基于特征点的图像配准与拼接技术研究
- 格式:pdf
- 大小:403.36 KB
- 文档页数:5
测绘中的图像配准与图像融合技术在测绘领域,图像配准和图像融合技术扮演着重要的角色。
图像配准是指将两幅或多幅图像进行准确地对齐,以便在后续的分析和处理中使用。
而图像融合则是将不同传感器获取的多幅图像融合为一幅图像,以提高图像的质量和信息提取能力。
这两种技术的结合可以为测绘工作提供更加精确和全面的数据支持。
图像配准是测绘工作中常用的技术,它可以对不同时间、不同角度或不同传感器获取的图像进行对比和分析。
基于遥感影像的配准,可以实现矢量数据和栅格数据的相互转换和叠加分析。
在实际应用中,图像配准可以用于地物分类、变化检测、地表变形监测等方面。
图像配准的关键是找到两幅或多幅图像之间的对应关系,即确定它们之间的几何变换参数。
常见的图像配准方法包括基于特征点的方法和基于相位相关的方法。
特征点法通过检测图像中的关键特征点,如角点、边缘等,然后通过匹配这些特征点来确定图像之间的变换关系。
而相位相关法则是利用图像的频域信息来计算图像之间的相似性,从而得到图像之间的几何变换参数。
图像融合是将多个传感器获取的图像进行融合,以达到更全面、更准确的信息提取效果。
常见的图像融合方法包括基于像素的方法和基于特征的方法。
像素级融合将不同图像的像素值进行加权平均,以得到融合后的图像。
而特征级融合则是通过提取不同图像中的特征信息,如边缘、纹理等,然后将这些特征信息进行融合以得到最终的图像。
在测绘中,图像融合技术可以用于提高地物提取的精度和准确性。
例如,在高分辨率遥感图像中,利用多传感器图像融合可以将可见光和红外图像进行融合,以提高地物分类的精度。
同时,图像融合还可以用于消除传感器本身的噪声和模糊,从而提高图像的清晰度和质量。
除了以上的应用,图像配准和图像融合技术还可以在测绘中发挥其他的作用。
例如,在地表变形监测中,通过将多时相的遥感图像进行配准和融合,可以获取地表变形的信息,从而实现地质灾害的预警和监测。
此外,图像配准和图像融合技术还可以在地理信息系统中进行数据整合和更新,以支持地理空间数据的管理和分析。
MATLAB中的图像配准与匹配方法图像配准与匹配是计算机视觉领域的重要研究方向。
配准指的是将多幅图像在空间上对齐,使得它们之间的特定特征点或特征区域对应一致。
匹配则是在已经配准的图像中寻找相似的图像区域。
在实际应用中,图像配准与匹配常用于医学图像分析、遥感影像处理、计算机视觉等领域,具有广泛的应用前景。
MATLAB作为一种强大的数值计算与数据可视化软件,提供了丰富的图像处理和计算机视觉函数,使得图像配准与匹配任务变得更加简便和快捷。
下面将介绍几种常用的MATLAB图像配准与匹配方法。
一、基于特征点的图像配准特征点是图像中具有鲁棒性和独特性的点,常常用于图像配准任务。
在MATLAB中,可以使用SURF(Speeded-Up Robust Features)或SIFT(Scale-Invariant Feature Transform)等函数来检测图像中的特征点。
然后可以通过计算特征点间的相似度或使用一致性约束等方法来对图像进行配准。
二、基于图像区域的图像配准除了特征点外,图像的局部区域也可以作为配准的参考。
一种常用的方法是使用归一化互相关(Normalized Cross Correlation)来度量两幅图像之间的匹配度。
在MATLAB中,可以使用normxcorr2函数来实现归一化互相关操作。
该函数将两幅图像进行归一化,并计算它们之间的互相关系数,从而确定最佳的配准位置。
三、基于形态学的图像配准形态学图像处理是一种基于形态学运算的图像处理方法。
它利用图像中的形状、结构和拓扑信息来进行图像处理和分析。
在图像配准中,形态学操作可以用来提取图像区域的形状信息,并进行形状匹配。
在MATLAB中,可以使用bwmorph函数进行形态学操作,例如腐蚀、膨胀、开运算、闭运算等,从而实现图像的配准与匹配。
四、基于变换模型的图像配准图像配准中常常涉及到图像的几何变换,例如平移、旋转、缩放、投影变换等。
在MATLAB中,可以使用imwarp函数来对图像进行几何变换和配准。
目录第一部分利用ENVI对图像进行配准-校正-拼接-裁剪 (2)一、图像配准与校正 (2)(一)基础知识 (2)(二)ENVI操作 (4)二、图像镶嵌(图像拼接) (16)(一)基础知识 (16)(二)ENVI操作 (16)三、图像裁剪 (20)(一)基础知识 (20)(二)ENVI操作 (21)第二部分:下载影像及介绍 (26)(一)基本信息 (26)(二)日期信息 (26)(三)云量信息 (26)(四)空间信息 (26)第一部分利用ENVI对图像进行配准-校正-拼接-裁剪一、图像配准与校正(一)基础知识1、图像配准就是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程,它已经被广泛地应用于遥感数据分析、计算机视觉、图像处理等领域。
2、几何校正是指利用地面控制点和几何校正数学模型,来矫正非系统因素产生的误差,非系统因素如传感器本身的高度、地球曲率、空气折射或地形等的影响。
由于校正过程中会将坐标系统赋予图像数据,所以此过程包括了地理编码。
简单来说,图像校正是借助一组控制点,对一幅图像进行地理坐标的校正。
本文将采用地面控制点+校正模型的几何校正方式中的Image to Image,利用Image格式的基准影像对2006年兰州TM影像进行配准与校正。
3、图像选点原则[1]选取图像上易分辨且较精细的特征点,如道路交叉点、河流弯曲或分叉处、海岸线弯曲处、飞机场、城廓边缘等。
[2]特征变化大的地区需要多选。
[3]图像边缘部分一定要选取控制点。
[4]尽可能满幅均匀选取。
[5]保证一定数量的控制点,不是控制点越多越好。
4、数理知识:[1]多项式模型x=a0+a1X+a2Y+a3X²+a4XY+ a5Y²+....y=b0+ b1X+b2Y+b3X²+ b4XY +b5Y²+ ....X,Y:校正前该点的位置;x,y:校正后该点的位置[2]最少控制点个数: ( n+1 )²[3]误差计算:RMSEerror= sqrt( (x' -x)²+ (y' -y)²)5、重采样方法(插值算法)[1]最近邻法概念:取与所计算点( x,y )周围相邻的4个点,比较它们与被计算点的距离,哪个点距离最近就取哪个亮度值作为 ( x,y )点的亮度值优点:简单易用,计算显小缺点:图像的亮度具有不连续性,精度差[2]双线性内插法概念:取(x,y)点周围的4个邻点,在y方向内插2次,再在x方向内插1次,得到( x,y)点的亮度值 f ( x,y)优点:双线性内插法比最近邻法虽然计算虽有所增加,但精度明显提高,特别是对亮度不连续现象或线状特征的块状化现象有明显的改善。
图像匹配算法研究一、概述随着数字化时代的深入发展,图像数据呈现出爆炸性增长,如何从海量的图像数据中高效、准确地找到目标图像成为了迫切需要解决的问题。
图像匹配算法研究作为计算机视觉领域的一个重要课题,其目标是找出不同图像中的相同或相似部分,从而建立图像之间的映射关系。
这一研究领域不仅对于图像检索、目标跟踪、场景识别等应用具有重要意义,而且对于推动计算机视觉技术的发展起到了关键作用。
图像匹配算法的基本原理可以概括为特征提取和特征匹配两个步骤。
特征提取是从图像中提取有意义的信息的过程,这些信息可以是图像中的边缘、角点、斑点等局部特征,也可以是图像的纹理、颜色、形状等全局特征。
特征提取的目的是将原始图像转化为一种更紧凑、更易于比较和处理的形式。
而特征匹配则是将提取出的特征进行比较和配对,以找出两幅图像中相似或相同的特征点,从而建立图像之间的对应关系。
在过去的几十年中,研究者们已经提出了许多图像匹配算法,这些算法可以分为基于灰度的图像匹配和基于特征的图像匹配两大类。
基于灰度的图像匹配方法主要利用图像的灰度信息来进行匹配,而基于特征的图像匹配方法则通过提取和比较图像中的特征来进行匹配。
尽管这些算法在一定程度上提高了匹配的精度和速度,但由于复杂的拍摄环境和不断提高的匹配精度和实时性要求,现有的算法仍然面临着许多挑战。
1. 图像匹配算法的定义与重要性图像匹配,又称图像配准或图像对齐,是计算机视觉领域中的一个核心问题。
它指的是在不同时间、不同视角、不同传感器或不同条件下获取的两幅或多幅图像之间,寻找并确定相同目标或特征间的对应关系的过程。
简言之,图像匹配就是要找出两幅图像中相同或相似部分的对应关系。
图像匹配算法的重要性体现在多个方面。
它是许多高级计算机视觉任务的基础,如目标跟踪、三维重建、图像融合、图像拼接等。
在这些任务中,通常需要先对图像进行匹配,以确定不同图像间的对应关系,进而进行后续处理。
图像匹配在遥感图像处理、医学影像分析、安全监控等领域也有着广泛应用。
基于深度学习的图像特征提取与匹配图像特征提取与匹配是计算机视觉中的一个重要任务。
它涉及到从图像中提取有意义的特征,并将这些特征用于识别、分类、定位或检索等应用中。
而深度学习作为一种强大的机器学习方法,已经在图像特征提取与匹配中取得了卓越的成果。
本文将介绍基于深度学习的图像特征提取与匹配的方法和应用。
首先,我们需要了解什么是图像特征。
图像特征是指图像中具有某种特异性或统计信息的局部区域或全局描述。
常见的图像特征包括颜色、纹理、形状等,这些特征能够反映图像的内容和结构。
传统的图像特征提取方法主要基于手工设计的算法,例如SIFT、SURF和HOG等。
这些方法需要依赖于人工选择和设计的特征提取策略,效果和鲁棒性受限。
而深度学习方法通过自动学习特征表示的方式,克服了传统方法的局限性。
深度学习方法在图像特征提取中的核心是卷积神经网络(CNN)。
CNN通过多层卷积和池化操作,逐渐提取出图像中的高层次、抽象的特征表示。
这些特征表示不仅具有好的区分性能,还能保持一定的尺度和形变不变性。
在图像特征提取中,一个常见的方法是使用预训练的CNN模型获取特征表示。
预训练的CNN模型在大规模图像数据上进行训练,学习到了一组通用的图像特征。
我们可以通过将图像输入到该模型中,提取出图像的高级语义特征。
常用的预训练模型包括VGGNet、ResNet和Inception等。
另一种方法是端到端的训练整个网络,用于从图像中直接学习特定任务的特征表示。
这种方法不依赖于预训练模型,可以更好地适应特定的任务需求。
例如,在人脸识别任务中,可以通过训练一个人脸验证网络,将同一人的图像嵌入到一个低维特征空间中,从而实现人脸的比对和识别。
除了特征提取,图像特征匹配也是图像处理中的一个重要任务。
图像特征匹配用于将两幅或多幅图像中的相似特征进行匹配,从而实现图像的对齐、配准、拼接等应用。
传统的图像特征匹配方法主要基于手工设计的匹配算法,效果受限。
而基于深度学习的图像特征匹配方法,通过学习图像特征的相似性度量,能够得到更准确和鲁棒的匹配结果。
图像拼接方法总结图像拼接方法总结 (1)引言 (1)1 基于网格的拼接 (3)2基于块匹配的拼接(也叫模板匹配) (4)3基于比值法拼接 (6)4 基于FFT的相位相关拼接 (7)基于特征的图像配准方法 (9)5 Harris角点检测算法 (10)6基于SIFT尺度不变特征的图像拼接 (15)SIFT主要思想及特点 (16)SIFT算法详细过程 (16)SIFT匹配算法实现 (20)7 基于surf 的图像配准 (22)SURF算法介绍 (22)算法详细过程 (23)8 基于最大互信息的图像配准 (24)9 基于小波的图像拼接 (27)10 基于轮廓特征的图像拼接技术 (27)引言首先研究了图像拼接的基本技术,包括图像预处理、图像配准、图像融合,图像的预处理包括:图像预处理的主要目的是为了:降低图像配准的难度,提高图像配准精度。
图像预处理包括:图像投影、图像去噪、图像修正等。
图像配准采用的算法主要有两类:一类是基于区域的算法,是指利用两张图像间灰度的关系来确定图像间坐标变化的参数,其中包括基于空间的像素配准算法包括(1基于块匹配,2基于网格匹配,3基于比值匹配),基于频域的算法(4既是基于FFT的相位相关拼接)等。
另一类是基于特征拼接的算法,是利用图像中的明显特征(点,线,边缘,轮廓,角点)来计算图像之间的变换,而不是利用图像中全部的信息,其中包括5 Harris角点检测算法,6 SIFT(角点)尺度不变特征转换算法,7 surf(角点,这种方法是sift方法的改进,速度提高)特征算法,第三类是8 基于最大互信息的拼接,9 基于小波(将拼接工作由空间域转向小域波,即先对要拼接的图像进行二进小波变换,得到图像的低频、水平、垂直三个分量,然后对这三个分量进行基于区域的拼接,分别得到三个分量的拼接结果,最后进行小波重构即可获得完整的图像)。
图像的融合:1直接平均值法、2基于小波变换、3线性加权法4 最大值法5 多元回归算法1 基于网格的拼接优缺点:计算量大,精度高,很难选择初始步长。
图像拼接一、实验原理及实验结果图像拼接就是将一系列针对同一场景的有重叠部分的图片拼接成整幅图像,使拼接后的图像最大程度地与原始场景接近,图像失真尽可能小。
基于SIFT算法则能够对图像旋转、尺度缩放、亮度变化保持不变性,对视角变化,仿射变换,噪声也能保持一定程度的稳定性。
本次实验运用SIFT匹配算法来提取图像的特征点,采用随机抽样一致性算法求解单应性矩阵并剔除错误的匹配对。
最后用加权平均融合法将两帧图像进行拼接。
具体过程为:首先选取具有重叠区域的两帧图像分别作为参考图像和待拼接图像,然后使用特征提取算法提取特征点,并计算特征点描述子,根据描述子的相似程度确定互相匹配的特征点对。
再根据特征点对计算出待拼接图像相对于参考图像的单应性矩阵,并运用该矩阵对待拼接图像进行变换,最后将两帧图像进行融合,得到拼接后的图像。
1.特征点检测与匹配特征点检测与匹配中的尺度空间理论的主要思想就是利用高斯核对原始图像进行尺度变换,获得图像多尺度下的尺度空间表示序列,再对这些序列就行尺度空间的特征提取。
二维的高斯核定义为:G(x,y,σ)=12πσ2e−(x2+y2)2σ2⁄对于二维图像I(x,y),在不同尺度σ下的尺度空间表示I(x,y,σ)可由图像I(x,y)与高斯核的卷积得到:L(x,y,σ)=G(x,y,σ)∗I(x,y)其中,*表示在x 和 y方向上的卷积,L表示尺度空间,(x,y)代表图像I上的点。
为了提高在尺度空间检测稳定特征点的效率,可以利用高斯差值方程同原图像进行卷积来求取尺度空间极值:D(x,y,σ)=(G(x,y,kσ)−G(x,y,σ))∗I(x,y)= L(x,y,kσ)−L(x,y,σ)其中k为常数,一般取k=√2。
SIFT算法将图像金字塔引入了尺度空间,首先采用不同尺度因子的高斯核对图像进行卷积以得到图像的不同尺度空间,将这一组图像作为金字塔图像的第一阶。
接着对其中的2倍尺度图像(相对于该阶第一幅图像的2倍尺度)以2倍像素距离进行下采样来得到金字塔图像第二阶的第一幅图像,对该图像采用不同尺度因子的高斯核进行卷积,以获得金字塔图像第二阶的一组图像。
测绘技术中的图像匹配与配准方法解析近年来,随着测绘技术的快速发展,图像匹配与配准成为了测绘领域中的热门研究课题。
图像匹配与配准是指通过计算机算法将两幅或多幅图像进行比对和对齐的过程,以实现地理信息的提取和获取。
本文将从理论与方法两方面对图像匹配与配准进行解析。
一、图像匹配的理论基础图像匹配的核心思想是通过计算机算法寻找两幅图像中特征点的对应关系,从而实现图像的对齐和匹配。
在图像匹配中,特征点是最重要的概念之一。
特征点是指在图像中具有独特性和可区分性的局部区域,如角点、边缘点等。
通过寻找特征点并计算其特征描述子,可以实现图像的匹配。
在图像匹配中,主要有两种方法,分别是基于区域的匹配和基于特征点的匹配。
基于区域的匹配是指通过计算两幅图像中各个区域的相似度来判断它们是否匹配。
这种方法适用于图像内容相对简单的情况。
而基于特征点的匹配是指通过计算两幅图像中特征点的对应关系来实现图像匹配。
这种方法适用于图像内容复杂的情况。
二、图像匹配的方法与算法1. SIFT算法SIFT(Scale-Invariant Feature Transform)算法是一种经典的图像特征提取与匹配算法。
该算法通过在图像中检测关键点,并计算关键点的局部特征描述子,来实现对图像的匹配。
SIFT算法具有尺度不变性和旋转不变性的特点,适用于多种场景下的图像匹配与配准。
2. SURF算法SURF(Speeded-Up Robust Features)算法是一种高效的图像特征提取与匹配算法。
该算法通过对图像中的局部区域进行加速特征检测和描述,来实现对图像的匹配。
SURF算法利用了积分图像和快速Hessian矩阵的计算方法,具有较高的计算效率和鲁棒性。
3. 区域匹配算法区域匹配算法是一种基于图像区域相似度的匹配方法。
该算法通过计算两幅图像中各个区域的相似度,来决定它们是否匹配。
常用的区域匹配算法包括相位相关算法、灰度共生矩阵算法和小波变换算法等。
医疗图像处理和分析中的三维重建与拼接算法研究在医疗领域,图像处理和分析起着至关重要的作用,能够提供精确的诊断和治疗方案。
其中,三维重建和拼接算法在医疗图像处理中发挥着重要的作用。
本文将探讨医疗图像处理和分析中的三维重建与拼接算法的研究进展。
医疗图像处理和分析的目标是从医学图像中提取有用的信息,并对其进行分析。
在医学影像学中,三维重建和拼接是获取清晰且全面的图像信息的关键部分。
基于二维医学图像,通过三维重建和拼接技术,可以生成具有更多细节和深度的三维模型,为医生提供更准确的诊断和治疗指导。
三维重建与拼接算法是通过将不同方向或角度的二维图像融合在一起,构建三维模型。
医学图像的源数据通常包括CT扫描、MRI、X光等。
这些图像数据通过三维重建与拼接算法可以获得清晰的三维模型,以提供更具说服力的可视化结果。
目前,医疗图像处理和分析中使用的三维重建与拼接算法主要包括以下几种:1. 体素插值算法:体素插值算法通过将二维图像叠加起来,以生成三维模型。
其中,最常用的方法是三线性插值算法和二次BS线性插值算法。
这些算法适用于各种医学图像,能够高效地重建三维模型。
2. 点云配准算法:点云配准算法将不同角度或方向的点云数据进行配准,以生成完整的三维模型。
这些算法主要包括ICP(Iterative Closest Point)算法、基于特征的配准算法等。
点云配准算法在医疗图像中广泛应用,可以实现高精度的三维重建。
3. 表面重建算法:表面重建算法通过将二维图像投影到三维空间中,并通过重建表面轮廓来生成三维模型。
常用的表面重建算法包括Marching Cubes算法、Poison Surface Reconstruction算法等。
这些算法可以处理复杂的医学图像,能够生成具有高精度的三维模型。
在研究三维重建与拼接算法时,还需要考虑以下几个关键问题:1. 图像配准:不同角度或方向的医学图像需要进行精确的配准,以保证重建和拼接的准确性。
计算机视觉中的图像配准方法在计算机视觉领域,图像配准是一项重要的技术,用于将两幅或多幅图像对齐以便进行比较、融合或者其他后续处理。
图像配准可以用于医学影像、遥感图像、安防监控等众多领域,其准确性对于后续分析的结果至关重要。
本文将介绍几种常用的图像配准方法。
一、特征点匹配法特征点匹配法是一种常见且广泛使用的图像配准方法。
该方法基于图像中的特征点,通过在两幅图像中提取特征点并找到对应关系,从而将两幅图像对齐。
对于特征点的提取,常见的算法包括SIFT、SURF、ORB等。
这些算法通过局部特征的描述,将图像中的特征点提取出来,并计算特征点的描述子。
在匹配过程中,可以使用暴力匹配算法或者基于FLANN 的快速匹配算法。
特征点匹配法的优点是可以在图像具有较大变形的情况下保持较好的配准性能,而其缺点是对于纹理缺乏明显特征或存在视差较大的区域,会出现匹配错误的情况。
二、基于区域的图像配准方法基于区域的图像配准方法以图像的一些特定区域为基础进行配准。
该方法在医学影像领域较为常见,如脑部MRI图像的配准。
在这种方法中,通常首先选择一些显著的图像区域作为配准参考,可以是人眼识别的解剖结构或者其他特征明显的区域。
然后,通过提取这些区域的特征并进行匹配,实现图像的配准。
基于区域的图像配准方法的优点是可以更好地处理缺失纹理或大面积变形的情况,而其缺点是对于纹理稀疏或者不连续的区域,可能无法找到有效的配准特征。
三、基于图像变换的配准方法基于图像变换的配准方法通过对图像进行变换和变形,实现图像的对齐。
常用的变换包括平移、旋转、缩放、仿射变换等。
在这种方法中,首先需要确定变换模型,根据具体需求选择适当的变换模型。
然后,通过优化匹配误差,估计出最优的变换参数,使得两幅图像尽可能一致。
基于图像变换的配准方法的优点是可以在图像中存在较大形变或者变形的情况下实现配准,同时可以控制图像变换的参数进行精细调整。
然而,该方法也存在计算复杂度高和模型选择的挑战。
目录第一部分利用ENVI对图像进行配准-校正-拼接-裁剪 (2)一、图像配准与校正 (2)(一)基础知识 (2)(二)ENVI操作 (4)二、图像镶嵌(图像拼接) (16)(一)基础知识 (16)(二)ENVI操作 (16)三、图像裁剪 (20)(一)基础知识 (20)(二)ENVI操作 (21)第二部分:下载影像及介绍 (26)(一)基本信息 (26)(二)日期信息 (26)(三)云量信息 (26)(四)空间信息 (26)第一部分利用ENVI对图像进行配准-校正-拼接-裁剪一、图像配准与校正(一)基础知识1、图像配准就是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程,它已经被广泛地应用于遥感数据分析、计算机视觉、图像处理等领域。
2、几何校正是指利用地面控制点和几何校正数学模型,来矫正非系统因素产生的误差,非系统因素如传感器本身的高度、地球曲率、空气折射或地形等的影响。
由于校正过程中会将坐标系统赋予图像数据,所以此过程包括了地理编码。
简单来说,图像校正是借助一组控制点,对一幅图像进行地理坐标的校正。
本文将采用地面控制点+校正模型的几何校正方式中的Image to Image,利用Image格式的基准影像对2006年兰州TM影像进行配准与校正。
3、图像选点原则[1]选取图像上易分辨且较精细的特征点,如道路交叉点、河流弯曲或分叉处、海岸线弯曲处、飞机场、城廓边缘等。
[2]特征变化大的地区需要多选。
[3]图像边缘部分一定要选取控制点。
[4]尽可能满幅均匀选取。
[5]保证一定数量的控制点,不是控制点越多越好。
4、数理知识:[1]多项式模型x=a0+a1X+a2Y+a3X²+a4XY+ a5Y²+....y=b0+ b1X+b2Y+b3X²+ b4XY +b5Y²+ ....X,Y:校正前该点的位置;x,y:校正后该点的位置[2]最少控制点个数: ( n+1 )²[3]误差计算:RMSEerror= sqrt( (x' -x)²+ (y' -y)²)5、重采样方法(插值算法)[1]最近邻法概念:取与所计算点( x,y )周围相邻的4个点,比较它们与被计算点的距离,哪个点距离最近就取哪个亮度值作为 ( x,y )点的亮度值优点:简单易用,计算显小缺点:图像的亮度具有不连续性,精度差[2]双线性内插法概念:取(x,y)点周围的4个邻点,在y方向内插2次,再在x方向内插1次,得到( x,y)点的亮度值 f ( x,y)优点:双线性内插法比最近邻法虽然计算虽有所增加,但精度明显提高,特别是对亮度不连续现象或线状特征的块状化现象有明显的改善。