人教版2020高考数学一轮复习第六章数列6.1数列的概念及其表示法练习理
- 格式:doc
- 大小:880.29 KB
- 文档页数:5
第一节数列的概念与简单表示突破点一数列的通项公式抓牢双基自学回扣[基本知识]1.数列的定义按照一定顺序排列的一列数称为数列. 数列中的每一个数叫做这个数列的项,_ 数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项).2.数列的通项公式如果数列{a n}的第n项与序号n之间的关系可以用一个式子来表示, 那么这个公式叫做这个数列的通项公式.3.数列的递推公式如果已知数列{a n}的第1项(或前几项),且任何一项a n与它的前一项a n-1(或前几项)间的关系可以用一个式子来表示,即a n=f(a n—1)(或a n=f (a n—1, a n—2)等),那么这个式子叫做数列{a n}的递推公式.4. S与a n的关系S, n= 1,已知数列{a n}的前n项和为则a n=C 这个关系式对任意数列均成8 1, n>2,立.[基本能力]一、判断题(对的打“,”,错的打“x”)(1)所有数列的第n项都能使用公式表达.( )(2)根据数列的前几项归纳出数列的通项公式可能不止一个. ( )1(3)若已知数列{an}的递推公式为an+1 = -——且a2=1,则可以写出数列{&}的任何2a n —1一项.( )(4)如果数列{a n}的前n项和为S,则对?nC N,都有a n+1 = S+1 —S.( )答案:(1) X (2) V (3) V (4) X二、填空题11.数列{a n}中,a=2,且a n+1 = 2ai- 1,则a5的值为1 1 . . 一1 一 . .解析:由& = 2, a n+1 = 2a n—1,得a2 = 2a1- 1 = 1 - 1 = 0, a3=~a2- 1 = 0-1 = - 1, a4- 7答案:-4n1 + a2 , n 为偶数,12,数列{ a n }定义如下:a 1=1,当n>2时)a n=- 1若a n = 4,I 尸,n 为奇数, L a n — 1则n 的值为31 2 」 , , 1 1a 3 = a 7= -= -, a 8=1+a 4=4, a 9=-=所以 n= 9.2 a 63 a 8 4答案:93 .数列{a n }的通项公式 a n=T -------- == ^/n +\n + 1解析:a n=.——1——『= ------- [ --- I n ■+1即 - p- = J n + 1 -J n ,n /n + 1 + n ]n n jm- 1 + y/n n jm 1 -yj n••.q iO —3=y i0—小,・•・回一3是该数列的第9项.答案:94.已知S 是数列{a n }的前n 项和,且&= n 2+ 1,则数列{ a n }的通项公式是2 n=1, ■=2n —1, n>2研透高考,潦化提能[全析考法]考法一利用an 与3的关系求通项 •S 1, n= 1,数列{a n }的前n 项和&与通项a n 的关系为a n= ”通过纽带:a n = SS n-S n 1, n>2,-S n 1(n>2),根据题目已知条件,消掉a n 或S n,再利用特殊形式(累乘或累加)或通过构造成等差数列或者等比数列求解.[例1] (1)(2019 ・化州模拟)已知S n 为数列{a n }的前n 项和,且log 2(S n+1) = n+1, 则数列{ a n }的通项公式为 .(2)(2019 •广州测试)已知数列{曰}的各项均为正数,S 为其前n 项和,且对任意nCN,=2a3 -1 = — 2— 1 = 一 3 … 1 d2 a 5= 2a 4 — 13-1 =-4解析:困为1a 1 - 1 , 以 a 2— 1 + a 1 — 2 , a 3 一 — a 2 1… c 1 1 … ,a 4 — 1 + a 2 — 3, a 5 —— , a 6 — 1 + 2a 3,则历一3是此数列的第项.答案:a n =均有an, S,芯成等差数列,则an=.[解析](1)由log 2(S n+ 1) =n+1,得S n+ 1 = 2n+1,当 n = 1 时,a [=S = 3;当 n>2 时,a n= S —S —1=2 ,3, n= 1, 所以数列{ a n }的通项公式为a n=<2n 值?(2)「a n, a 2成等差数列,2S=a n+a 2.2当 n = 1 时,2s = 2a 1 = a 1 + a 1. 又 a 1>0, •= a= 1.22当 n > 2 时,2a n = 2( S n — S1-1) =a n+a n — a n -1 — a n-1, • • (a n — a n- 1) — (a n+ a n- 1) = 0.--- (a n+ a n 1)( a n —a n 1)— (a n+ a n 1)= 0,「•(a n+a n-1)( a n —an-1-1) = 0,- a n + a n i >0, • • a n — a n-i = 1,[方法技巧]已知S 求a n 的3个步骤(1)先利用a 1=S 求出a;(2)用n-1替换S 中的n 得到一个新的关系, 利用a n=$—1(n>2)便可求出当n>2 时a n 的表达式; (3)对n=1时的结果进行检验,看是否符合n>2时a n 的表达式,如果符合,则可以把 数列的通项公式合写;如果不符合,则应该分n=1与n>2两段来写.考法二利用递推关系求通项[例2] (1)在数列{a n }中,a 1=2, a n+1=a n+3n+ 2,求数列{a n }的通项公式.n — 1(2)在数列{a n }中,a 1=1' a = ka n -1(廿2),求数列⑹的通项公式-(3)在数列{a n }中a = 1, a n+1 = 3a n+2,求数列{a n }的通项公式.2 a n⑷已知数列{a n }中,a 1f an+1="'求数列⑶的通项公式.[解](1)因为 a n+1 —a n=3n+2, 所以 a n — a n-1 = 3n — 1( n> 2),,、」 ................ n 3n+l ,、~所以 a n= (a n —a n-1) + (a n-1 — a n-2) + …+ (a 2—a 1)+a 1= 2 ( n>2).一 1当 n = 1 时,a 1=2= 2X(3X1+ 1),符合上式,.••{a n }是以1为首项,*.1为公差的等差数列,[答案](1) a n=<;2 , n=1,(2) n所以 a n=3n 2+2.…n — 1 , 一、(2)因为 a n= n a n i ( n>2),n —2所以 a n- 1 = a n- 2n-112 n-1 a i 11由累乘法可得 a n = a 1 - 2 - 3 .... n = —= -(n>2).又 a 1=1符合上式,.. a n=n . ,__, ,__ ~ .、,a n +1 + 1..... (3)因为 a n+1 = 3a n+ 2,所以 a n+1 + 1 = 3(a n+1),所以 .=3,所以数列{a n+1}为等a n 1比数列,公比 q=3,又 a 1+1=2,所以 a n+1=2 Tn —,所以 a n=2 • 3n-一1.--- a n+1= a n+2,a 1=1.1— = - + 1,即工一2=1,又d= 1,则工=1, a n+1 a n 2 a n+1 a n 2 a 1是以1为首项,2为公差的等差数列. )『(「Dx 2=2 + 2,• •a n = n :2-^(n^ Nj .1.[考法一]已知数列{a n }的前n 项和为S n,且a 1=1, S n="2,则a 2 019=()A. 2 018B. 2 019C. 4 036D. 4 038n + ] a n na n-1a n a n- 1 解析:选B 由题意知n>2时,a1 = Sn-Sn 1 = ——7一一工一,化为一=一2 2n n-1, 1a 2= -a i .a i i=1 ,an=n .贝Ua 2 019=2 019.故选 B.1一. S+1 3 ............................ 解析:选B 3=2an+1=23+1 —2S? 3S=2S+1? k = 故数列{3}为等比数列,公比S n 23.[考法二]已知在数列{d }中,a n+1 = nn^a n ( n C N *),且日=4,则数列{a n }的通项公式解析:由na n+1n 皿 a 2 1 a 3 2a n+1= ------- -a n,得 ----- = ---- 故—=二,一 =:n+2 a n n + 2 d 3 a 2 4a n n-1(n>2),以上a n 1 2 式子累乘信,01=3 4 n-3 n-27 'n-1 n n- 1 n+ 1 n n+1 .因为a1= 4,所以a n=T 』(n>2).因为a 1=4满足上式,所以 a n =8 nn+14.[考法二]已知数列{a n }满足 d= 2, a n-a n 1= n (n>2, n€ N),则 a n=解析:由题意可知, a 2- a 1 = 2, a 3—a 2=3,…,a n -a n 1 = n( n>2), 以上式子累加得, a n —a [ = 2+ 3+…+ n . 因为 a1 = 2,所以 an=2+(2 + 3+…+ n) = 2+n-1 2 + n n 2+n+2----- 2 ------ = -2( n > 2) •因为 所以 a 1 = 2满足上式,n 2+ n+2 a n=.2―n 2+ n+2 答案:一2 一突破点二数列的性质抓牢双基•自学回扣分类标准满足条件[基本知识]数列的分类 a n a n —1 n n-12.[考法一]已知数列{a n }的前n 项和为3, a 1=1, S=2a n+1,则S=(口 3~,是2,又S=1,所以[基本能力]1.已知数列{a n }的通项公式是a n=;r —那么这个数列是 _________________ (填递增或递减).3 n 1答案:递增2 .设a n=- 3n 2+ 15n-18,则数列{a n }中的最大项的值是 .答案:03 .已知数列{a n }的通项公式为a n=(n + 2) 7- n,则当a n 取得最大值时,n 等于 ________8答案:5或6研透高考*深化提能[全析考法]考法一 [例1] 数列的单调性 已知数列{a n }的通项公式为a n =n '1),则数列{a n }中的最大项为(3A.- B . 64 c 而125 口 243[解析]法一:(作差比较法)an +i-an=(n+1)(2 i n+1-n1)=2f^-当 n <2 时,a n+1 —a n >0,即 a n+1>a n ; 当 n = 2 时,a n+1 — a n = 0,即 a n+1 =a n ; 当 n >2 时,a n+1 — a n <0,即 a n+1<a n .所以 a «a 2=a 3, a 3>a 4>a 5> - >a n,所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2x法二:(作商比较法)a n + 1 a n+ 1 a n+ 1令一>1,解得n<2;令——=1,解得n=2;令——<1,解得n>2. a n a n a n又a n>0,故a1<a2=a3, a3>a4>a5> - > a n,所以数列{a n}中的最大项为a2或a3,且a2=a3=2x .故选A.[答案]A[方法技巧]求数列最大项或最小项的方法(1)将数列视为函数f(x)当xC N*时所对应的一列函数值,根据f (x)的类型作出相应的函数图象,或利用求函数最值的方法,求出f(x)的最值,进而求出数列的最大(小)项.a n > a n- 1(2)通过通项公式a研究数列的单调性,利用((n>2)确定最大项,利用[a n > an+ 1an< a n —1 ,((n>2)确定最小项.anW a n + 1(3)比较法:a n+ 1①育有a n+1 — a n = f (n + 1) —f ( n)>0( 或a n>0 时,a >1 ) 5则a n+1 >a n,即数列{a n}递增数列,所以数列{a n}的最小项为a1 = f(1);②若有a n+1 —a n = f (n+1) —f ( n)<0( 或a n>0 时,a n^<1 ),则a n+1<a n,即数列{a n}是递减数列,所以数列{a n}的最大项为a1 = f(1).考法二数列的周期性•数列的周期性与函数的周期性相类似. 求解数列的周期问题时,通常是求出数列的前几项观察规律.确定出数列的一个周期,然后再解决相应的问题.[例2] (2019 •广西南宁二中、柳州高中联考 )已知数列2 008,2 009,1 , -2 008,…,若这个数列从第二项起,每一项都等于它的前后两项之和,则这个数列的前 2 018项之和S2 018 = .[解析]由题意可知a n+1=a n+a n+2, a1=2 008, a2= 2 009, a3=1, a,=—2 008 ,a5= —2 009, a6=—1, a7=2 008, a8= 2 009,…,,a n+6=a n,即数列{a n}是以 6 为周期的数列,又a + & + a3 + a4 + a5 + a6 = 0 > S2 018 = 336( a〔 + & + a?+ a4 + st + a6) + ( a 〔 + a2)=4 017.[答案]4 017[方法技巧]周期数列的常见形式与解题方法(1)周期数列的常见形式①利用三角函数的周期性,即所给递推关系中含有三角函数;②相邻多项之间的递推关系,如后一项是前两项的差;③相邻两项的递推关系,等式中一侧含有分式,又较难变形构造出特殊数列.(2)解决此类题目的一般方法根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n项的和.[集训冲关]1.[考法—-]若数列{a nj 中,a i = 2, a:2=3,a ni+1 = a n—a n i( n—2),则a2 019 =( )A. 1B. - 2C. 3D. — 3解析:A 因为a n=a n-1 —a n-2( n >3),所1以a n+1 = a n —a n—1 =( a n—1 —a n 2) —a n-1 = - a n 2,所以an+3=—an,所以an+6=—an+3=an,所以{an}是以6为周期的周期数列.因为 2 019 =336x6+ 3,所以a2 019 = a3= a- a〔= 3— 2=1.故选A.n +12.[考法一]已知数列{a}满足a n = 3^516(n e N),则数列{a n}的最小项是第项.一_ ____ n+1 ... . ,… ,一、…~ n+1 ,, 斛析:因为a n= --------- -,所以数列{a n}的取小项必为a n<0,即:; ------ -<0,3 n— 16<0,从3n — 16 3n — 16而n<16.又nC N*,所以当n=5时,a n的值最小.3答案:5。
第六章 数列突破点一[基本知识]1.数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项).2.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.3.数列的递推公式如果已知数列{a n }的第1项(或前几项),且任何一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子来表示,即a n =f (a n -1)(或a n =f (a n -1,a n -2)等),那么这个式子叫做数列{a n }的递推公式.4.S n 与a n 的关系已知数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,这个关系式对任意数列均成立.[基本能力]一、判断题(对的打“√”,错的打“×”) (1)所有数列的第n 项都能使用公式表达.( )(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( ) (3)若已知数列{a n }的递推公式为a n +1=12a n -1,且a 2=1,则可以写出数列{a n }的任何一项.( )(4)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( ) 答案:(1)× (2)√ (3)√ (4)×二、填空题1.数列{a n }中,a 1=2,且a n +1=12a n -1,则a 5的值为________.解析:由a 1=2,a n +1=12a n -1,得a 2=12a 1-1=1-1=0,a 3=12a 2-1=0-1=-1,a 4=12a 3-1=-12-1=-32,a 5=12a 4-1=-34-1=-74.答案:-742.数列{a n}定义如下:a 1=1,当n ≥2时,a n=⎩⎨⎧1+a 2n ,n 为偶数,1a n -1,n 为奇数,若a n =14,则n 的值为________.解析:困为a 1=1,所以a 2=1+a 1=2,a 3=1a 2=12,a 4=1+a 2=3,a 5=1a 4=13,a 6=1+a 3=32,a 7=1a 6=23,a 8=1+a 4=4,a 9=1a 8=14,所以n =9.答案:93.数列{a n }的通项公式a n =1n +n +1,则10-3是此数列的第________项.解析:a n =1n +1+n =n +1-n (n +1+n )(n +1-n )=n +1-n ,∵10-3=10-9,∴10-3是该数列的第9项. 答案:94.已知S n 是数列{a n }的前n 项和,且S n =n 2+1,则数列{a n }的通项公式是____________.答案:a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2[全析考法]考法一 利用a n 与S n 的关系求通项数列{a n }的前n 项和S n 与通项a n 的关系为a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,通过纽带:a n =S n -S n -1(n ≥2),根据题目已知条件,消掉a n 或S n ,再利用特殊形式(累乘或累加)或通过构造成等差数列或者等比数列求解.[例1] (1)(2019·化州模拟)已知S n 为数列{a n }的前n 项和,且log 2(S n +1)=n +1,则数列{a n }的通项公式为____________.(2)(2019·广州测试)已知数列{a n }的各项均为正数,S n 为其前n 项和,且对任意n ∈N *,均有a n ,S n ,a 2n 成等差数列,则a n =____________.[解析] (1)由log 2(S n +1)=n +1,得S n +1=2n +1,当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=2n ,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.(2)∵a n ,S n ,a 2n 成等差数列,∴2S n =a n +a 2n .当n =1时,2S 1=2a 1=a 1+a 21. 又a 1>0,∴a 1=1.当n ≥2时,2a n =2(S n -S n -1)=a n +a 2n -a n -1-a 2n -1, ∴(a 2n -a 2n -1)-(a n +a n -1)=0.∴(a n +a n -1)(a n -a n -1)-(a n +a n -1)=0, ∴(a n +a n -1)(a n -a n -1-1)=0, ∵a n +a n -1>0,∴a n -a n -1=1,∴{a n }是以1为首项,1为公差的等差数列, ∴a n =n (n ∈N *).[答案] (1)a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2 (2)n[方法技巧]已知S n 求a n 的3个步骤(1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.考法二 利用递推关系求通项[例2] (1)在数列{a n }中,a 1=2,a n +1=a n +3n +2,求数列{a n }的通项公式. (2)在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2),求数列{a n }的通项公式. (3)在数列{a n }中a 1=1,a n +1=3a n +2,求数列{a n }的通项公式. (4)已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式. [解] (1)因为a n +1-a n =3n +2, 所以a n -a n -1=3n -1(n ≥2),所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n (3n +1)2(n ≥2). 当n =1时,a 1=2=12×(3×1+1),符合上式,所以a n =32n 2+n 2.(2)因为a n =n -1n a n -1(n ≥2), 所以a n -1=n -2n -1a n -2,…,a 2=12a 1.由累乘法可得a n =a 1·12·23·…·n -1n =a 1n =1n (n ≥2).又a 1=1符合上式,∴a n =1n .(3)因为a n +1=3a n +2,所以a n +1+1=3(a n +1),所以a n +1+1a n +1=3,所以数列{a n +1}为等比数列,公比q =3,又a 1+1=2,所以a n +1=2·3n -1,所以a n =2·3n -1-1.(4)∵a n +1=2a na n +2,a 1=1,∴a n ≠0, ∴1a n +1=1a n +12,即1a n +1-1a n =12,又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1(n ∈N *). [方法技巧] 典型的递推数列及处理方法递推式 方法 示例a n +1=a n +f (n ) 叠加法 a 1=1,a n +1=a n +2n a n +1=a n f (n ) 叠乘法 a 1=1,a n +1a n =2na n +1=Aa n +B (A ≠0,1,B ≠0) 化为等比数列a 1=1,a n +1=2a n +1a n +1=Aa nBa n +C(A ,B ,C 为常数)化为等差数列a 1=1,a n +1=3a n2a n +31.[考法一]已知数列{a n }的前n 项和为S n ,且a 1=1,S n =(n +1)a n2,则a 2 019=( )A .2 018B .2 019C .4 036D .4 038解析:选B 由题意知n ≥2时,a n =S n -S n -1=(n +1)a n 2-na n -12,化为a n n =a n -1n -1, ∴a n n =a n -1n -1=…=a 11=1,∴a n =n .则a 2 019=2 019.故选B.2.[考法一]已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B .⎝⎛⎭⎫32n -1C.⎝⎛⎭⎫23n -1D .⎝⎛⎭⎫12n -1解析:选B S n =2a n +1=2S n +1-2S n ⇒3S n =2S n +1⇒S n +1S n=32,故数列{S n }为等比数列,公比是32,又S 1=1,所以S n =1×⎝⎛⎭⎫32n -1=⎝⎛⎭⎫32n -1.故选B.3.[考法二]已知在数列{a n }中,a n +1=nn +2a n (n ∈N *),且a 1=4,则数列{a n }的通项公式a n =____________.解析:由a n +1=n n +2a n ,得a n +1a n=n n +2,故a 2a 1=13,a 3a 2=24,…,a n a n -1=n -1n +1(n ≥2),以上式子累乘得,a n a 1=13·24·…·n -3n -1·n -2n ·n -1n +1=2n (n +1).因为a 1=4,所以a n =8n (n +1)(n ≥2).因为a 1=4满足上式,所以a n =8n (n +1).答案:8n (n +1)4.[考法二]已知数列{a n }满足a 1=2,a n -a n -1=n (n ≥2,n ∈N *),则a n =____________. 解析:由题意可知,a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2), 以上式子累加得,a n -a 1=2+3+…+n .因为a 1=2,所以a n =2+(2+3+…+n )=2+(n -1)(2+n )2=n 2+n +22(n ≥2).因为a 1=2满足上式, 所以a n =n 2+n +22.答案:n 2+n +22突破点二 数列的性质[基本知识]数列的分类1.已知数列{a n }的通项公式是a n =2n3n +1,那么这个数列是________(填递增或递减). 答案:递增2.设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是________. 答案:03.已知数列{a n }的通项公式为a n =(n +2)⎝⎛⎭⎫78n,则当a n 取得最大值时,n 等于________. 答案:5或6[全析考法]考法一 数列的单调性[例1] 已知数列{a n }的通项公式为a n =n ⎝⎛⎭⎫23n ,则数列{a n }中的最大项为( ) A.89 B .23C.6481D .125243[解析] 法一:(作差比较法)a n +1-a n =(n +1)⎝⎛⎭⎫23n +1-n ⎝⎛⎭⎫23n =2-n 3·⎝⎛⎭⎫23n , 当n <2时,a n +1-a n >0,即a n +1>a n ; 当n =2时,a n +1-a n =0,即a n +1=a n ; 当n >2时,a n +1-a n <0,即a n +1<a n . 所以a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2×⎝⎛⎭⎫232=89.故选A. 法二:(作商比较法)a n +1a n =(n +1)⎝⎛⎭⎫23n +1n ⎝⎛⎭⎫23n =23⎝⎛⎭⎫1+1n , 令a n +1a n >1,解得n <2;令a n +1a n =1,解得n =2;令a n +1a n <1,解得n >2.又a n >0,故a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2×⎝⎛⎭⎫232=89.故选A.[答案] A [方法技巧]求数列最大项或最小项的方法(1)将数列视为函数f (x )当x ∈N *时所对应的一列函数值,根据f (x )的类型作出相应的函数图象,或利用求函数最值的方法,求出f (x )的最值,进而求出数列的最大(小)项.(2)通过通项公式a n 研究数列的单调性,利用⎩⎪⎨⎪⎧ a n ≥a n -1,a n ≥a n +1(n ≥2)确定最大项,利用⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1(n ≥2)确定最小项.(3)比较法:①若有a n +1-a n =f (n +1)-f (n )>0( 或a n >0时,a n +1a n>1 ),则a n +1>a n ,即数列{a n }是递增数列,所以数列{a n }的最小项为a 1=f (1);②若有a n +1-a n =f (n +1)-f (n )<0( 或a n >0时,a n +1a n <1 ),则a n +1<a n ,即数列{a n }是递减数列,所以数列{a n }的最大项为a 1=f (1).考法二 数列的周期性数列的周期性与函数的周期性相类似.求解数列的周期问题时,通常是求出数列的前几项观察规律.确定出数列的一个周期,然后再解决相应的问题.[例2] (2019·广西南宁二中、柳州高中联考)已知数列2 008,2 009,1,-2 008,…,若这个数列从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 018项之和S 2 018=________.[解析] 由题意可知a n +1=a n +a n +2,a 1=2 008,a 2=2 009,a 3=1,a 4=-2 008,∴a 5=-2 009,a 6=-1,a 7=2 008,a 8=2 009,…,∴a n +6=a n ,即数列{a n }是以6为周期的数列,又a 1+a 2+a 3+a 4+a 5+a 6=0,∴S 2 018=336(a 1+a 2+a 3+a 4+a 5+a 6)+(a 1+a 2)= 4 017.[答案] 4 017 [方法技巧]周期数列的常见形式与解题方法(1)周期数列的常见形式①利用三角函数的周期性,即所给递推关系中含有三角函数; ②相邻多项之间的递推关系,如后一项是前两项的差;③相邻两项的递推关系,等式中一侧含有分式,又较难变形构造出特殊数列. (2)解决此类题目的一般方法根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.[集训冲关]1.[考法二]若数列{a n }中,a 1=2,a 2=3,a n +1=a n -a n -1(n ≥2),则a 2 019=( ) A .1B .-2C .3D .-3解析:选A 因为a n =a n -1-a n -2(n ≥3),所以a n +1=a n -a n -1=(a n -1-a n -2)-a n -1=-a n -2,所以a n +3=-a n ,所以a n +6=-a n +3=a n ,所以{a n }是以6为周期的周期数列.因为2 019=336×6+3,所以a 2 019=a 3=a 2-a 1=3-2=1.故选A.2.[考法一]已知数列{a n }满足a n =n +13n -16(n ∈N *),则数列{a n }的最小项是第________项.解析:因为a n =n +13n -16,所以数列{a n }的最小项必为a n <0,即n +13n -16<0,3n -16<0,从而n <163.又n ∈N *,所以当n =5时,a n 的值最小.答案:5[课时跟踪检测][A 级 基础题——基稳才能楼高]1.在数列{a n }中,a 1=1,a n +1=2a n +1(n ∈N *),则a 4的值为( ) A .31 B .30 C .15D .63解析:选C 由题意,得a 2=2a 1+1=3,a 3=2a 2+1=7,a 4=2a 3+1=15,故选C. 2.已知数列{a n }满足a n +1=11-a n,若a 1=12,则a 2 019=( )A .-1B .12C .1D .2解析:选A 由a 1=12,a n +1=11-a n ,得a 2=11-a 1=2,a 3=11-a 2=-1,a 4=11-a 3=12,a 5=11-a 4=2,…,于是可知数列{a n }是以3为周期的周期数列,因此a 2 018=a 3×672+3=a 3=-1. 3.数列-1,4,-9,16,-25,…的一个通项公式为( ) A .a n =n 2 B .a n =(-1)n ·n 2 C .a n =(-1)n +1·n 2D .a n =(-1)n ·(n +1)2解析:选B 易知数列-1,4,-9,16,-25,…的一个通项公式为a n =(-1)n ·n 2,故选B. 4.在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .若a 6=64,则a 9等于( )A .256B .510C .512D .1 024解析:选C 在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .所以a 6=a 3·a 3=64,a 3=8.所以a 9=a 6·a 3=64×8=512.5.设数列{a n }的通项公式为a n =n 2-bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( )A .(-∞,-1]B .(-∞,2]C .(-∞,3)D .⎝⎛⎦⎤-∞,92 解析:选C 因为数列{a n }是单调递增数列, 所以a n +1-a n =2n +1-b >0(n ∈N *), 所以b <2n +1(n ∈N *), 所以b <(2n +1)min =3,即b <3.[B 级 保分题——准做快做达标]1.(2019·福建四校联考)若数列的前4项分别是12,-13,14,-15,则此数列的一个通项公式为( )A.(-1)n +1n +1B .(-1)n n +1C.(-1)n nD .(-1)n -1n解析:选A 由于数列的前4项分别是12,-13,14,-15,可得奇数项为正数,偶数项为负数,第n 项的绝对值等于⎪⎪⎪⎪1n +1,故此数列的一个通项公式为(-1)n +1n +1.故选A.2.(2019·沈阳模拟)已知数列{a n }中a 1=1,a n =n (a n +1-a n )(n ∈N *),则a n =( ) A .2n -1 B .⎝⎛⎭⎫n +1n n -1C .nD .n 2解析:选C 由a n =n (a n +1-a n ),得(n +1)a n =na n +1,即a n +1n +1=a n n ,∴⎩⎨⎧⎭⎬⎫a n n 为常数列,即a n n =a 11=1,故a n =n .故选C.3.(2019·北京西城区模拟)已知数列{a n }的前n 项和S n =2-2n +1,则a 3=( )A .-1B .-2C .-4D .-8解析:选D ∵数列{a n }的前n 项和S n =2-2n +1,∴a 3=S 3-S 2=(2-24)-(2-23)=-8.故选D.4.(2019·桂林四地六校联考)数列1,2,2,3,3,3,4,4,4,4,…的第100项是( ) A .10 B .12 C .13D .14解析:选D 1+2+3+…+n =12n (n +1),由12n (n +1)≤100,得n 的最大值为13,易知最后一个13是已知数列的第91项,又已知数列中14共有14项,所以第100项应为14.故选D.5.(2019·兖州质检)已知数列{a n }满足a n =⎩⎪⎨⎪⎧a n -2,n <4,(6-a )n -a ,n ≥4,若对任意的n ∈N *都有a n <a n+1成立,则实数a 的取值范围为( ) A .(1,4)B .(2,5)C .(1,6)D .(4,6)解析:选A 因为对任意的n ∈N *都有a n <a n +1成立,所以数列{a n }是递增数列, 因此⎩⎪⎨⎪⎧1<a ,6-a >0,a <(6-a )×4-a ,解得1<a <4,故选A.6.(2019·湖北八校联考)已知数列{a n }满足a n =5n -1(n ∈N *),将数列{a n }中的整数项按原来的顺序组成新数列{b n },则b 2 019的末位数字为( )A .8B .2C .3D .7解析:选D 由a n =5n -1(n ∈N *),可得此数列为4,9,14,19,24,29,34,39,44,49,54,59,64,…,{a n }中的整数项为4,9,49,64,144,169,…,∴数列{b n }的各项依次为2,3,7,8,12,13,17,18,…,末位数字分别是2,3,7,8,2,3,7,8,….∵2 019=4×504+3,故b 2 019的末位数字为7.故选D.7.(2018·长沙调研)已知数列{a n },则“a n +1>a n -1”是“数列{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由题意,若“数列{a n }为递增数列”,则a n +1>a n >a n -1,但a n +1>a n -1不能推出a n +1>a n ,如a n =1,a n +1=1,{a n }为常数列,则不能推出“数列{a n }为递增数列”,所以“a n +1>a n -1”是“数列{a n }为递增数列”的必要不充分条件.故选B.8.(2019·长春模拟)设数列{a n }的前n 项和为S n ,且a 1=1,{S n +na n }为常数列,则a n 等于( ) A.13n -1 B .2n (n +1)C.6(n +1)(n +2)D .5-2n3解析:选B 由题意知,S n +na n =2,当n ≥2时,(n +1)a n =(n -1)a n -1,从而a 2a 1·a 3a 2·a 4a 3·…·a na n -1=13·24·…·n -1n +1,有a n =2n (n +1),当n =1时上式成立,所以a n =2n (n +1). 9.(2019·兰州诊断)已知数列{a n },{b n },若b 1=0,a n =1n (n +1),当n ≥2时,有b n =b n -1+a n-1,则b 501=________.解析:由b n =b n -1+a n -1得b n -b n -1=a n -1,所以b 2-b 1=a 1,b 3-b 2=a 2,…,b n -b n -1=a n -1,所以b 2-b 1+b 3-b 2+…+b n -b n -1=a 1+a 2+…+a n -1=11×2+12×3+…+1(n -1)×n,即b n -b 1=a 1+a 2+…+a n -1=11×2+12×3+…+1(n -1)×n =11-12+12-13+…+1n -1-1n =1-1n =n -1n ,又b 1=0,所以b n =n -1n ,所以b 501=500501.答案:500501 10.(2019·河南八市重点高中测评)已知数列{a n }满足a n ≠0,2a n (1-a n +1)-2a n +1(1-a n )=a n -a n +1+a n ·a n +1,且a 1=13,则数列{a n }的通项公式a n =________. 解析:∵a n ≠0,2a n (1-a n +1)-2a n +1(1-a n )=a n -a n +1+a n ·a n +1,∴两边同除以a n ·a n +1,得2(1-a n +1)a n +1-2(1-a n )a n =1a n +1-1a n +1,整理,得1a n +1-1a n=1,即⎩⎨⎧⎭⎬⎫1a n 是以3为首项,1为公差的等差数列,∴1a n =3+(n -1)×1=n +2,即a n =1n +2. 答案:1n +211.(2019·宝鸡质检)若数列{a n }是正项数列,且a 1+a 2+a 3+…+a n =n 2+n ,则a 1+a 22+…+a n n =________.解析:由题意得当n ≥2时,a n =n 2+n -(n -1)2-(n -1)=2n ,∴a n =4n 2.又n =1,a 1=2,∴a 1=4,∴a n n =4n ,∴a 1+a 22+…+a n n =12n (4+4n )=2n 2+2n . 答案:2n 2+2n12.(2019·深圳期中)在数列{a n }中,a 1=1,a 1+a 222+a 332+…+a n n 2=a n (n ∈N *),则数列{a n }的通项公式a n =________.解析:由a 1+a 222+a 332+…+a n n 2=a n (n ∈N *)知,当n ≥2时,a 1+a 222+a 332+…+a n -1(n -1)2= a n -1,∴a n n 2=a n -a n -1,即n +1n a n =n n -1a n -1,∴n +1n a n =…=2a 1=2,∴a n =2n n +1. 答案:2n n +113.(2019·衡阳四校联考)已知数列{a n }满足a 1=3,a n +1=4a n +3.(1)写出该数列的前4项,并归纳出数列{a n }的通项公式;(2)证明:a n +1+1a n +1=4. 解:(1)a 1=3,a 2=15,a 3=63,a 4=255.因为a 1=41-1,a 2=42-1,a 3=43-1,a 4=44-1,…,所以归纳得a n =4n -1.(2)证明:因为a n +1=4a n +3,所以a n +1+1a n +1=4a n +3+1a n +1=4(a n +1)a n +1=4. 14.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值;(2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围.解:(1)由n 2-5n +4<0,解得1<n <4.因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3.因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n的二次函数,考虑到n ∈N *,所以-k 2<32,解得k >-3. 所以实数k 的取值范围为(-3,+∞).15.(2019·武汉调研)已知数列{a n }的前n 项和S n =n 2+1,数列{b n }中,b n =2a n +1,且其前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式;(2)判断数列{c n }的增减性.解:(1)∵a 1=S 1=2,a n =S n -S n -1=2n -1(n ≥2), ∴b n =⎩⎨⎧ 23(n =1),1n (n ≥2).(2)由题意得c n =b n +1+b n +2+…+b 2n +1=1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1(2n +3)(2n +2)<0, ∴c n +1<c n ,∴数列{c n }为递减数列.。
§6.1数列的概念及其表示法命题探究解答过程(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q2+q-6=0,解得q=2或q=-3,又因为q>0,所以q=2.所以b n=2n.由b3=a4-2a1,可得3d-a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n-2.所以,数列{a n}的通项公式为a n=3n-2,数列{b n}的通项公式为b n=2n.(2)设数列{a2n b2n-1}的前n项和为T n,由a2n=6n-2,b2n-1=2×4n-1,有a2n b2n-1=(3n-1)×4n,故T n=2×4+5×42+8×43+…+(3n-1)×4n,4T n=2×42+5×43+8×44+…+(3n-4)×4n+(3n-1)×4n+1,上述两式相减,得-3T n=2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1=-4-(3n-1)×4n+1=-(3n-2)×4n+1-8.得T n=×4n+1+.所以,数列{a2n b2n-1}的前n项和为×4n+1+考纲解读考点内容解读要求高考示例常考题型预测热度数列的概念及其表示①了解数列的概念和几种简单的表示方法(列表、图象、通项公式);②了解数列是自变量为正整数的一类函数了解2016浙江,13;2015江苏,11;2013课标全国Ⅰ,14解答题★★★分析解读本节内容在高考中主要考查利用a n和S n的关系求通项a n,或者利用递推公式构造等差或等比数列求通项a n,又考查转化、方程与函数、分类讨论等思想方法,在高考中以解答题为主,题目具有一定的综合性,属中高档题.分值为5分或12分.五年高考考点数列的概念及其表示1.(2016浙江,13,6分)设数列{a n}的前n项和为S n.若S2=4,a n+1=2S n+1,n∈N*,则a1= ,S5= .答案1;1212.(2015江苏,11,5分)设数列{a n}满足a1=1,且a n+1-a n=n+1(n∈N*),则数列前10项的和为.答案3.(2013课标全国Ⅰ,14,5分)若数列{a n}的前n项和S n=a n+,则{a n}的通项公式是a n= .答案(-2)n-14.(2015四川,16,12分)设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n-a1,且a1,a2+1,a3成等差数列.(1)求数列{a n}的通项公式;(2)记数列的前n项和为T n,求使得|T n-1|<成立的n的最小值.解析(1)由已知S n=2a n-a1,有a n=S n-S n-1=2a n-2a n-1(n≥2),即a n=2a n-1(n≥2).从而a2=2a1,a3=2a2=4a1.又因为a1,a2+1,a3成等差数列,即a1+a3=2(a2+1).所以a1+4a1=2(2a1+1),解得a1=2.所以,数列{a n}是首项为2,公比为2的等比数列.故a n=2n.(2)由(1)得=,所以T n=++…+==1-.由|T n-1|<,得<,即2n>1 000.因为29=512<1 000<1 024=210,所以n≥10.于是,使|T n-1|<成立的n的最小值为10.教师用书专用(5—6)5.(2013安徽,14,5分)如图,互不相同的点A1,A2,…,A n,…和B1,B2,…,B n,…分别在角O的两条边上,所有A n B n 相互平行,且所有梯形A n B n B n+1A n+1的面积均相等.设OA n=a n.若a1=1,a2=2,则数列{a n}的通项公式是.答案a n=6.(2014广东,19,14分)设数列{a n}的前n项和为S n,满足S n=2na n+1-3n2-4n,n∈N*,且S3=15.(1)求a1,a2,a3的值;(2)求数列{a n}的通项公式.三年模拟A组2016—2018年模拟·基础题组考点数列的概念及其表示1.(2018江西新余四中、上高二中第一次联考,7)已知1+3×2+5×22+…+(2n-1)×2n-1=2n(na+b)+c对一切n∈N*都成立,则a,b,c的值为( )A.a=3,b=-2,c=2B.a=3,b=2,c=2C.a=2,b=-3,c=3D.a=2,b=3,c=3答案 C2.(2017湖南岳阳一模,7)已知数列{a n}的前n项和为S n,且a1=1,S n=,则a2 017=( )A.2 016B.2 017C.4 032D.4 034答案 B3.(2017河北衡水中学高三摸底联考,5)已知数列{a n}中,a1=1,a n+1=2a n+1(n∈N*),S n为其前n项和,则S5的值为( )A.57B.61C.62D.63答案 A4.(2017河北唐山一模,14)设数列{a n}的前n项和为S n,且S n=,若a4=32,则a1= .答案B组2016—2018年模拟·提升题组(满分:45分时间:40分钟)一、选择题(每小题5分,共10分)1.(2017湖北六校4月模拟,10)已知数列{a n}满足:a1=1,a n+1=(n∈N*).若b n+1=(n-2λ)·(n∈N*),b1=-λ,且数列{b n}是单调递增数列,则实数λ的取值范围是( )A.λ<B.λ<1C.λ<D.λ<答案 A2.(2016河南洛阳期中模拟,10)设数列{a n}满足a1+2a2+22a3+…+2n-1a n=(n∈N*),则数列{a n}的通项公式是( )A.a n=B.a n=C.a n=D.a n=答案 C二、填空题(每小题5分,共20分)3.(2018广东化州二模,16)已知S n为数列{a n}的前n项和,且log2(S n+1)=n+1,则数列{a n}的通项公式为.答案a n=4.(2018湖北第二次联考,15)“斐波那契数列”由13世纪意大利数学家列昂纳多·斐波那契发现,因为斐波那契以兔子繁殖为例子而引入,故又称该数列为“兔子数列”.斐波那契数列{a n}满足:a1=1,a2=1,a n=a n-1+a n-2(n≥3,n∈N*),记其前n项和为S n,设a2 018=t(t为常数),则S2 016+S2 015-S2 014-S2 013= (用含t的代数式表示).答案t5.(2018皖江名校高三大联考,16)已知数列{a n},S n是其前n项和且满足3a n=2S n+n(n∈N*),则S n= .答案·3n-(2n+3)6.(2017湖北襄阳优质高中联考,16)若a1=1,对任意的n∈N*,都有a n>0,且n-(2n-1)a n+1a n-2=0,设M(x)表示整数x的个位数字,则M(a2 017)= .答案 6三、解答题(共15分)7.(2017安徽淮北第一中学第四次模拟,21)对于数列{a n},{b n},S n为数列{a n}的前n项和,且S n+1-(n+1)=S n+a n+n,a1=b1=1,b n+1=3b n+2,n∈N*.(1)求数列{a n},{b n}的通项公式;(2) 令c n=,求数列{c n}的前n项和T n.解析(1)∵S n+1-(n+1)=S n+a n+n,∴a n+1=a n+2n+1,∴a n=(a n-a n-1)+(a n-1-a n-2)+…+(a3-a2)+(a2-a1)+a1=(2n-1)+(2n-3)+…+5 +3+1==n2,∴数列{a n}的通项公式为a n=n2.由b n+1=3b n+2,得b n+1+1=3(b n+1),∴{b n+1}是等比数列,首项为b1+1=2,公比为3,∴b n+1=2·3n-1,∴数列{b n}的通项公式为b n=2·3n-1-1.(2)c n==,∴T n=+++…++,①则3T n=+++…++,②②-①得2T n=6+-=6+-=-,∴T n=-.C组2016—2018年模拟·方法题组方法1 利用S n与a n的关系求通项公式1.(2017山西临汾一中等五校第二次联考,15)已知数列{a n}的前n项和为S n,且S n=(a n-1),a1=4,则数列{}的前n 项和T n= .答案2.(2016广东3月测试,15)已知数列{a n}的各项均为正数,S n为其前n项和,且对任意n∈N*,均有a n,S n,成等差数列,则a n= .答案n方法2 由递推公式求数列的通项公式3.(2017江西九江十校联考二模,10)已知数列{a n}满足a n+1=+1(n∈N+),则使不等式a2 016>2 017成立的所有正整数a1的集合为( )A.{a1|a1≥2 017,a1∈N+}B.{a1|a1≥2 016,a1∈N+}C.{a1|a1≥2 015,a1∈N+}D.{a1|a1≥2 014,a1∈N+}答案 A4.(2018山东、湖北部分重点中学第二次联考,15)已知数列{a n}的前n项之和为S n,若a1=2,a n+1=a n+2n-1+1,则S10= .答案 1 078方法3 数列的单调性和最大(小)项5.(2017湖南永州二模,11)已知数列{a n}的前n项和S n=3n(λ-n)-6,若数列{a n}单调递减,则λ的取值范围是( )A.(-∞,2)B.(-∞,3)C.(-∞,4)D.(-∞,5)答案 A。