7- 图像配准.
- 格式:ppt
- 大小:2.44 MB
- 文档页数:54
医学影像处理中图像配准的使用教程医学影像处理是指利用计算机科学和技术对医学图像进行处理和分析的过程。
图像配准是医学影像处理中一项非常重要的技术,它可以将不同时间、不同位置、不同模态的医学图像进行对齐,方便医生进行观察和分析。
本文将为您介绍医学影像处理中图像配准的使用教程。
一、图像配准的定义和作用图像配准是将不同图像的特征点进行对应,通过变换和调整,使得图像在空间上达到最佳的匹配,从而实现不同图像的对齐。
图像配准在医学影像处理中的作用主要有以下几个方面:1. 临床诊断:配准后的图像可以更好地显示病灶的位置、形状和大小,帮助医生更准确地进行病情评估和诊断。
2. 治疗规划:配准后的图像可以用于制定治疗计划,帮助医生精确确定手术切除范围、放疗区域等。
3. 病变监测:通过定期对配准后的图像进行对比,可以观察病变的生长和变化,评估治疗效果。
二、图像配准的基本原理图像配准主要包括特征提取、特征匹配、变换模型和优化算法等几个步骤。
下面我们将逐一介绍。
1. 特征提取:特征是指图像上具有一定代表性的点、线或区域,例如角点、边缘等。
特征提取是指从原始图像中抽取出具有代表性的特征点。
2. 特征匹配:特征匹配是将待配准图像的特征点与参考图像的特征点进行对应和匹配。
3. 变换模型:变换模型是指利用数学方法对待配准图像进行变换的模型,常用的变换模型有平移、旋转、缩放、仿射变换和非刚体变形等。
4. 优化算法:优化算法是为了找到最佳的变换参数,使得配准后的图像与参考图像在某种准则下最为接近。
常用的优化算法有最小二乘法、最大似然估计和梯度下降等。
三、图像配准的步骤和技术实现图像配准的具体步骤和技术根据不同的图像类型和配准要求可能会有所不同。
以下是一个常见的图像配准步骤和技术示例:1. 图像预处理:对待配准的图像进行预处理,包括去噪、增强和裁剪等操作,以提高后续步骤的配准效果。
2. 特征提取:从待配准图像和参考图像中提取特征点。
常用的特征点包括SIFT(尺度不变特征变换)和SURF(加速稳健特征)等。
如何进行高效的图像匹配和图像配准图像匹配和图像配准是计算机视觉领域中常见的任务,其目的是通过计算机算法将两幅或多幅图像进行比较,从而找出它们之间的相似性或者进行图像的对齐。
本文将介绍一些高效的图像匹配和图像配准的方法。
一、图像匹配图像匹配即是将一幅图像中的特征在另一幅图像中找到对应物体或者区域。
下面是一些常见的图像匹配方法:1.特征点匹配特征点匹配是最常见的图像匹配方法之一,它通过在图像中提取特征点,并计算特征点的描述子,然后使用某种度量来比较两幅图像的特征点,找出最相似的特征点对。
常用的特征点匹配算法包括SIFT、SURF和ORB等。
2.直方图匹配直方图匹配是一种基于图像全局颜色或纹理分布的匹配方法,它将图像的直方图进行比较,通过计算直方图之间的相似性度量来进行匹配。
直方图匹配适用于颜色和纹理信息较为明显的图像匹配任务。
3.模板匹配模板匹配是一种基于像素点灰度值的匹配方法,它通过将一个预定义的模板图像滑动或者扫描到待匹配图像上,计算模板和图像之间的相似性度量,从而找到最佳匹配位置。
模板匹配适用于物体检测和目标跟踪等应用场景。
4.特征描述子匹配特征描述子匹配是一种将图像中的局部特征点的描述子进行比较的匹配方法,它通过计算特征点描述子之间的相似性度量找到最佳匹配。
常用的特征描述子匹配算法包括基于二值描述子的BRISK和ORB,基于二进制描述子的BRIEF和FREAK,以及基于浮点数描述子的SIFT、SURF和AKAZE等。
二、图像配准图像配准是将两幅或多幅图像进行对齐,使得它们在空间上或者几何上具有一致性。
下面是一些常用的图像配准方法:1.特征点配准特征点配准是将两幅图像中的特征点进行对应的一种配准方法,它通过计算特征点的几何变换关系,然后将其中一幅图像进行变换,使得两幅图像的特征点对应一致。
常用的特征点配准方法包括RANSAC、LMS和Hough变换等。
2.像素级配准像素级配准是将两幅图像的像素进行一一对应的配准方法,它通过计算图像间的几何变换关系,然后将其中一幅图像进行变换,使得两幅图像在几何上对应一致。
计算机视觉中的图像配准技术综述引言计算机视觉中的图像配准技术是一种将多个图像对齐和融合的关键技术。
图像配准技术在医学影像、地理遥感、计算机图形学等领域都有着广泛的应用。
本文将对计算机视觉中的图像配准技术进行综述,包括图像配准的定义、算法原理、分类和应用。
通过对各个方面的概述和分析,希望读者可以对图像配准技术有更深入的了解。
一、图像配准的定义图像配准是指将多个图像按照某种准则对齐和融合的过程。
在图像配准中,通常有一个参考图像(reference image)和一个或多个需要对齐的目标图像(target image)。
图像配准的目的是将目标图像转换到参考图像的空间坐标系中,以使两个或多个图像之间拥有相同的尺度、方向和位置关系。
二、图像配准的算法原理图像配准的算法原理主要包括特征提取、特征匹配和变换模型估计。
具体步骤如下:1. 特征提取特征提取是图像配准中的第一步,它的目的是从图像中提取出一些具有鲁棒性和区分度的特征点或特征描述子。
常用的特征包括角点、边缘、纹理等。
特征提取的方法有很多种,包括Harris角点检测、SIFT、SURF等。
2. 特征匹配特征匹配是图像配准中的关键步骤,它的目的是将参考图像和目标图像中找到的特征进行匹配。
常用的特征匹配方法有最近邻匹配、RANSAC等。
最近邻匹配通过计算特征之间的距离来进行匹配,而RANSAC算法则通过随机采样和模型估计来选择最佳匹配。
3. 变换模型估计变换模型估计是图像配准中的最后一步,它的目的是通过匹配得到的特征点或特征描述子估计参考图像和目标图像之间的变换关系。
常用的变换模型有仿射变换、透射变换、非刚性变形等。
变换模型估计的方法有最小二乘法、最大似然估计等。
三、图像配准的分类图像配准可根据多个维度进行分类。
一种常见的分类方法是根据变换模型的类型来区分,包括刚性配准和非刚性配准。
刚性配准是指保持图像的旋转、平移和缩放不变的配准方法,常用于医学影像中对齐各个时间点的图像。
图像配准的常用方法法图像配准的方法大致分为三类,一类是基于灰度和模板的,这类方法直接采用相关运算等方式计算相关值来寻求最佳匹配位置,方法简单较为死板,一般效果不会太好。
第二类是基于特征的匹配方法,如sift、surf点特征,或者向量特征等等,适应性较强。
第三类是基于域变换的方法,采用相位相关(傅里叶-梅林变换)或者沃尔什变换、小波等方法,在新的域下进行配准。
1. 基于模板匹配的图像配准板匹配时图像配准算法中简单而常见的算法。
在模板匹配中对图像的配准有整幅图像进行的撇皮,也有局部图像和局部图像之间进行的匹配。
在模板匹配过程中通常对模板进行平移,计算对应关系。
一般情况下,采用模板和图像的相关运算计算相关值,相关值越大表示匹配越好。
模板匹配对形态固定的图案具有较好的效果,但是随着配准图像在数量级的扩大,计算复杂度会增加,实时性会增加,随着图像拍摄环境和成像条件的多变,算法的适应性会变差。
2. 基于灰度的图像配准灰度图像配准是利用灰度信息来测量图像的相同部分,方法简单,但是对目标的变动和扭曲会影响配准效果。
较为常见的是求其相似性代价函数,将图像的灰度差做平方和运算。
灰度图像配准方法不需要提取图像的几何特征,所以有很高的识别精度和适用性,单也因为图像灰度信息鼠标比较大,因此运算量大,效率低。
3. 相位相关法、傅里叶-梅林变换(基于变换域的方法)基于变换域的方法有很多,这里安利下我之前的博客:傅里叶-梅林变换进行图像配准,也就是采用了基于相位相关的方法进行的,博客中给出了Matlab的源码。
相位相关法师对图像进行参数转换,利用转换后的参数进行运算,图像由参数变换转换到频域,利用傅里叶变换得到平移后的结果,再在频域实现匹配图像的配准。
在傅里叶变换后,图像的平移成分转换到了相位,计算相位的最大匹配位置,就可以得到原始图像的平移量了,这就是相位相关。
更进一步,我们引入傅里叶-梅林变换的概念。
我们通过相位相关只能得到平移量,那么如果有旋转和缩放呢?是否还记得传统图像中的对数-极坐标变换呢?没错,将二者结合起来:相位相关得到平移位置,对数变换得到尺度,极坐标变换得到旋转角,这就是傅里叶-梅林变换。
图像处理中图像配准算法的使用技巧图像配准是图像处理中常见的任务之一,它是指将两幅或多幅图像在空间上进行对齐的过程。
通过图像配准,我们可以使得不同来源、不同角度或者不同感光条件下获取的图像能够准确对齐,从而方便后续的图像分析与处理。
本文将介绍常见的图像配准算法以及它们的使用技巧。
一、基本概念与原理在开始介绍图像配准算法之前,我们首先来了解一些基本概念与原理。
1. 图像配准的目标图像配准的目标是通过对两幅或多幅图像进行变换,使得它们在某种准则下达到最佳的对齐效果。
常见的配准准则包括最小化均方误差、最大化互信息等。
2. 变换模型图像配准的核心是通过对图像进行一定的变换,将它们对齐。
常用的变换模型包括平移、旋转、缩放、仿射变换等。
不同的变换模型适用于不同的应用场景。
3. 配准误差评估在进行图像配准后,我们需要对配准结果进行评估。
常见的评估指标包括均方差、互信息、相对误差等。
二、常见的图像配准算法1. 特征点匹配法特征点匹配法是一种常用的图像配准算法。
它通过在图像中提取特征点,然后在两幅或多幅图像中寻找对应的特征点,最后利用对应的特征点计算出图像之间的变换关系。
常见的特征点匹配算法包括SIFT、SURF、ORB等。
使用技巧:- 在选择特征点时,应选择具有鲁棒性和独特性的点,避免选择到噪声点或者重复点。
- 对于大场景或者复杂场景,可以先对图像进行分区域处理,以降低计算量并提高匹配的准确性。
- 在进行特征点匹配时,可以使用RANSAC算法去除误匹配的点,提高匹配结果的准确性。
2. 相关性匹配法相关性匹配法是一种基于图像之间的互相关性进行配准的算法。
它通过计算图像之间的互相关系数,来寻找最佳的配准变换关系。
这种方法相对于特征点匹配法更加直接,适用于一些相对简单的图像。
使用技巧:- 在计算互相关系数时,可以使用加速技术,如傅里叶变换、局部相干性算法等,提高计算效率。
- 在进行配准时,可以先进行图像的预处理,如亮度调整、去噪等操作,提高配准效果。
7.4 图像配准的方法7.4.1 基于特征的图像配准基于特征的图像配准首先提取图像信息的特征,然后以这些特征为模型进行配准。
特征提取的结果是一含有特征的表和对图像的描述,每个特征由一组属性表示,对属性的进一步描述包括边缘的定向和弧度、区域的大小等。
局部特征之间存在着相互关系,如几何关系、辐射度量关系、拓扑关系等。
可以用这些局部特征之间的关系描述全局特征。
通常基于局部特征配准大多都是基于点、线或边缘的,而全局特征的配准则是利用局部特征之间的关系进行配准的方法。
由于图像的特征点比图像的像素点要少很多,因此大大减少了配准过程的计算量,但特征提取方法的计算代价通常较大,不便于实时应用。
特征点的配准度量值对位置的变化比较敏感,可以大大提高配准的精确程度。
对于纹理较少的图像区域提取的特征的密度通常比较稀少,局部特征的提取就比较困难。
特征点的提取过程可以减少噪声的影响,对灰度变化、图像形变和遮挡等都有较好的适应能力。
因此,在图像配准领域得到了广泛应用。
基于特征的图像配准方法有两个重要环节:特征提取和特征配准。
7.4.2 基于互信息的图像配准医学图像配准技术从基于特征的配准方法发展到基于统计的配准方法有其突破性的意义。
与基于特征的配准方法相比,基于统计的配准方法的突出优点为鲁棒性好、配准精度高、人工干预少。
基于统计的配准方法通常是指最大互信息的图像配准方法。
基于互信息的图像配准是用两幅图像的联合概率分布与完全独立时的概率分布的广义距离来估计互信息,并作为多模态医学图像配准的测度。
当两幅基于共同的解剖结构的图像达到最佳配准时,它们的对应像素的灰度互信息应为最大。
由于基于互信息的配准对噪声比较敏感,首先,通过滤波和分割等方法对图像进行预处理。
然后进行采样、变换、插值、优化从而达到配准的目的。
基于互信息的配准技术属于基于像素相似性的方法。
它基于图像中所有的像素进行配准,基于互信息的图像配准引入了信息论中的概念,如熵、边缘熵、联合熵和互信息等,可使配准精度达到亚像素级的高精度。
医学图像处理中的图像配准方法医学图像处理是医学影像科学中的一个重要领域,它利用计算机技术对医学图像进行处理和分析,用于疾病的诊断、治疗和监测。
而图像配准作为医学图像处理中的关键环节,被广泛应用于多种医学领域,如影像对比增强、图像叠加、图像融合等。
本文将介绍医学图像处理中常用的图像配准方法。
图像配准是指将不同影像中对应的特征点或特征区域进行匹配的过程,以实现不同图像之间的对齐或重叠。
在医学图像处理中,图像配准有助于医生更准确、全面地理解病变、解剖结构和功能区域。
以下是几种常用的图像配准方法:1. 特征点匹配法特征点匹配法是一种常用的图像配准方法。
它通过检测和匹配图像中的特征点,如角点、边缘点、斑点等,实现图像的对齐。
该方法的优势在于对于图像的亮度、尺度、旋转和投影变换等具有一定的鲁棒性。
例如,在CT和MRI图像配准中,可以利用特征点匹配法检测头部或骨骼结构的明显特征点,实现图像配准。
2. 相位相关法相位相关法是一种基于图像的频域分析的图像配准方法。
它利用傅里叶变换将图像从空域转换到频域,通过计算图像的互相关函数,寻找最大互相关值对应的位移量,从而实现图像的对齐。
这种方法通常用于医学图像的精确对准,如放射治疗中的CT图像与MRI图像的配准。
3. 互信息法互信息法是一种基于信息论的图像配准方法。
它通过计算图像之间的互信息量,来评估图像的相似度和位移。
互信息越大,说明两幅图像的相似度越高,反之亦然。
互信息法可以用于多模态图像配准,比如将CT图像与PET图像进行配准以实现精确的病变定位。
4. 弹性配准法弹性配准法是一种基于物理模型的图像配准方法。
它通过建立弹性变形模型,将图像的形状进行变换,实现图像的对准。
这种方法适用于需要进行大范围形变的图像配准,如脑部图像配准,可以通过建立弹性模型,将功能区域对齐。
5. 局部插值法局部插值法是一种基于插值算法的图像配准方法。
它通过将图像进行网格化,对网格点进行插值处理,实现图像的变形和对齐。
全面梳理:图像配准综述内容导读:1 定义2 问题背景和应用3 相关关键词4 问题分类4.1 基于问题特点的分类4.2 根据算法本质的分类5 图像配准通用流程5.1 基于特征的图像配准通用流程6 图像配准质量评估标准7 前人工作8 相关开源工具9 数据集Image registration 图像配准图像配准与相关 [1] 是图像处理研究领域中的一个典型问题和技术难点,其目的在于比较或融合针对同一对象在不同条件下获取的图像,例如图像会来自不同的采集设备,取自不同的时间,不同的拍摄视角等等,有时也需要用到针对不同对象的图像配准问题。
具体地说,对于一组图像数据集中的两幅图像,通过寻找一种空间变换把一幅图像(浮动图像,moving image)映射到另一幅图像(参考图像,fixed image)上,使得两图中对应于空间同一位置的点一一对应起来,从而达到信息融合的目的。
图像配准常为图像融合的一个预处理步骤。
经过精确图像配准的图像对,通常可获得更好的融合效果。
一、定义图像配准是使用某种算法,基于某种评估标准,将一副或多副图片(局部)最优映射到目标图片上的方法。
根据不同配准方法,不同评判标准和不同图片类型,有不同类型的图像配准方法。
(详见“问题分类”部分)二、问题背景和应用图像配准在计算机视觉、医学图像处理、材料力学、遥感等领域有广泛应用。
由于可应用图像配准的图像类型众多,暂时无法开发出可满足所有用途的通用优化方法。
图像配准在医学图像处理与分析中有众多具有实用价值的应用。
随着医学成像设备的进步,对于同一患者,可以采集含有准确解剖信息的图像诸如CT,MRI;同时,也可以采集到含有功能信息的图像诸如SPECT。
然而,通过观察不同的图像进行诊断需要凭着空间想象和医生的主观经验。
采用正确的图像配准方法则可以将多种多样的信息准确地融合到同一图像中,使医生更方便更精确地从各个角度观察病灶和结构。
同时,通过对不同时刻采集的动态图像的配准,可以定量分析病灶和器官的变化情况,使得医疗诊断、制定手术计划、放射治疗计划更准确可靠。
图像配准(Image registration)就是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程,它已经被广泛地应用于遥感数据分析、计算机视觉、图像处理等领域。
配准技术的流程配准技术的流程如下:首先对两幅图像进行特征提取得到特征点;通过进行相似性度量找到匹配的特征点对;然后通过匹配的特征点对得到图像空间坐标变换参数:最后由坐标变换参数进行图像配准。
而特征提取是配准技术中的关键,准确的特征提取为特征匹配的成功进行提供了保障。
因此,寻求具有良好不变性和准确性的特征提取方法,对于匹配精度至关重要.研究工作图像配准的方法迄今为止,在国内外的图像处理研究领域,已经报道了相当多的图像配准研究工作,产生了不少图像配准方法。
总的来说,各种方法都是面向一定范围的应用领域,也具有各自的特点。
比如计算机视觉中的景物匹配和飞行器定位系统中的地图匹配,依据其完成的主要功能而被称为目标检测与定位,根据其所采用的算法称之为图像相关等等。
基本方式图像配准的方式图像配准的方式可以概括为相对配准和绝对配准两种:相对配准是指选择多图像中的一张图像作为参考图像,将其它的相关图像与之配准,其坐标系统是任意的。
绝对配准是指先定义一个控制网格,所有的图像相对于这个网格来进行配准,也就是分别完成各分量图像的几何校正来实现坐标系的统一。
本文主要研究大幅面多图像的相对配准,因此如何确定多图像之间的配准函数映射关系是图像配准的关键。
通常通过一个适当的多项式来拟合两图像之间的平移、旋转和仿射变换,由此将图像配准函数映射关系转化为如何确定多项式的系数,最终转化为如何确定配准控制点(RCP)。
图像配准方法目前,根据如何确定RCP的方法和图像配准中利用的图像信息区别可将图像配准方法分为三个主要类别:基于灰度信息法、变换域法和基于特征法[1],其中基于特征法又可以根据所用的特征属性的不同而细分为若干类别。