2.42追及相遇问题解析
- 格式:ppt
- 大小:335.50 KB
- 文档页数:33
《追及相遇问题》一、计算题1.如图所示,一修路工在长为x=100m的隧道中,突然发现一列火车出现在距右隧道口A水平的距离为x0=200m处,只要修路工跑到隧道口即认为安全脱离危险,修路工所处的位置恰好在无论向左还是向右跑均能安全脱离危险的位置,已知修路工和火车均为匀速运动。
问:(1)修路工所处的这个位置离隧道右出口距离是多少?(2)修路工奔跑的最小速度至少应是火车速度的多少倍?2.汽车A在红灯前停住,当绿灯亮时汽车A以a=1m/s2的加速度启动做匀加速直线运动,经过t0=12s后开始做匀速直线运动.在绿灯亮的同时,汽车B以v B=8m/s 的速度从A车旁边驶过一直做匀速直线运动,运动方向与A车相同.则从绿灯亮时开始计时,多长时间后汽车A可以追上汽车B?3.一队伍长200m,沿直线以2m/s的速度匀速前进。
为了传达命令,通讯员从队尾以大小为2m/s2的加速度加速到6m/s,然后匀速前进一段时间,再以大小为4m/s2的加速度减速到队伍的速度,此时恰好赶上排头兵传达命令,经过5s将命令传达完毕。
此后,通讯员又立即以大小为1m/s2的加速度做匀减速直线运动减速到1m/s,并保持这个速度匀速前进一段时间,再以大小为1m/s2的加速度加速到队伍速度,此时恰好回到队尾。
不计通讯员离开队伍时队伍长度的变化,求:(1)通讯员从队尾赶到队头的时间;(2)通讯员从队头回到队尾的时间;(3)通讯员在全程做匀速直线运动的总时间;(4)通讯员的在全程的位移。
4.在同一直线上同方向运动的A、B两辆汽车,相距s=7m,A正以v A=4m/s的速度向右做匀速直线运动,而B此时速度v B=10m/s,并关闭油门,以2m/s2的加速度大小做匀减速运动。
则(1)从B车关闭油门开始,A追上B需要的时间是多少?(2)在追上之前A、B两者之间的最大距离是多少?5.一辆长途客车正在以v0=20m/s的速度匀速行驶.突然,司机看见车的正前方s=33m处有一只狗,如图甲所示,司机立即采取制动措施.若从司机看见狗开始计时(t=0),长途客车的速度−时间图像如图乙所示。
追及相遇问题物理解题思路追及相遇问题是物理学中常见的一个题型,主要涉及到两个物体在相同直线上同时开始运动,其中一个物体比另一个物体的速度更快,问它们多久能够相遇。
解决这类问题的关键在于理解相对速度的概念,以及如何建立方程求解。
首先,我们需要理解相对速度的概念。
相对速度指的是两个物体之间的速度差,即一个物体相对于另一个物体的速度。
在追及相遇问题中,我们可以将问题简化为一个物体相对于另一个物体的速度。
其次,我们需要建立方程求解。
根据物体的速度和时间的关系,我们可以得出两个物体分别运动的距离与时间的关系。
假设较快的物体的速度为v1,较慢的物体的速度为v2,它们相遇所需的时间为t。
根据速度公式:速度=距离/时间,我们可以得出:较快的物体所运动的距离为:v1*t较慢的物体所运动的距离为:v2*t由于两个物体相遇时所运动的距离相同,我们可以将上述两个等式相等,得到方程:v1*t=v2*t通过对方程进行整理,我们可以得到:t=0(当v1=v2时)或者t=v2/(v1-v2)(当v1≠v2时)根据上述方程,我们可以计算出两个物体相遇所需的时间。
若v1= v2,则表示两个物体的速度相同,它们将在0秒后相遇。
若v1≠v2,则可以通过将v2除以v1-v2来求得相遇所需的时间。
最后,我们可以根据所给条件计算出具体数值。
将已知的速度代入到方程中,即可得到相遇所需的时间。
总而言之,追及相遇问题需要理解相对速度的概念,并建立相应的方程求解。
通过计算得到的时间,我们可以得出两个物体相遇的具体时刻。
这类问题的解题思路简单明了,通过理解和应用物理学的基本原理,我们可以轻松地解决追及相遇问题。
高三物理追及与相遇问题含答案与规律归纳追及与相遇是高中物理中常见的问题类型,也是解决动力学和运动学问题的重要方法之一。
通过分析追及与相遇问题,可以帮助我们理解物体的运动规律和相互作用。
本文将介绍追及与相遇问题的基本概念、解题思路以及常见的规律归纳。
1. 追及与相遇问题的基本概念在物理学中,追及与相遇问题是指两个或多个物体在不同的起点同时开始运动,然后在某个时刻相遇的情况。
这种问题常常涉及到不同物体的速度、起点位置和运动时间等因素。
2. 解题思路解决追及与相遇问题的关键是确定各个物体的起点位置、速度和运动时间,以及相遇时刻的位置和时间。
下面以一个简单的追及与相遇问题为例,介绍解题思路。
假设有两个物体A和B,它们分别从起点位置A₀和B₀开始,速度分别为vA和vB。
设它们相遇的时间为t,相遇时的位置为P。
首先,我们可以根据速度公式v = Δx/Δt,计算出A和B在t时间内分别走过的距离。
即ΔxA = vA×t,ΔxB = vB×t。
然后,根据相遇时刻的位置关系,我们可以得到 A₀ + ΔxA = B₀ + ΔxB。
这个方程是解决追及与相遇问题的重要条件之一。
接下来,我们可以将 A₀ + vA×t = B₀ + vB×t 这个方程进一步化简,得到关于 t 的方程。
然后通过求解这个方程,可以确定相遇的时间 t。
最后,根据相遇的时间 t,我们可以计算出相遇时刻的位置 P,即 P = A₀ + vA×t = B₀ + vB×t。
3. 使用示例下面通过一个例子来演示追及与相遇问题的解题过程。
假设有两个人A和B,他们以50m/s和30m/s的速度从起点同时出发,互相追赶。
求在什么时间他们相遇,并计算出相遇时的位置。
根据解题思路,我们可以列出以下方程:A₀ + 50t = B₀ + 30t (位置关系)50t - 30t = B₀ - A₀(化简方程)20t = B₀ - A₀t = (B₀ - A₀) / 20所以,他们相遇的时间为 t = (B₀ - A₀) / 20。
专题强化二:追及、相遇问题一:知识精讲归纳1.临界条件与相遇条件(1)要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件;两个关系是时间关系和位移关系.通过画草图找两物体的位移关系是解题的突破口,如两物体距离最大、最小,恰好追上或恰好追不上等.(2)若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动.2.追及相遇问题常见情况1.速度小者追速度大者类型图像说明匀加速追匀速 a.t =t 0以前,后面物体与前面物体间距离增大;b.t =t 0时,两物体相距最远为x 0+Δx ;c.t =t 0以后,后面物体与前面物体间距离减小;d.能追上且只能相遇一次.注:x 0为开始时两物体间的距离匀速追匀减速匀加速追匀减速2.速度大者追速度小者类型图像说明匀减速追匀速开始追时,后面物体与前面物体间距离在减小,当两物体速度相等时,即t =t 0时刻:a.若Δx =x 0,则恰能追上,两物体只能相遇一次,这也是避免相撞的临界条件;b.若Δx <x 0,则不能追上,此时两物体间最小距离为x 0-Δx ;c.若Δx >x 0,则相遇两次,设t 1时刻Δx 1=x 0两物体第一次相遇,则t 2时刻两物体第二次相遇.注:x 0为开始时两物体间的距离匀速追匀加速匀减速追匀加速二:考点题型归纳题型一:匀变速追匀速物体1.(2023秋·山东德州·高一统考期末)挥杆套马是我国蒙古族传统体育项目,烈马从骑手身边奔驰而过时,骑手持6m 长的套马杆,由静止开始催马追赶,最终套住烈马。
整个过程二者的v -t 图像如图所示,则下列说法正确的是()A .骑手追赶烈马过程中二者之间的最大距离为40mB .t =9s 时骑手刚好追上烈马C .骑手在t =8s 时挥杆,能套到烈马D .8-9s 内烈马的加速度小于0-6s 内骑手的加速度【答案】C【详解】A .当骑手和烈马速度相同时二者间距最大,由v -t 图像图线与坐标轴所围的面积表示位移,可得max 10(404)m=20m 2x =-⨯A 错误;B .由图形所围的面积可以算出0~9s 内,烈马的位移为110151081m=92.5m 2x +=⨯+⨯骑手0~9s 内位移215(6153)m=90m 2x =⨯+⨯因x 1>x 2因此t =9s 时骑手未追上烈马,B 错误;C .由图形所围的面积可以算出0~8s 内,烈马的位移为3108m=80mx =⨯骑手的位移为4156152m=75m 2x =⨯+⨯套马杆长l=6m x 4+l >x 3所以骑手在8s 时刻挥杆,能套到烈马,故C 正确;D .由加速度定义式0=v v v a t t -∆=∆知8~9s 内烈马加速度2211510m /s =5m /s 98a -=-0~6s 内骑手的加速度22215105m /s =m /s 642a -=-故D 错误。
追及与相遇问题1、追及与相遇的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
2、理清两大关系:时间关系、位移关系。
3、巧用一个条件:两者速度相等;它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
4、三种典型类型(1)同地出发,初速度为零的匀加速直线运动A 追赶同方向的匀速直线运动B①当 B A v v =时,A 、B 距离最大;②当两者位移相等时, A 追上B ,且有B A v v 2=(2)异地出发,匀速直线运动B 追赶前方同方向的初速度为零的匀加速直线运动A判断B A v v =的时刻,A 、B 的位置情况①若B 在A 后面,则B 永远追不上A ,此时AB 距离最小②若AB 在同一处,则B 恰能追上A③若B 在A 前,则B 能追上A ,并相遇两次(3)异地出发,匀减速直线运动A 追赶同方向匀速直线运动B①当B A v v =时,A 恰好追上B ,则A 、B 相遇一次,也是避免相撞刚好追上的临界条件;②当B A v v =时,A 未追上B ,则A 、B 永不相遇,此时两者间有最小距离;③当B A v v >时,A 已追上B ,则A 、B 相遇两次,且之后当两者速度相等时,两者间有最大距离。
5、解追及与相遇问题的思路(1)根据对两物体的运动过程分析,画出物体运动示意图(2)根据两物体的运动性质,(巧用“速度相等”这一条件)分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中(3)由运动示意图找出两物体位移间的关联方程(4)联立方程求解注意:仔细审题,充分挖掘题目中的隐含条件,同时注意t v -图象的应用【典型习题】【例1】在十字路口,汽车以0.5m/s 2的加速度从停车线启动做匀加速运动,恰好有一辆自行车以5m/s 的速度匀速驶过停车线与汽车同方向行驶,求:(1)汽车追上自行车之前,什么时候它们相距最远?最远距离是多少?(2)在什么地方汽车追上自行车?追到时汽车的速度是多大?【练习1】一辆值勤的警车停在公路边,当警员发现从他旁边以s m v 80=的速度匀速行驶的货车有违章行为时,决定前去追赶。
追及与相遇问题知识详解及典型例题精品知识要点追及和相遇问题主要涉及在同一直线上运动的两个物体的运动关系,所应用的规律是匀变速直线运动的相关规律;追及、相遇问题常常涉及到临界问题,分析临界状态,找出临界条件是解决这类问题的关键;速度相等是物体恰能追上或恰不相碰、或间距最大或最小的临界条件;在两物体沿同一直线上的追及、相遇或避免碰撞问题中关键的条件是:两物体能否同时到达空间某位置;因此应分别对两物体研究,列出位移方程,然后利用时间关系、速度关系、位移关系解出;解答追及、相遇问题时要特别注意明确两物体的位移关系、时间关系、速度关系,这些关系是我们根据相关运动学公式列方程的依据;1. 追及追和被追的两者的速度相等常是能追上、追不上、二者距离有极值的临界条件;如匀减速运动的物体追从不同地点出发同向的匀速运动的物体时,若二者速度相等了,还没有追上,则永远追不上,此时二者间有最小距离;若二者相遇时追上了,追者速度等于被追者的速度,则恰能追上,也是二者避免碰撞的临界条件;若二者相遇时追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,其间速度相等时二者的距离有一个较大值;再如初速度为零的匀加速运动的物体追从同一地点出发同向匀速运动的物体时,当二者速度相等时二者有最大距离,位移相等即追上;“追上”的主要条件是两个物体在追赶过程中处在同一位置,常见的情形有三种:一是初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙时,一定能追上,在追上之前两者有最大距离的条件是两物体速度相等,即v甲=v乙;二是匀速运动的物体甲追赶同方向做匀加速运动的物体乙时,存在一个恰好追上或恰好追不上的临界条件:两物体速度相等,即v甲>v乙,此临界条件给出了一个判断此种追赶情形能否追上的方法,即可通过比较两物体处在同一位置时的速度大小来分析,具体方法是:假定在追赶过程中两者能处在同一位置,比较此时的速度大小,若v甲>v乙,则能追上去,若v甲<v乙,则追不上,如果始终追不上,当两物体速度相等时,两物体的间距最小;三是匀减速运动的物体追赶同方向的匀速运动的物体时,情形跟第二种相类似;两物体恰能“相遇”的临界条件:两物体处在同一位置时,两物体的速度恰好相同;2. 相遇同向运动的两物体追及即相遇,分析同1;相向运动的物体,当各自发生的位移的绝对值的和等于开始时两物体间的距离时即相遇;三. 解题方法指导:1. 解“追及”“相遇”问题的思路:解决“追及”和“相遇”问题大致分为两种方法,即数学方法和物理方法求解过程中可以有不同的思路,例如考虑图象法等等;解题的基本思路是:① 根据对两物体运动过程的分析,画出物体的运动示意图;② 根据两物体的运动性质,分别列出两个物体的位移方程;注意要将两物体运动时间的关系反映在方程中;③ 由运动示意图找出两物体位移间关联方程;④ 联立方程求解;运动物体的追赶、相遇问题,一般解法较多:解析法、图象法、极值法等;应适当地做些一题多解的练习,以开启思路,培养发散思维的能力;但平时训练仍应以物理意义突出的解析法为主;通过适当的练习后,总结一下追赶、相遇、避碰问题的特点、分析方法,特别是对其中所涉及的“相距最远”、“相距最近”、“恰好不相碰”等临界问题,应在思考的基础上总结出临界状态的特点,找出临界条件;2. 分析“追及”“相遇”问题应注意:① 分析“追及”“相遇”问题时,一定要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如“两物体距离最大、最小,恰好追上或恰好追不上等”;两个关系是时间关系和位移关系;其中通过画草图找到两物体位移之间的数量关系,是解题的突破口,也是解题常用方法;因此,在学习中一定要养成画草图分析问题的良好习惯,对帮助我们理解题意,启迪思维大有裨益;养成根据题意画出物体运动示意图的习惯;特别对较复杂的运动,画出草图可使运动过程直观,物理图景清晰,便于分析研究;② 分析研究对象的运动过程,搞清整个运动过程按运动性质的转换可分为哪几个运动阶段,各个阶段遵循什么规律,各个阶段间存在什么联系;特别是,若被追赶的物体做匀减速运动,一定要注意追上前该物体是否停止运动;③ 仔细审题,注意抓住题目中的关键字眼,充分挖掘题目中的隐合条件,如“刚好”、“恰巧”、“最多”、“至少”等;往往对应一个临界状态,由此找出满足相应的临界条件;还要注意:由于公式较多,且公式间有相互联系,因此,题目常可一题多解;解题时要思路开阔,联想比较,筛选最简捷的解题方案;解题时除采用常规的公式解析法外,图象法、比例法、极值法、逆向转换法如将一匀减速直线运动视为反向的匀加速直线运动等也是解题中常用的方法;典型例题例1 火车以速度v1向前行驶;司机忽然发现,在前方同一轨道上距车为s处有另一辆火车,它沿相同的方向以较小的速度v2作匀速运动,于是他立即使车作匀减速运动,加速度大小为a,要使两车不致相撞,则a应满足的关系式为_____________________;分析:司机使火车作匀减速运动,当后面的火车与前方火车时的速度相等时,两车再也不能接近了,也就是后面的火车与前面火车的速度相等时,后面火车的位移与前面火车的位移之差要小于s时,两车才不致相撞,本题解法中有四种;解法一:当两车速度相等时,两车没有相撞,以后再也不会相撞,前车减速的时间为t,则解法二:以前车为参照系,后车的速度为,当后车的速度减为零时,其位移小于s,两车不会相撞,即解法三:作出两车运动的速度—时间图像如图所示,由图像可知:在两图像相交前与时间轴所围面积之差即图中阴影部分小于s时,两车不会相撞;即解法四:后车的位移为,前车的位移为,要使两车不相撞,即说明此二次函数无解,即以上四种解法中,以第二种解法最简捷;例2 甲、乙两车相距s,同时同向运动,乙在前面做加速度为a1、初速度为零的匀加速运动,甲在后面做加速度为a2、初速度为v的匀加速运动,试讨论两车在运动过程中相遇次数与加速度的关系;解析:由于两车同时同向运动,故有v甲=v+a2t,v乙=a1t① 当a1<a2时,a1t<a2t,可得两车在运动过程中始终有v甲> v乙,由于原来甲在后,乙在前,所以甲、乙两车的距离在不断缩短,经过一段时间后甲车必然超过乙车,且甲超过乙后相距越来越大,因此甲、乙两车只能相遇一次;② 当a1=a2时,al t=a2t,可得v甲>v乙,因此甲、乙两车也只能相遇一次:③ 当a1>a2时,a1t>a2t,v甲和v 乙的大小关系会随着运动时间的增加而发生变化,刚开始,a 1t 和a 2t 相差不大且甲有初速v 0,所以,v 甲>v 乙,随着时间的推移,a 1t 和a 2t 相差越来越大;当a l t —a 2t=v 0时,v 甲=v 乙,接下来a 1t —a 2t>v 0,则有v 甲<v 乙,若在v 甲=v 乙之前,甲车还没有超过乙车,随后由于v 甲<v 乙,甲车就没有机会超过乙车,即两车不相遇;若在v 甲=v 乙时,两车刚好相遇,随后v 甲=v 乙,甲车又要落后乙车,这样两车只能相遇一次;若在v 甲=v 乙前甲车己超过乙车,即已相遇过一次,随后由于v 甲<v 乙,甲、乙距离又缩短,直到乙车反超甲车时,再相遇一次,别两车能相遇两次;解法一:由于x 甲=v 0t+a 2t 2,x 乙=a 1t 2,相遇时有x 甲—x 乙=x,则:v 0t+a 2t 2-a 1t 2=x,a 1—a 2t 2—v 0t+x=0所以t= ①① 当a 1<a 2 时,①式t 只有一个正解,别相遇一次;② 当a 1=a 2 时,x 甲—x 乙= v 0t 十a 2t 2—a 1t 2=v 0t=x,所以t=,t 只有一个解,则相遇一次;③ 当a 1>a 2 时,若<2a 1—a 2x,①式无解,即不相遇,若=2a 1—a 2x,①式t 只有一个解,即相遇一次;若>2a 1—a 2x,①式t 有两个正解,即相遇两次;解法二:利用v —t 图象求解,① 当a 1<a 2时,甲、乙两车的运动图线分别为如右上图中:的I 和Ⅱ,其中划斜线部分的面积表示t 时间内甲车比乙车多发生的位移,若此面积为S,则t 时刻甲车追上乙车而相遇,以后在相等时间内甲车发生的位移都比乙车多,所以只能相遇一次;② 当a1<a2时,甲、乙两车的运动图线分别为如上左图中的I和Ⅱ,讨论方法同①,所以两车也只能相遇一次;③ 当a1=a2时,甲、乙两车的运动图线分别为如上右图中的I和Ⅱ,其中划实斜线部分的面积表示甲车比乙车多发生的位移;若划实斜线部分面积小于S,则不能相遇;若划实斜线部分面积等于S,说明甲车刚追上乙车又被反超,则相遇一次;若划实斜线部分的面积大于s,如图中0─t1内划实斜线部分的面积为S,说明t1时刻甲车追上乙车,以后在t1—t时间内,甲车超前乙车的位移为t1─t时间内划实斜线部分的面积,随后在t─t2时间内,乙车比甲车多发生划虚线部分的面积,如果两者相等,则t2时刻乙车反超甲车,故两车先后相遇两次;模拟试题1. 甲、乙两物体由同一位置出发沿同一直线运动,其速度图象由图所示,下列说法正确的是A. 甲做匀速直线运动,乙做匀变速直线运动B. 两物体两次相遇的时刻分别为2 s末和6 s末C. 乙在前4 s内的平均速度等于甲的速度D. 2 s后甲、乙两物体的速度方向相反2. 在足够长的平直公路上,一辆汽车以加速度a启动时,有一辆匀速前进的自行车以速度v从旁边经过,则以下说法正确的是A. 汽车追不上自行车,因为汽车启动时速度小B. 以汽车为参考系,自行车时向前匀速运动的C. 汽车与自行车之间的距离开始是不断增加的,直到两车速度相等,然后距离减小,直到两车相遇D. 汽车追上自行车的时间是3. 甲乙丙三辆汽车以相同的速度同时经过某一个路标,从此开始甲车一直匀速运动,乙车先加速后减速,丙车先减速后加速,它们经过下一个路标时速度又相等,则A. 甲车先通过下一个路标B. 乙车先通过下一个路标C. 丙车先通过下一个路标D. 条件不足,无法判断,若前车突4. 两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度均为v然以恒定的加速度刹车,在它刚停住时,后车以前车刹车的加速度开始刹车;已知前车在刹车过程中所行驶的距离为s,若要保证两辆车在上述情况中不相撞,则两车在匀速行驶时保持的距离至少应为A. 1sB. 2sC. 3sD. 4s5. 汽车A在红绿灯前停住,绿灯亮起时起动,以 m/s2的加速度做匀加速运动,经过30 s后以该时刻的速度做匀速直线运动.设在绿灯亮的同时,汽车B以8 m/s 的速度从A车旁边驶过,且一直以相同的速度做匀速直线运动,运动方向与A车相同,则从绿灯亮时开始A. A车在加速过程中与B车相遇B. A、B相遇时速度相同C. 相遇时A车做匀速运动D. 两车不可能再次相遇6. 同一直线上的A、B两质点,相距s,它们向同一方向沿直线运动相遇时互不影响各自的运动,A做速度为v的匀速直线运动,B从此时刻起做加速度为a、初速度为零的匀加速直线运动;若A在B前,两者可相遇______次,若B在A前,两者最多可相遇______次;7. 从相距30 km的甲、乙两站每隔15 min同时以30 km/h的速率向对方开出一辆汽车;若首班车为早晨5时发车,则6时从甲站开出的汽车在途中会遇到辆从乙站开出的汽车;8. 一矿井深125m,在井口每隔一段时间落下一个小球,当第11个小球刚从井口开始下落时,第1个小球恰好到达井底,则:1相邻两个小球下落的时间间隔是 s;2这时第3个小球与第5个小球相距 g取10 m/s29. 如图,某时刻A、B两物体相距7m,A以4 m/s的速度向右做匀速直线运动,此时B的速度为10 m/s,方向向右,在摩擦力作用下以2 m/s2的加速度做匀减速运动;从该时刻经多长时间A追上B10. 一辆巡逻车最快能在10 s内由静止加速到最大速度50 m/s,并能保持这个速度匀速行驶,问该巡逻车在平直的高速公路上由静止追上前方2 000m处正以35 m/s的速度匀速行驶的汽车,至少需要多长时间11. A球自距地面高h处开始自由下落,同时B球以初速度v正对A球竖直上抛,空气阻力不计;问:1要使两球在B球上升过程中相遇,则v应满足什么条件2要使两球在B球下降过程中相遇,则v应满足什么条件12. 已知自行车速度为6m/s作直线运动,汽车从同时同地以初速10m/s,加速度a=-s2直线运行,试求自行车追上汽车前,两车的最大距离;13. 摩托车以速度v1沿平直公路行驶,突然驾驶员发现正前方s处,有一辆汽车正以v2<v1的速度开始减速,加速度大小为α2;为了避免发生碰撞,摩托车也同时减速;求其加速度至少需要多少14. 在某市区内,一辆汽车在平直的公路上以速度v向东匀速行驶,一位观光游客正由南向北从斑马线上横过马路,汽车司机发现前方有危险游客正在D处向北走,经 s作出反应,从A点开始紧急刹车,但仍将正步行至B处的游客撞伤,该车最终在C处停下;为了清晰了解事故现场,现以图示之:为了判断汽车司机是否超速行驶,并测出肇事汽车的速度v,警方派一车胎磨损情况与肇事汽车相当的车以法定最高速度vm=/s行驶在同一马路的同一地段,在肇事汽车的出事点B急刹车,恰好也在C点停下来,在事故现场测得AB= m、BC=、BD= m;问:1该肇事汽车的初速度vA是多大2游客横过马路的速度是多大15. 如图所示,长L=75cm的静止直筒中有一不计大小的小球,筒与球的总质量为4kg现对筒施加一竖直向下,大小为21N的恒力,使筒竖直向下运动,经t=时间,小球恰好跃出筒口;求:小球的质量;g=10m/s216. 如图所示,升降机以匀加速度a上升,当上升速度为v时,有一螺帽自升降机天花板上松落,已知天花板距升降机底面为hm,求落至底面的时间;17. 杂技演员把三只球依次竖直向上抛出,形成连续的循环,在循环中,他每抛出一球后,再过一段与刚抛出的球在手中停留时间相等的时间,又接到下一个球,这样,在总的循环过程中,便形成有时空中有3个球,有时空中有两个球,而演员手中则有一半时间内有球,有一半时间内没有球;设每个球上升的高度为,取,求每个球每次在手中停留的时间是多少18. 某升降机以s的速度匀速上升,机内一人自离升降机地板高处将一小球释放,球与底板间的碰撞无任何损失,则第一次反弹的最高点比释放点高或低了多少19. 将两小石块A、B同时竖直上抛,A上升的最大高度比B的高出35m,返回地面的时间比B迟2s;问:1A、B的初速度分别为多少2A、B分别达到的高度最大值各为多少20. 甲、乙、丙三辆车行驶在平直公路上,车速分别为6m/s、8m/s、9m/s;当甲、乙、丙三车依次相距5m时,乙驾驶员发现甲车开始以1m/s2的加速度做减速运动,于是乙也立即做减速运动,丙车亦同样处理;如图所示;直到三车都停下来时均未发生撞车事故;求丙车减速运动的加速度至少应为多大试题答案1. B2. C3. B4. B5. C6. 1;27. 7辆8. ;35 m9. 8 s 10. 150 s11.1v0> 2<v<解析:两球相遇时位移之和等于h;即:gt2+vt-gt2=h 所以:t=而B球上升的时间:t1=,B球在空中运动的总时间:t2=1欲使两球在B球上升过程中相遇,则有t<t1,即<,所以v>2欲使两球在B球下降过程中相遇,则有:t1<t<t2即<<所以:<v<12. 解析:画出两车v—t图象如图所示,可知,在自行车追上汽车前,二者速度相同时,相距最大,为阴影三角形面积;且由图可知,t=16s时,自行车追上汽车;13. 解:1如图甲所示,其相对位移为即甲2如图乙所示,当两车间距较小,即时,两车不发生碰撞的条件是,其相对速度为0,即二者有共同速度;因为,所以,由此可得摩托车的加速度为3如图丙所示,两车间距较大,即,汽车经过时间先停下,摩托车经时间后停下,这种情况下两车不发生碰撞的条件为;有这时摩托车的加速度为14.12l m/s 2 m/s15. 解:筒受到竖直向下的力作用后做竖直向下的匀加速运动,且加速度大于重力加速度;而小球则是在筒内做自由落体运动,小球跃出筒口时,筒的位移比小球的位移多一个筒的长度;设筒与小球的总质量为M,小球的质量为m,筒在重力及恒力的共同作用下竖直向下做初速为零的匀加速运动,设加速度为a;小球做自由落体运动设在时间t内,筒与小球的位移分别为h1、h2球可视为质点,如图所示;由运动学公式得又有:,代入数据解得又因为筒受到重力M-mg和向下作用力F,据牛顿第二定律得16. 解:选升降机为参考系,螺帽受重力作用,相对加速度大小为g+a,竖直向下,相对运动可视为以g+a为加速度的自由落体,有所以为所求;17. 解:设一个球每次在手中停留的时间为,则手中连续抛出两球之间的时间间隔为,而对于同一个球,它连续两次自手中抛出的时间间隔则为;在这段时间内,此球有的时间停留在手中,则有的时间停留在空中,根据竖直上抛运动的规律得:代入数值得:∴ 球一次竖直上抛运动的时间,则它每次在手中停留时间为;18. 解:设从放球到球与底板相碰需要时间t,放球时,球与底板的距离为h,升降机速度为,在此期间球下降距离,升降机上升距离为,如图所示,因此有代入数据得解之得负根舍去这时球相对于地面的速度为而球相对于底板的速度由题意知,球与底板碰撞前后速度大小不变,即球被弹回时,球相对于底板的速度应为s;由于升降机质量较小球大得多,所以碰撞对升降机速度不影响,仍为向上,所以碰撞后小球相对于地面向上的速度由此可知球第一次上升的高度为因而第一次回跳的最高点比释放点高出的距离为19. 解析:设A、B初速度分别为、,二者上升的最大高度分别为、,A、B上升到最高点所经历的时间依次为、;在最高点,有将两式代入得,由题意知所以20. 解:先研究两车行驶中的一种特殊临界状态,两车同时停下且刚好接触在一起;则1若,要使其同时停下则必然相碰;即是说仍要增大,按DC线所示规律变化,在D处时二者相距最近,如图所示;由题意知,有12如果,则还可再小些,二者不同时停下,停止时相对位移为,如图中线那样变化;有三式联立得 2将题中数据代入可得由1式得乙、丙两车间距由2式得一道“追及和相遇问题”试题的思考和引申A、B两列火车在同一轨道上同向行驶,A在前,速度为v A=10m/s,B在后,速度为v B=30m/s,因大雾能见度低,B车在距A车500m时,才发现前方有A车,这时B车立即刹车,但要经过1800mB车才能停下,问:1车若要仍按原速前进,两车是否相撞试说明理由;2B在刹车的同时发出信号,A车司机在收到信号后加速前进,A车加速度为多大时,才能避免事故发生不计信号从A传到B的时间第一问的解法如下:解:先求B车从刹车到停下来所需时间t Bs0s As B由s B =21v B ·t B 得 B A A ’ B ’ t B =vB sB 2 =2×301800s=120s 再求在相同的时间内A 车通过的位移s As A =v A ·t B =10×120m=1200m最后比较s A +s 0和s B 的大小关系即可判断结果由于s A +s 0=1200+500m=1700m 故s A +s 0<s B 由位置关系图可知两车会相撞;提问1:通过上面的计算我们知道两车能相撞,试问它们何时相撞解:设B 车刹车后经过时间t 两车相遇,依题意有s A +s 0=s B而s A =v A ·t,s B =v B ·t+21at 2其中a 为B 车刹车过程中的加速度,根据已知条件很易求出a =s 2,将s A 、sB 的表达式代入上式解得t 1=31s, t 2=129s提问2:为什么有两个解t 2是否有意义答:A 、B 两车相撞两次,第一次是B 车追上A 车,第二次是A 车追上B 车;两车只能相撞一次,故t 2没有意义;提问3:B 车追上A 车时,哪车的速度大答:B 车的速度大, 因为B 车从减速到和A 车的速度相等所需的时间为:t ’=avB vA - =2503010.--s=80s,因为t ’> t 1,故B 车的速度大; 提问4:若A 、B 两车相遇但不会相撞,A 车又追上B 车时,B 车的速度是多大从B 车开始减速到两车第二次相遇共需多少时间答:由于B 车刹车后经过120s 后就停下来,故129s 时它的速度仍为零;由于B 车停止后不能往后倒,故第二次相遇所需时间为:t 2’=vA s sB 0- =105001800-s=130s;这是一个实际问题,要注意解的合理性; 提问5:若开始两车相距700m,试问两车是否会相撞答:由于s A +s 0=1200+700m=1900m,而s B =1800m,即s A +s 0>s B ,故两车不会相撞; 提问6:若用第二种方法,即设B 刹车后经过时间t 两车相撞,方程是否有解呢答:由s A +s 0=s B 得v A ·t+ s 0=v B ·t+21at 2 即10t+700=移项并整理得t2-160t+5600=0该方程的判别式为△=1602-4×5600=3200>0,故该方程有解,即相撞,并且有相遇两次的可能;原来先是B超过A,后来A又超过B,我们不能认为开始时A在B的前面,后来A仍在B的前面,就得出两车不相撞的结论;由此可见用简单的位移关系是得不出正确结果的;提问7:试问:若要使两车不相撞,开始时两车间的距离s0至少为多少解:设两车经过时间t后相撞,由位置关系易得出:1at2v A·t+ s0=v B·t +2即10t+s0=移项并整理得t2-160t+8s0=0要使两车不相撞,即要使该方程无解,即△<0即1602-4×8s0<0故s0>800m,即开始时两车间的距离至少为800m;提问8:若两车刚好能相撞,相撞时两车的速度有何关系答:应该刚好相等,刚开始时B车的速度比A车的速度大,两车之间的距离减小,当两车的速度达到相等时,距离最小,之后两车之间的距离将变大,若速度相等时还没有相遇,则两车不会再相遇;若s0=800m时,解得t=80s,此时B车的速度为v B’ =v B +at=30+-025×80m/s=10m/s=v A;规律总结:求追及、相遇或相撞问题时,若问两物体能否相撞,一般是设经过时间t后两物体相撞,根据位移关系列出方程,它一般是关于t的二次方程,然后根据判别式的正、负或零来判断,若△≥0,则二者能相撞,若△<0,则不能相撞;若问二者何时相撞,解法同上,但要注意解是否合理,是否是实际问题;若问能相遇几次,解出相遇所需的时间,有几个解,就能相遇几次,同样要注意解是否合理;若求两者之间的最大或最小距离,通常求出两物体速度达到相等时各自的位移,两位移之差即为两物体之间的最大或最小距离;也可设经过时间t后两者相距△S,根据位置关系写出△S的表达式,然后根据二次函数求极值的方法可以求出一般用配方的方法来求;这样,该题第二问的解法很易得出:设B 车刹车后经过ts 两车刚好相撞,则应有: s B = s A +s 0即v B ·t+21a B t 2=v A ·t 0+ v A t-t 0+ 21a A t-t 02+s 0 30t-81t 2=15+10+ 21a A 2+500刚好相撞,则△=0,解得a A =s 2。
追及与相遇问题两物体在同一直线上追及、相遇或避免碰撞问题中的条件是:两物体能否同时到达空间某位置。
因此应分别对两物体进行研究,列出位移方程,然后利用时间关系、速度关系、位移关系求解。
一、追及问题1、追及问题的特征及处理方法:“追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:⑴初速度比较小(包括为零)的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上。
a、追上前,当两者速度相等时有最大距离;b、当两者位移相等时,即后者追上前者。
⑵匀减速运动的物体追赶同向的匀速运动的物体时,存在一个能否追上的问题。
判断方法是:假定速度相等,从位置关系判断。
解决问题时要注意二者是否同时出发,是否从同一地点出发。
a、当两者速度相等时,若追者位移仍小于被追者,则永远追不上,此时两者间有最小距离;b、若两者速度相等时,两者的位移也相等,则恰能追上,也是两者避免碰撞的临界条件;c、若两者速度相等时,追者位移大于被追者,说明在两者速度相等前就已经追上;在计算追上的时间时,设其位移相等来计算,计算的结果为两个值,这两个值都有意义。
即两者位移相等时,追者速度仍大于被追者的速度,被追者还有一次追上追者的机会,其间速度相等时两者间距离有一个较大值。
⑶匀速运动的物体甲追赶同向匀加速运动的物体乙,情形跟⑵类似。
匀速运动的物体甲追赶同向匀减速运动的物体乙,情形跟⑴类似;被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
2、分析追及问题的注意点:⑴要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。
两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。
⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
⑶仔细审题,充分挖掘题目中的隐含条件,同时注意v t 图象的应用。
二、相遇⑴同向运动的两物体的相遇问题即追及问题,分析同上。