C板向右平移到P'点,则由O点静止释放的电子(A)运动到P点返回(B)运动到P和P'点之间返回(C)运动到P'点返回(D)穿过P'点【答案】A【考点定位】带电粒子在电场中的运动动能定理电容器【名师点睛】本题是带电粒子在电场中的运动,主要考察匀变速直线运动的规律及动能定理,重点是电容器的动态分析,在电荷量Q不变的时候,板间的电场强度与板间距无关.2.【2017·天津卷】如图所示,在点电荷Q产生的电场中,实线MN是一条方向未标出的电场线,虚线AB是一个电子只在静电力作用下的运动轨迹。
设电子在A、B两点的加速度大小分别为a A、a B,电势能分别为E p A、E p B。
下列说法正确的是A.电子一定从A向B运动B.若a A>a B,则Q靠近M端且为正电荷C.无论Q为正电荷还是负电荷一定有E p A<E p BD .B 点电势可能高于A 点电势【答案】BC【解析】电子在电场中做曲线运动,虚线AB 是电子只在静电力作用下的运动轨迹,电场力沿电场线直线曲线的凹侧,电场的方向与电场力的方向相反,如图所示,由所知条件无法判断电子的运动方向,故A 错误;若a A >a B ,说明电子在M 点受到的电场力较大,M 点的电场强度较大,根据点电荷的电场分布可知,靠近M 端为场源电荷的位置,应带正电,故B 正确;无论Q 为正电荷还是负电荷,一定有电势B A ϕϕ>,电子电势能p E e ϕ=-,电势能是标量,所以一定有E p A <E p B ,故C 正确,D 错误。
【考点定位】电场强度,电场线,电势,电势能,曲线运动,带电粒子在电场中的运动【名师点睛】本题考查的知识点较多,应从曲线运动的特点和规律出发判断出电子的受力方向,再利用相关电场和带电粒子在电场中的运动规律解决问题。
1.【2017·新课标Ⅰ卷】扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌.为了有效隔离外界振动对STM的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示.无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是【答案】A【解析】感应电流产生的条件是闭合回路中的磁通量发上变化.在A图中系统振动时在磁场中的部分有时多有时少,磁通量发生变化,产生感应电流,受到安培力,阻碍系统的振动,故A正确;而BCD三个图均无此现象,故错误.【考点定位】感应电流产生的条件【名师点睛】本题不要被题目的情景所干扰,抓住考查的基本规律,即产生感应电流的条件,有感应电流产生,才会产生阻尼阻碍振动.2.【2017·新课标Ⅲ卷】如图,在方向垂直于纸面向里的匀强磁场中有一U形金属导轨,导轨平面与磁场垂直.金属杆PQ置于导轨上并与导轨形成闭合回路PQRS,一圆环形金属线框T位于回路围成的区域内,线框与导轨共面.现让金属杆PQ突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是A .PQRS 中沿顺时针方向,T 中沿逆时针方向B .PQRS 中沿顺时针方向,T 中沿顺时针方向C .PQRS 中沿逆时针方向,T 中沿逆时针方向D .PQRS 中沿逆时针方向,T 中沿顺时针方向【答案】D【考点定位】电磁感应、右手定则、楞次定律【名师点睛】解题关键是掌握右手定则、楞次定律判断感应电流的方向,还要理解PQRS 中感应电流产生的磁场会使T 中的磁通量变化,又会使T 中产生感应电流.3.【2017·天津卷】如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R .金属棒ab 与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下.现使磁感应强度随时间均匀减小,ab 始终保持静止,下列说法正确的是A .ab 中的感应电流方向由b 到aB .ab 中的感应电流逐渐减小C .ab 所受的安培力保持不变D .ab 所受的静摩擦力逐渐减小【答案】D【解析】导体棒ab 、电阻R 、导轨构成闭合回路,磁感应强度均匀减小(k tB =∆∆为一定值),则闭合回路中的磁通量减小,根据楞次定律,可知回路中产生顺时针方向的感应电流,ab 中的电流方向由a 到b ,故A 错误;根据法拉第电磁感应定律,感应电动势B S E k S t t Φ∆∆⋅===⋅∆∆,回路面积S 不变,即感应电动势为定值,根据欧姆定律RE I =,所以ab 中的电流大小不变,故B 错误;安培力BILF =,电流大小不变,磁感应强度减小,则安培力减小,故C 错误;导体棒处于静止状态,所受合力为零,对其受力分析,水平方向静摩擦力f 与安培力F 等大反向,安培力减小,则静摩擦力减小,故D 正确.【考点定位】楞次定律,法拉第电磁感应定律,安培力【名师点睛】本题应从电磁感应现象入手,熟练应用法拉第电磁感应定律和楞次定律.4.【2017·新课标Ⅱ卷】两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为0.1 m、总电阻为0.005 Ω的正方形导线框abcd位于纸面内,cd边与磁场边界平行,如图(a)所示.已知导线框一直向右做匀速直线运动,cd边于t=0时刻进入磁场.线框中感应电动势随时间变化的图线如图(b)所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是A.磁感应强度的大小为0.5 TB.导线框运动速度的大小为0.5 m/sC.磁感应强度的方向垂直于纸面向外D.在t=0.4 s至t=0.6 s这段时间内,导线框所受的安培力大小为0.1 N【答案】BC【考点定位】法拉第电磁感应定律;楞次定律;安培力【名师点睛】此题是关于线圈过磁场的问题;关键是能通过给出的E–t图象中获取信息,得到线圈在磁场中的运动情况,结合法拉第电磁感应定律及楞次定律进行解答.此题意在考查学生基本规律的运用能力以及从图象中获取信息的能力.5.【2017·北京卷】图1和图2是教材中演示自感现象的两个电路图,L1和L2为电感线圈.实验时,断开开关S1瞬间,灯A1突然闪亮,随后逐渐变暗;闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立即变亮,最终A2与A3的亮度相同.下列说法正确的是A.图1中,A1与L1的电阻值相同B.图1中,闭合S1,电路稳定后,A1中电流大于L1中电流C.图2中,变阻器R与L2的电阻值相同D.图2中,闭合S2瞬间,L2中电流与变阻器R中电流相等【答案】C【考点定位】自感【名师点睛】线圈在电路中发生自感现象,根据楞次定律可知,感应电流要“阻碍”使原磁场变化的电流变化情况.电流突然增大时,会感应出逐渐减小的反向电流,使电流逐渐增大;电流突然减小时,会感应出逐渐减小的正向电流,使电流逐渐减小.6.【2017·江苏卷】(15分)如图所示,两条相距d的平行金属导轨位于同一水平面内,其右端接一阻值为R的电阻.质量为m的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ的磁感应强度大小为B、方向竖直向下.当该磁场区域以速度v0匀速地向右扫过金属杆后,金属杆的速度变为v.导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:(1)MN刚扫过金属杆时,杆中感应电流的大小l;(2)MN刚扫过金属杆时,杆的加速度大小a;(3)PQ刚要离开金属杆时,感应电流的功率P.【答案】(1)BdvIR=(2)22B d vamR=(3)222()B d v vPR-=【考点定位】电磁感应【名师点睛】本题的关键在于导体切割磁感线产生电动势E=Blv,切割的速度(v)是导体与磁场的相对速度,分析这类问题,通常是先电后力,再功能.7.【2017·北京卷】(20分)发电机和电动机具有装置上的类似性,源于它们机理上的类似性.直流发电机和直流电动机的工作原理可以简化为如图1、图2所示的情景.在竖直向下的磁感应强度为B的匀强磁场中,两根光滑平行金属轨道MN、PQ固定在水平面内,相距为L,电阻不计.电阻为R的金属导体棒ab垂直于MN、PQ放在轨道上,与轨道接触良好,以速度v(v平行于MN)向右做匀速运动.图1轨道端点MP间接有阻值为r的电阻,导体棒ab受到水平向右的外力作用.图2轨道端点MP间接有直流电源,导体棒ab通过滑轮匀速提升重物,电路中的电流为I.(1)求在Δt时间内,图1“发电机”产生的电能和图2“电动机”输出的机械能.(2)从微观角度看,导体棒ab中的自由电荷所受洛伦兹力在上述能量转化中起着重要作用.为了方便,可认为导体棒中的自由电荷为正电荷.a.请在图3(图1的导体棒ab)、图4(图2的导体棒ab)中,分别画出自由电荷所受洛伦兹力的示意图.b.我们知道,洛伦兹力对运动电荷不做功.那么,导体棒ab中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请以图2“电动机”为例,通过计算分析说明.【答案】(1)222B L v t R r∆+ BLv t ∆ (2)a .如图3、图4 b .见解析【解析】(1)图1中,电路中的电流1BLv I R r=+ 棒ab 受到的安培力F 1=BI 1L 在Δt 时间内,“发电机”产生的电能等于棒ab 克服安培力做的功2221B L v t E F v t R r∆=⋅∆=+电 图2中,棒ab 受到的安培力F 2=BIL在Δt 时间内,“电动机”输出的机械能等于安培力对棒ab 做的功2E F v t BILv t =⋅∆=∆机 (2)a .图3中,棒ab 向右运动,由左手定则可知其中的正电荷受到b →a 方向的洛伦兹力,在该洛伦兹力作用下,正电荷沿导体棒运动形成感应电流,有沿b →a 方向的分速度,受到向左的洛伦兹力作用;图4中,在电源形成的电场作用下,棒ab 中的正电荷沿a →b 方向运动,受到向右的洛伦兹力作用,该洛伦兹力使导体棒向右运动,正电荷具有向右的分速度,又受到沿b →a 方向的洛伦兹力作用.如图3、图4.b .设自由电荷的电荷量为q ,沿导体棒定向移动的速率为u .如图4所示,沿棒方向的洛伦兹力1f qvB '=,做负功11W f u t qvBu t '=-⋅∆=-∆ 垂直棒方向的洛伦兹力2f quB '=,做正功22W f v t quBv t '=⋅∆=∆所示12W W =-,即导体棒中一个自由电荷所受的洛伦兹力做功为零.1f '做负功,阻碍自由电荷的定向移动,宏观上表现为“反电动势”,消耗电源的电能;2f '做正功,宏观上表现为安培力做正功,使机械能增加.大量自由电荷所受洛伦兹力做功的宏观表现是将电能转化为等量的机械能,在此过程中洛伦兹力通过两个分力做功起到“传递能量的作用.【考点定位】闭合电路欧姆定律、法拉第电磁感应定律、左手定则、功能关系【名师点睛】洛伦兹力永不做功,本题看似洛伦兹力做功,实则将两个方向的分运动结合起来,所做正、负功和为零.1.【2017·郑州市第三次质量预测】如图所示,铜管内有一片羽毛和一个小磁石.现将铜管抽成真空并竖直放置,使羽毛、小磁石同时从管内顶端由静止释放,已知羽毛、小磁石下落过程中无相互接触且未与管道内璧接触,则A .羽毛的下落时间大于小磁石的下落时间B .羽毛的下落时间等于小磁石的下落时间C .羽毛落到管底时的速度大于小磁石落到管底时的速度D .羽毛落到管底时的速度小于小滋石落到管底时的速度【答案】C2.【2017·郑州市第三次质量预测】铁路运输中设计的多种装置都运用了电磁感应原理.有一种电磁装致可以向控制中心传输信号以确定火车的位置和运动状态,装置的原理是:将能产生匀强磁场的磁铁安装在火车首节车厢下面,如图甲所示(俯视图),当它经过安放在两铁轨间的矩形线圈时,线圈便产生一个电信号传输给控制中心.线圈长为ι1,宽为ι2.匝数为n.若匀强磁场只分布在一个矩形区域内,当火车首节车厢通过线圈时,控制中心接收到线圈两端电压u与时间t的关系如图乙所示(ab、cd均为直线),则在t1-t2时间内A.火车做匀速直线运动B.M点电势低于N点电势C.火车加速度大小为D.火车平均速度大小为【答案】BD【解析】A、由E=BLv可知,动生电动势与速度成正比,而在乙图中ab段的电压与时间成线性关系,因此可知在t1到t2这段时间内,火车的速度随时间均匀增加,所以火车在这段时间内做的是匀加速直线运动.故A错误.B、根据右手定则,线圈中的感应电流是逆时针的,M点电势低于N点电势,B正确;C、由图知t1时刻对应的速度为:,t2时刻对应的速度为:,故这段时间内的加速度为:,故C错误;D、由C可知这段时间内的平均速度为:,D正确.故选BD.【名师点睛】判定运动状态,可以找出动生电动势与速度的关系,进而确定速度和时间的关系,就可以知道火车在ab事件段内的运动性质;根据右手定则可判断电势的高低;加速度可以由AB中判定出的速度时间关系来确定;同C项一样,也是通过AB判定出的速度时间关系来解. 3.【2017·安徽省江淮十校第三次联考】宽为L的两光滑竖直裸导轨间接有固定电阻R,导轨(电阻忽略不计)间I、Ⅱ区域中有垂直纸面向里宽为d、磁感应强度为B的匀强磁场,I、Ⅱ区域间距为h,如图,有一质量为m、长为L电阻不计的金属杆与竖直导轨紧密接触,从距区域I上端H处杆由静止释放.若杆在I、Ⅱ区域中运动情况完全相同,现以杆由静止释放为计时起点,则杆中电流随时间t变化的图像可能正确的是A.B.C.D.【答案】B4.【2017·广东省惠州市4月模拟】在家庭电路中,为了安全,一般在电能表后面的电路中安装一个漏电开关,其工作原理如图所示,其中甲线圈两端与脱扣开关控制器相连,乙线圈由两条电源线采取双线法绕制,并与甲线圈绕在同一个矩形硅钢片组成的铁芯上.以下说法正确的是()A.当用户用电正常时,甲线圈两端没有电压,脱扣开关接通.B.当用户用电正常时,甲线圈两端有电压,脱扣开关接通.C.当用户发生漏电时,甲线圈两端没有有电压,脱扣开关断开D.当用户发生漏电时,甲线圈两端有电压,脱扣开关断开【答案】AD【名师点睛】保护器中火线和零线中电流相等时,产生的磁场应完全抵消,穿过甲线圈的磁通量始终为零,甲线圈中没有电压,脱扣开关K保持接通.漏电时,流过火线与零线的电流不相等,保护器中火线和零线中电流产生的磁场应不能完全抵消,会使甲线圈中产生感应电动势,脱扣开关断开.5.【2017·河南省南阳、信阳等六市高三第二次联考】如图所示,水平面上相距l=0.5m的两根光滑平行金属导轨MN和PQ,他们的电阻可忽略不计,在M和P之间接有最大阻值为6.0Ω的滑动变阻器R,导体棒ab电阻r=1Ω,与导轨垂直且接触良好,整个装置处于方向竖直向下的匀强磁场中,磁感应强度B =0.4T,滑动变阻器滑片处在正中间位置,ab在外力F作用下以v=l0m/s的速度向右匀速运动,以下判断正确的是A.通过导体棒的电流大小为0.5A,方向由b到aB.导体棒受到的安培力大小为1N,方向水平向左C.外力F的功率大小为1WD.若增大滑动变阻器消耗的劝率,应把滑片向M端移动【答案】CD6.【2017·湖南省永州市高三三模】如图(a)所示,在光滑水平面上放置一质量为1 kg的单匝均匀正方形铜线框,线框边长为0.1m.在虚线区域内有竖直向下的匀强磁场,磁感应强度为T.现用恒力F拉线框,线框到达1位置时,以速度v0=3 m/s进入匀强磁场并开始计时.在t=3 s 时刻线框到达2位置开始离开匀强磁场.此过程中v-t图像如图(b)所示,那么A.t=0时刻线框右侧边两端MN间的电压为0.75 VB.恒力F的大小为0.5 NC.线框完全离开磁场的瞬间的速度大小为3 m/sD.线框完全离开磁场的瞬间的速度大小为1 m/s【答案】AB【点睛】该图象为速度--时间图象,斜率表示加速度.根据加速度的变化判断物体的受力情况.要注意当通过闭合回路的磁通量发生变化时,闭合回路中产生感应电流,所以只有在进入和离开磁场的过程中才有感应电流产生7.【2017·大连市高三二模】如图所示,倾角为的光滑斜面固定在水平面上,水平虚线PQ下方有垂直于斜面向下的匀强磁场,磁感应强度为B.正方向闭合金属线框边长为l,质量为m,电阻为R,放置于PQ上方一定距离处,保持线框底边ab与PQ平行并由静止释放,当ab边到达PQ时,线框速度为,ab边到达PQ下方距离d(d>l)处时,线框速度也为,下列说法正确的是A.ab边刚进入磁场时,电流方向为a→bB.ab边刚进入磁场时,线框做加速运动C.线框进入磁场过程中的最小速度可能等于D.线框进入磁场过程中产生的热量为【答案】ACD【解析】根据右手定则知,ab边刚进入磁场时,电流方向为a→b.故A正确.当ab边到达L 时,线框速度为v0.ab边到达L下方距离d处时,线框速度也为v0,知线框进入磁场时做减速运动,完全进入磁场后做加速运动,则ab边刚进入磁场时,做减速运动,加速度方向向上.故B错误.线框从进入磁场到完全进入的过程中,做减速运动,完全进入的瞬间速度最小,此时安培力大于重力沿斜面方向的分力,根据E=BIl,,F A=BIL,根据F A≥mgsinθ,有,解得,即线框进入磁场过程中的最小速度可能等于,故C 正确.对线框进入磁场的过程运用能量守恒定律得,mgdsinθ=Q.故D正确.故选ACD.点睛:本题综合考查了右手定则、安培力大小公式、闭合电路欧姆定律、切割产生的感应电动势公式和能量守恒,知道线框进入磁场的运动规律是解决本题的关键.。
2017年高考物理试题分类汇编及解析专题01. 直线运动力和运动专题02. 曲线运动万有引力与航天专题03. 机械能和动量专题04. 电场专题05. 磁场专题06. 电磁感应专题07. 电流和电路专题08. 选修3-3专题09. 选修3-4专题10. 波粒二象性、原子结构和原子核专题11. 力学实验专题12. 电学实验专题13. 力与运动计算题专题14. 电与磁计算题专题01. 直线运动力和运动1.【2017·新课标Ⅲ卷】一根轻质弹性绳的两端分别固定在水平天花板上相距80cm的两点上,弹性绳的原长也为80 cm。
将一钩码挂在弹性绳的中点,平衡时弹性绳的总长度为100 cm;再将弹性绳的两端缓慢移至天花板上的同一点,则弹性绳的总长度变为(弹性绳的伸长始终处于弹性限度内)A.86 cm B. 92 cm C. 98 cm D. 104 cm【答案】B【考点定位】胡克定律、物体的平衡【名师点睛】在处理共点力平衡问题时,关键是对物体进行受力分析,再根据正交分解法将各个力分解成两个方向上的力,然后列式求解;如果物体受到三力处于平衡状态,可根据矢量三角形法,将三个力移动到一个三角形中,然后根据正弦定理列式求解。
前后两次始终处于静止状态,即合外力为零,在改变绳长的同时,绳与竖直方向的夹角跟着改变。
2.【2017·天津卷】如图所示,轻质不可伸长的晾衣绳两端分别固定在竖直杆M、N上的a、b两点,悬挂衣服的衣架钩是光滑的,挂于绳上处于静止状态。
如果只人为改变一个条件,当衣架静止时,下列说法正确的是A.绳的右端上移到b ,绳子拉力不变B.将杆N向右移一些,绳子拉力变大C.绳的两端高度差越小,绳子拉力越小D.若换挂质量更大的衣服,则衣架悬挂点右移【答案】AB【解析】设两杆间距离为d ,绳长为l ,Oa 、Ob 段长度分别为l a 和l b ,则b a l l l +=,两部分绳子与竖直方向夹角分别为α和β,受力分析如图所示。
磁场1.【2017·江苏卷】如图所示,两个单匝线圈a 、b 的半径分别为r 和2r .圆形匀强磁场B的边缘恰好与a 线圈重合,则穿过a 、b 两线圈的磁通量之比为(A )1:1 (B )1:2 (C )1:4 (D )4:1【答案】A【考点定位】磁通量【名师点睛】本题主要注意磁通量的计算公式中S 的含义,它指的是有磁感线穿过区域的垂直面积.2.【2017·新课标Ⅰ卷】如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a 、b 、c 电荷量相等,质量分别为m a 、m b 、m c 。
已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动。
下列选项正确的是A .a b c m m mB .b a c m m mC .acbm m m D .cbam m m 【答案】B 【解析】由题意知,m a g=qE ,m b g=qE +Bqv ,m c g+Bqv=qE ,所以ba c m m m ,故B 正确,ACD 错误。
【考点定位】带电粒子在复合场中的运动【名师点睛】三种场力同时存在,做匀速圆周运动的条件是m a g=qE ,两个匀速直线运动,合外力为零,重点是洛伦兹力的方向判断。
3.【2017·新课标Ⅲ卷】如图,在磁感应强度大小为B 0的匀强磁场中,两长直导线P 和Q垂直于纸面固定放置,两者之间的距离为l 。
在两导线中均通有方向垂直于纸面向里的电流I 时,纸面内与两导线距离均为l 的a 点处的磁感应强度为零。
如果让P 中的电流反向、其他条件不变,则a 点处磁感应强度的大小为A .0B .C .D .2B 0【答案】C【考点定位】磁场叠加、安培定则【名师点睛】本题关键为利用安培定则判断磁场的方向,在根据几何关系进行磁场的叠加和计算。
4.【2017·新课标Ⅰ卷】如图,三根相互平行的固定长直导线L 1、L 2和L 3两两等距,均通有电流,L 1中电流方向与L 2中的相同,与L 3中的相反,下列说法正确的是33B 0233BA.L1所受磁场作用力的方向与L2、L3所在平面垂直B.L3所受磁场作用力的方向与L1、L2所在平面垂直C.L1、L2和L3单位长度所受的磁场作用力大小之比为1:1:3D.L1、L2和L3单位长度所受的磁场作用力大小之比为3:3:1【答案】BC【考点定位】电流磁效应、安培力、安培定则【名师点睛】先根据安培定则判断磁场的方向,再根据磁场的叠加得出直线电流处磁场的方向,再由左手定则判断安培力的方向,本题重点是对磁场方向的判断、大小的比较。
2017年高考物理试题分类汇编及答案解析《电学实验》编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高考物理试题分类汇编及答案解析《电学实验》)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高考物理试题分类汇编及答案解析《电学实验》的全部内容。
电学实验1.【2017·天津卷】某探究性学习小组利用如图所示的电路测量电池的电动势和内阻。
其中电流表A1的内阻r1=1.0 kΩ,电阻R1=9。
0 kΩ,为了方便读数和作图,给电池串联一个R0=3.0 Ω的电阻。
①按图示电路进行连接后,发现、和三条导线中,混进了一条内部断开的导线。
为了aa'bb'cc'确定哪一条导线内部是断开的,将电建S闭合,用多用电表的电压挡先测量a、间电压,读b'数不为零,再测量、间电压,若读数不为零,则一定是________导线断开;若读数为零,则a'一定是___________导线断开。
②排除故障后,该小组顺利完成实验。
通过多次改变滑动变阻器触头位置,得到电流表A1和A2的多组I1、I2数据,作出图象如右图。
由I1–I2图象得到电池的电动势E=_________V,内阻r=__________Ω。
【答案】①②1。
41(1。
36~1.44均可) 0.5(0.4~0.6均可)aa'bb'【考点定位】实验——用伏安法测干电池的电动势和内阻【名师点睛】由图象法处理实验数据的关键是要理解图线的物理意义——纵轴截距和斜率表示什么,闭合电路的欧姆定律是核心。
2.【2017·新课标Ⅰ卷】(10分)某同学研究小灯泡的伏安特性,所使用的器材有:小灯泡L(额定电压3.8 V,额定电流0.32 A);电压表V(量程3 V,内阻3 kΩ);电流表(量程0。
2017年高考物理试题——磁场1.[江苏卷] 如图所示,两个单匝线圈a 、b 的半径分别为r 和2r .圆形匀强磁场B 的边缘恰好与a 线圈重合,则穿过a 、b 两线圈的磁通量之比为( )A .1∶1B .1∶2C .1∶4D .4∶12. (多选)[全国卷Ⅰ] 如图,三根相互平行的固定长直导线L 1、L 2和L 3两两等距,均通有电流I ,L 1中电流方向与L 2中的相同,与L 3中的相反,下列说法正确的是( )A .L 1所受磁场作用力的方向与L 2、L 3所在平面垂直B .L 3所受磁场作用力的方向与L 1、L 2所在平面垂直C .L1、L 2和L 3单位长度所受的磁场作用力大小之比为1∶1∶ 3D .L 1、L 2和L 3单位长度所受的磁场作用力大小之比为3∶3∶13.[全国卷Ⅲ] 如图所示,在磁感应强度大小为B 0的匀强磁场中,两长直导线P 和Q 垂直于纸面固定放置,两者之间的距离为l .在两导线中均通有方向垂直于纸面向里的电流I 时,纸面内与两导线距离均为l 的a 点处的磁感应强度为零.如果让P 中的电流反向、其他条件不变,则a 点处磁感应强度的大小为( )A .0 B.33B 0 C.233B 0 D .2B 0 4.[全国卷Ⅱ] 如图,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P 为磁场边界上的一点.大量相同的带电粒子以相同的速率经过P 点,在纸面内沿不同方向射入磁场.若粒子射入速率为v 1,这些粒子在磁场边界的出射点分布在六分之一圆周上;若粒子射入速率为v 2,相应的出射点分布在三分之一圆周上.不计重力及带电粒子之间的相互作用.则v 2∶v 1为( )A .3∶2B .2∶1C .3∶1D .3∶ 25.(多选)[全国卷Ⅱ] 某同学自制的简易电动机示意图如图所示,矩形线圈由一根漆包线绕制而成,漆包线的两端分别从线圈的一组对边的中间位置引出,并作为线圈的转轴.将线圈架在两个金属支架之间,线圈平面位于竖直面内,永磁铁置于线圈下方.为了使电池与两金属支架连接后线圈能连续转动起来,该同学应将( )A .左、右转轴下侧的绝缘漆都刮掉B .左、右转轴上下两侧的绝缘漆都刮掉C .左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉D .左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉6.[全国卷Ⅰ] 如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里.三个带正电的微粒a 、b 、c电荷量相等,质量分别为m a 、m b 、m c .已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动.下列选项正确的是( )A .m a >m b >m cB .m b >m a >m cC .m c >m a >m bD .m c >m b >m a7.[天津卷] 平面直角坐标系xOy 中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅲ象限存在沿y 轴负方向的匀强电场,如图所示.一带负电的粒子从电场中的Q 点以速度v 0 沿x 轴正方向开始运动,Q 点到y 轴的距离为到x 轴距离的2倍.粒子从坐标原点O 离开电场进入磁场,最终从x 轴上的P 点射出磁场,P 点到y 轴距离与Q 点到y 轴距离相等.不计粒子重力,问:(1)粒子到达O点时速度的大小和方向;(2)电场强度和磁感应强度的大小之比.8.[江苏卷] 一台质谱仪的工作原理如图所示.大量的甲、乙两种离子飘入电压为U0的加速电场,其初速度几乎为0,经加速后,通过宽为L的狭缝MN沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打到照相底片上.已知甲、乙两种离子的电荷量均为+q,质量分别为2m和m,图中虚线为经过狭缝左、右边界M、N的甲种离子的运动轨迹.不考虑离子间的相互作用.(1)求甲种离子打在底片上的位置到N点的最小距离x;(2)在图中用斜线标出磁场中甲种离子经过的区域,并求该区域最窄处的宽度d;(3)若考虑加速电压有波动,在(U0-ΔU)到(U0+ΔU)之间变化,要使甲、乙两种离子在底片上没有重叠,求狭缝宽度L满足的条件.9.[全国卷Ⅲ] 如图,空间存在方向垂直于纸面(xOy平面)向里的磁场.在x≥0区域,磁感应强度的大小为B0;x<0区域,磁感应强度的大小为λB0(常数λ>1).一质量为m、电荷量为q(q>0)的带电粒子以速度v0从坐标原点O沿x轴正向射入磁场,此时开始计时,当粒子的速度方向再次沿x轴正向时,求(不计重力):(1)粒子运动的时间;(2)粒子与O点间的距离.2017年高考物理试题——磁场参考答案1.A[解析] 穿过a和b两线圈的磁感线的条数相同,所以选项A正确.2.BC[解析] 由题意知,三根导线处于等边三角形的三个顶点处,设某导线在等边三角形另外两顶点产生的磁场磁感应强度大小为B0,在L1所在处,L2和L3产生的磁场叠加如图甲所示,方向垂直L2、L3所在平面向上,由左手定则可得安培力的方向平行L2、L3所在平面向下,合磁感应强度大小B L1=2B0cos 60°=B0;同理可得在L2所在处的合磁感应强度大小B L2=2B0cos 60°=B0;在L3所在处,L1和L2产生的磁场叠加如图乙所示,方向平行L1、L2所在平面向右,由左手定则可得安培力的方向垂直L1、L2所在平面向上,合磁感应强度大小B L3=2B0cos 30°=3B0.由安培力F=BIL可得L1、L2和L3单位长度所受的磁场作用力大小之比为1∶1∶3,选项B、C正确.3.C[解析] 当P和Q中电流方向均垂直纸面向里时,由于aP=PQ=aQ=l,P和Q在a点产生的磁感应强度大小相同,方向如图甲所示,其合磁感应强度为B1,由几何关系知B1=2B P cos 30°=3B P,由题可知,a点处磁感应强度为零,则B0和B1等大反向,则可得B0=B1=3B P,且B0方向平行于PQ 向左.当P中电流反向后,如图乙所示,P、Q在a点产生的合磁感应强度为B2,由几何关系知B2=B P=33B0,且B2方向垂直于PQ向上.可得a点处的磁感应强度大小为B=B22+B20=233B0,C正确.4.C[解析] 当粒子在磁场中运动轨迹是半圆时,出射点与入射点的距离最远,故射入的速率为v1时,对应轨道半径为r1=R sin 30°,射入的速率为v2时,对应轨道半径为r2=R sin 60°,由半径公式r=m v qB 可知轨道半径与速率成正比,因此v2v1=r2r1=3,C正确.5.AD[解析] 若将左、右转轴上、下两侧的绝缘漆都刮掉,线圈的上、下两边受安培力而使线圈转动,转过14周后上、下两边受到的安培力使线圈速度减小至零,然后反向转回来,最终做摆动,B 错误;若将左转轴上侧的绝缘漆刮掉,且右转轴下侧的绝缘漆刮掉,电路不能接通,C错误;若将左转轴下侧或上、下两侧的绝缘漆都刮掉,且右转轴下侧的绝缘漆刮掉,线圈的上、下两边受安培力而使线圈转动,转过半周后电路不能接通,线圈能继续按原方向转动,转过一周后上、下两边再次受到同样的安培力而使线圈继续转动,A、D正确.6.B[解析] 对微粒a,洛伦兹力提供其做圆周运动所需向心力,且m a g=Eq,对微粒b,q v B+Eq =m b g ,对微粒c ,q v B +m c g =Eq ,联立三式可得m b >m a >m c ,选项B 正确.7.[答案] (1)2v 0,与x 轴正方向成45°角斜向上(2)v 02[解析] (1)在电场中,粒子做类平抛运动,设Q 点到x 轴距离为L ,到y 轴距离为2L ,粒子的加速度为a ,运动时间为t ,有2L =v 0t ①L =12at 2 ② 设粒子到达O 点时沿y 轴方向的分速度为v yv y =at ③设粒子到达O 点时速度方向与x 轴正方向夹角为α,有tan α=v y v 0④ 联立①②③④式得α=45° ⑤即粒子到达O 点时速度方向与x 轴正方向成45°角斜向上.设粒子到达O 点时速度大小为v ,由运动的合成有v =v 20+v 2y ⑥联立①②③⑥式得v =2v 0 ⑦(2)设电场强度为E ,粒子电荷量为q ,质量为m ,粒子在电场中受到的电场力为F ,由牛顿第二定律可得F =ma ⑧又F =qE ⑨设磁场的磁感应强度大小为B ,粒子在磁场中做匀速圆周运动的半径为R ,所受的洛伦兹力提供向心力,有q v B =m v 2R○10由几何关系可知R=2L⑪联立①②⑦⑧⑨○10⑪式得E B =v02⑫8.[答案] (1)4B mU0q-L(2)2B mU0q-4mU0qB2-L24(3)L<2Bmq[2(U0-ΔU)-2(U0+ΔU)][解析] (1)设甲种离子在磁场中的运动半径为r1电场加速过程,有qU0=12×2m v2且q v B=2m v2r1解得r1=2B mU0 q根据几何关系得x=2r1-L解得x=4B mU0q-L(2)如图所示最窄处位于过两虚线交点的垂线上d =r 1-r 21-⎝⎛⎭⎫L 22 解得d =2B mU 0q -4mU 0qB 2-L 24(3)设乙种离子在磁场中的运动半径为r 2 r 1的最小半径r 1min =2B m (U 0-ΔU )qr 2的最大半径r 2max =1B 2m (U 0+ΔU )q由题意知2r 1min -2r 2max >L ,即4B m (U 0-ΔU )q -2B2m (U 0+ΔU )q >L 解得L <2B m q[2U 0-ΔU -2(U 0+ΔU )] 9.[答案] (1)πm B 0q ⎝⎛⎭⎫1+1λ (2)2m v 0B 0q ⎝⎛⎭⎫1-1λ [解析] (1)在匀强磁场中,带电粒子做圆周运动.设在x ≥0区域,圆周半径为R 1;在x <0区域,圆周半径为R 2.由洛伦兹力公式及牛顿第二定律得qB 0v 0=m v 20R 1① qλB 0v 0=m v 20R 2② 粒子速度方向转过180°时,所需时间t 1为t 1=πR 1v 0③ 粒子再转过180°时,所需时间t 2为 t 2=πR 2v 0 ④ 联立①②③④式得,所求时间为t0=t1+t2=πmB0q⎝⎛⎭⎫1+1λ⑤(2)由几何关系及①②式得,所求距离为d0=2(R1-R2)=2m v0B0q⎝⎛⎭⎫1-1λ⑥。
1.【2017·新课标Ⅲ卷】(12分)如图,空间存在方向垂直于纸面(xOy平面)向里的磁场。
在x≥0区域,磁感应强度的大小为B0;x<0区域,磁感应强度的大小为λB0(常数λ>1)。
一质量为m、电荷量为q (q>0)的带电粒子以速度v0从坐标原点O沿x轴正向射入磁场,此时开始计时,当粒子的速度方向再次沿x轴正向时,求(不计重力)
(1)粒子运动的时间;
(2)粒子与O点间的距离。
2.【2017·新课标Ⅱ卷】(20分)如图,两水平面(虚线)之间的距离为H,其间的区域存在方向水平向右的匀强电场。
自该区域上方的A点将质量为m、电荷量分别为q和–q(q>0)的带电小球M、N先后以相同的初速度沿平行于电场的方向射出。
小球在重力作用下进入电场区域,并从该区域的下边界离开。
已知N离开电场时的速度方向竖直向下;M在电场中做直线运动,刚离开电场时的动能为N刚离开电场时动能的1.5倍。
不计空气阻力,重力加速度大小为g。
求
(1)M与N在电场中沿水平方向的位移之比;
(2)A点距电场上边界的高度;
(3)该电场的电场强度大小。
3.【2017·江苏卷】(16分)一台质谱仪的工作原理如图所示.大量的甲、乙两种离子飘入电压为U0的加速电场,其初速度几乎为0,经过加速后,通过宽为L的狭缝MN沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打到照相底片上.已知甲、乙两种离子的电荷量均为+q,质量分别为2m 和m,图中虚线为经过狭缝左、右边界M、N的甲种离子的运动轨迹.不考虑离子间的相互作用.
(1)求甲种离子打在底片上的位置到N 点的最小距离x ;
(2)在答题卡的图中用斜线标出磁场中甲种离子经过的区域,并求该区域最窄处的宽度d ;
(3)若考虑加速电压有波动,在(0–U U ∆)到(0U U +∆)之间变化,要使甲、乙两种离子在底片
上没有重叠,求狭缝宽度L 满足的条件.
4.【2017·天津卷】(18分)平面直角坐标系xOy 中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅲ现
象存在沿y 轴负方向的匀强电场,如图所示。
一带负电的粒子从电场中的Q 点以速度v 0沿x 轴正方向开始运动,Q 点到y 轴的距离为到x 轴距离的2倍。
粒子从坐标原点O 离开电场进入磁场,最终从x 轴上的P 点射出磁场,P 点到y 轴距离与Q 点到y 轴距离相等。
不计粒子重力,问:
(1)粒子到达O 点时速度的大小和方向;
(2)电场强度和磁感应强度的大小之比。
加微信群预约名师网络试听课
5.【2017·天津卷】(20分)电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制
新武器和航天运载器。
电磁轨道炮示意如图,图中直流电源电动势为E ,电容器的电容为C 。
两根固定于水平面内的光滑平行金属导轨间距为l ,电阻不计。
炮弹可视为一质量为m 、电阻为R 的金属棒MN ,垂直放在两导轨间处于静止状态,并与导轨良好接触。
首先开关S 接1,使电容器完全充电。
然后将S 接至2,导轨间存在垂直于导轨平面、磁感应强度大小为B 的匀强磁场(图中未画出),MN 开始向右加速运动。
当MN 上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN 达到最大速
度,之后离开导轨。
问:
(1)磁场的方向;
(2)MN刚开始运动时加速度a的大小;
(3)MN离开导轨后电容器上剩余的电荷量Q是多少。
1.【2017·四川省凉山州高三第三次诊断】如图所示,光滑平行足够长的金属导轨固定在绝缘水平面上,导轨范围内存在磁场,其磁感应强度大小为B方向竖直向下,导轨一端连接阻值为R的电阻。
在导轨上垂直导轨放一长度等于导轨间距L、质量为m的金属棒,其电阻为r,金属棒与金属导轨接触良好。
导体棒水平向右的恒力F作用下从静止开始运动,经过时间t后开始匀速运动,金属导轨的电阻不计。
求:
(1)导体棒匀速运动时回路中电流大小。
(2)导体棒匀速运动的速度大小以及在时间t内通过回路的电量。
2.【2017·广东省惠州市4月模拟】如图所示,足够长的粗糙绝缘斜面与水平面成=37°放置,在斜面上虚线和与斜面底边平行,在、围成的区域有垂直斜面向上的有界匀强磁场,磁感应强度为B=1T;现有一质量为m=10g,总电阻R=1Ω、边长d=0.1m的正方形金属线圈MNPQ,让PQ边与斜面底边平行,从斜面上端静止释放,线圈刚好匀速穿过整个磁场区域。
已知线圈与斜面间的动摩擦力因数为μ=0.5,(,sin37°=0.6,cos37°=0.8)求:
(1)线圈进入磁场区域时的速度;
(2)线圈释放时,PQ边到的距离;
(3)整个线圈穿过磁场的过程中,线圈上产生的焦耳热。
3.【2017·郑州市第三次质量预测】如图所示,在以O1点为圆心、r=0.20m为半径的圆形区域内,存在着方向垂直纸面向里,磁感应强度大小为B=1.0×10—3的匀强磁场(图中未画出)。
圆的左端跟y轴相切于直角坐标系原点O,右端与一个足够大的荧光屏MN相切于x轴上的A点,粒子源中,有带正电的粒子(比荷为)不断地由静止进入电压U=800V的加速电场.经加速后,沿x 轴正方向从坐标原点O射入磁场区域,粒子重力不计。
(1)求粒子在磁场中做圆周运动的半径、速度偏离原来方向的夹角的正切值。
(2)以过坐标原点O并垂直于纸面的直线为轴,将该圆形磁场逆时针缓慢旋转90°,求在此过程中打在荧光屏MN上的粒子到A点的最远距离。
4.【2017·安徽省江淮十校第三次联考】如图所示,在纸面内有一绝缘材料制成的等边三角形框架DEF 区域外足够大的空间中充满磁感应强度大小为B的匀强磁场,其方向垂直于纸面向里。
等边三角形框架DEF的边长为L,在三角形DEF内放置平行板电容器MN,N板紧靠DE边,M板及DE中点S处均开有小孔,在两板间紧靠M板处有一质量为m,电量为q(q>0)的带电粒子由静止释放,如图(a)所示。
若该粒子与三角形框架碰撞时均无能量损失,且每一次碰撞时速度方向垂直于被碰的边。
不计粒子的重力。
(1)若带电粒子能够打到E点,求MN板间的最大电压;
(2)为使从S点发出的粒子最终又回到S点,且运动时间最短,求带电粒子从S点发出时的速率v应为多大?最短时间为多少?
(3)若磁场是半径为Ⅱ的圆柱形区域,如图(b)所示(图中圆为其横截面),圆柱的轴线通过等边三角形的中心O,且.要使从S点发出的粒子最终能回到S点,带电粒子速度v 的大小应为多少?
5.【2017·河南省南阳、信阳等六市高三第二次联考】如图所示是计算机模拟出的一种宇宙空间的情境,在此宇宙空间存在这样一个远离其它空间的区域(在该区域内不考虑区域外的任何物质对区域内物体的引力),以MN为界,上、下两部分磁场磁感应强度大小之比为2:1,磁场方向相同,范围足够大,在距MN为h的P点有一个宇航员处于静止状态,宇航员以平行于界线的速度向右推出一个质量为m 的带负电物体,发现物体在界线处速度方向与界线成60°角,进入下部磁场.由于反冲,宇航员沿与界线平行的直线匀速运动,到达Q点时,刚好又接住物体而静止,求:
(1)PQ间距离d;
(2)宇航员质量M.
6.【2017·广东省揭阳市高三二模】如图所示,半径为L1=2 m的金属圆环内上、下半圆各有垂直圆环平面的有界匀强磁场,磁感应强度大小均为B1=T。
长度也为L1、电阻为R的金属杆ab,一端处于圆环中心,另一端恰好搭接在金属环上,绕着a端沿逆时针方向匀速转动,角速度为ω=rad/s。
通过导线将金属杆的a端和金属环连接到图示的电路中(连接a端的导线与圆环不接触,图中的定值电阻R1=R,滑片P位于R2的正中央,R2的总阻值为4R),图中的平行板长度为L2=2 m,宽度为d=2 m.图示位置为计时起点,在平行板左边缘中央处刚好有一带电粒子以初速度v0=0.5 m/s向右运动,并恰好能从平行板的右边缘飞出,之后进入到有界匀强磁场中,其磁感应强度大小为B2,左边界为图中的虚线位置,右侧及上下范围均足够大。
(忽略金属杆与圆环的接触电阻、圆环电阻及导线电阻,忽略
电容器的充放电时间,忽略带电粒子在磁场中运动时的电磁辐射的影响,不计平行金属板两端的边缘效应及带电粒子的重力和空气阻力)求:
(1)在0~4 s内,平行板间的电势差U MN ;
(2)带电粒子飞出电场时的速度;
(3)在上述前提下若粒子离开磁场后不会第二次进入电场,则磁感应强度B2应满足的条件。
加微信群预约名师网络试听课。