2015高考数学真题分类 考点21 不等式及其性质
- 格式:doc
- 大小:64.00 KB
- 文档页数:1
历年高考数学真题精选(按考点分类) 专题21 不等关系与不等式解法(学生版)一.选择题(共19小题)1.(2016•北京)已知x ,y R ∈,且0x y >>,则( ) A .110x y-> B .sin sin 0x y -> C .11()()022x y -<D .0lnx lny +>2.(2015•上海)对于任意实数a 、b ,2()a b kab -均成立,则实数k 的取值范围是( ) A .{4-,0} B .[4-,0] C .(-∞,0] D .(-∞,4][0-,)+∞3.(2015•陕西)设()f x lnx =,0a b <<,若p f =,()2a bq f +=,1(2r f =(a )f+(b )),则下列关系式中正确的是( ) A .q r p =<B .p r q =<C .q r p =>D .p r q =>4.(2017•山东)若0a b >>,且1ab =,则下列不等式成立的是( ) A .21log ())2aba ab b +<<+ B .21log ()2a b a b a b<+<+C .21log ()2a b a a b b +<+< D .21log ())2aba b a b +<+< 5.(2012•福建)下列不等式一定成立的是( ) A .21()(0)4lg x lgx x +>>B .1sin 2(,)sin x x k k Z xπ+≠∈ C .212||()x x x R +∈D .211()1x R x >∈+ 6.(2015•重庆)函数22()log (23)f x x x =+-的定义域是( ) A .[3-,1]B .(3,1)-C .(-∞,3][1-,)+∞D .(-∞,3)(1-⋃,)+∞7.(2013•重庆)关于x 的不等式22280(0)x ax a a --<>的解集为1(x ,2)x ,且:2115x x -=,则(a = ) A .52B .72C .154D .1528.(2010•全国大纲版Ⅱ)不等式2601x x x -->-的解集为( )A .{|2x x <-,或3}x >B .{|2x x <-,或13}x <<C .{|21x x -<<,或3}x >D .{|21x x -<<,或13}x <<9.(2009•山东)在R 上定义运算:2a b ab a b =++⊗⊗,则满足(2)0x x -<⊗的实数x 的取值范围为( ) A .(0,2)B .(2,1)-C .(-∞,2)(1-⋃,)+∞D .(1,2)-10.(2009•天津)设函数246,0()6,0x x x f x x x ⎧-+=⎨+<⎩则不等式()f x f >(1)的解集是( )A .(3-,1)(3⋃,)+∞B .(3-,1)(2⋃,)+∞C .(1-,1)(3⋃,)+∞D .(-∞,3)(1-⋃,3)11.(2014•浙江)已知函数32()f x x ax bx c =+++.且0(1)(2)(3)3f f f <-=-=-,则() A .3cB .36c <C .69c <D .9c >12.(2014•大纲版)不等式组(2)0||1x x x +>⎧⎨<⎩的解集为( )A .{|21}x x -<<-B .{|10}x x -<<C .{|01}x x <<D .{|1}x x >13.(2013•江西)下列选项中,使不等式21x x x<<成立的x 的取值范围是( ) A .(,1)-∞-B .(1,0)-C .(0,1)D .(1,)+∞14.(2013•安徽)已知一元二次不等式()0f x <的解集为{|1x x <-或1}2x >,则(10)0x f >的解集为( )A .{|1x x <-或2}x lg >-B .{|12}x x lg -<<-C .{|2}x x lg >-D .{|2}x x lg <-15.(2013•新课标Ⅱ)若存在正数x 使2()1x x a -<成立,则a 的取值范围是( ) A .(,)-∞+∞B .(2,)-+∞C .(0,)+∞D .(1,)-+∞16.(2012•重庆)不等式102x x -<+的解集为( ) A .(1,)+∞B .(,2)-∞-C .(2,1)-D .(-∞,2)(1-⋃,)+∞17.(2011•辽宁)函数()f x 的定义域为R ,(1)2f -=,对任意x R ∈,()2f x '>,则()24f x x >+的解集为( )A .(1,1)-B .(1,)-+∞C .(,)l -∞-D .(,)-∞+∞18.(2012•新课标)当102x <时,4log x a x <,则a 的取值范围是( )A .B .1)C .D .2)19.(2009•湖南)若2log 0a <,1()12b >,则( )A .1a >,0b >B .01a <<,0b >C .1a >,0b <D .01a <<,0b <二.填空题(共6小题)20.(2019•天津)设x R ∈,使不等式2320x x +-<成立的x 的取值范围为 . 21.(2017•上海)不等式11x x->的解集为 . 22.(2019•全国)若12log (41)2x ->-,则x 的取值范围是 .23.(2015•江苏)不等式224xx-<的解集为 .24.(2013•全国)不等式2(2)1lg x x -->的解集为 .25.(2006•重庆)设0a >,1a ≠,函数2()log (23)a f x x x =-+有最小值,则不等式log (1)0a x ->的解集为 .历年高考数学真题精选(按考点分类) 专题21 不等关系与不等式解法(教师版)一.选择题(共19小题)1.(2016•北京)已知x ,y R ∈,且0x y >>,则( ) A .110x y-> B .sin sin 0x y -> C .11()()022x y -<D .0lnx lny +>【答案】C【解析】:x ,y R ∈,且0x y >>,则11x y <,sin x 与sin y 的大小关系不确定,11()()22x y <,即11()()022x y -<,lnx lny +与0的大小关系不确定.故选:C .2.(2015•上海)对于任意实数a 、b ,2()a b kab -均成立,则实数k 的取值范围是( ) A .{4-,0} B .[4-,0] C .(-∞,0] D .(-∞,4][0-,)+∞【答案】B【解析】2()a b kab -,222a b kab ab ∴++,即22(2)a b k ab ++恒成立, 故222k -+,故[4k ∈-,0],故选:B .3.(2015•陕西)设()f x lnx =,0a b <<,若p f =,()2a bq f +=,1(2r f =(a )f+(b )),则下列关系式中正确的是( ) A .q r p =< B .p r q =< C .q r p => D .p r q =>【答案】B【解析】由题意可得若11()22p f ln lnab lna lnb ====+,()()()22a b a b q f ln ln ab p ++===,1(2r f =(a )f +(b )1)()2lna lnb =+,p r q ∴=<,故选:B .4.(2017•山东)若0a b >>,且1ab =,则下列不等式成立的是( ) A .21log ())2a ba ab b +<<+ B .21log ()2ab a b a b<+<+C .21log ()2a b a a b b +<+< D .21log ())2aba b a b +<+<【答案】B【解析】0a b >>,且1ab =,∴可取2a =,12b =. 则14a b +=,2112228a b ==,22215log ()(2)(1,2)22a b log log +=+=∈,∴21log ()2a b a b a b<+<+. 故选:B .5.(2012•福建)下列不等式一定成立的是( ) A .21()(0)4lg x lgx x +>>B .1sin 2(,)sin x x k k Z xπ+≠∈ C .212||()x x x R +∈ D .211()1x R x >∈+ 【答案】C【解析】A 选项不成立,当12x =时,不等式两边相等; B 选项不成立,这是因为正弦值可以是负的,故不一定能得出1sin 2sin x x+; C 选项是正确的,这是因为2212||()(||1)0x x x R x +∈⇔-;D 选项不正确,令0x =,则不等式左右两边都为1,不等式不成立.综上,C 选项是正确的.故选:C .6.(2015•重庆)函数22()log (23)f x x x =+-的定义域是( ) A .[3-,1]B .(3,1)-C .(-∞,3][1-,)+∞D .(-∞,3)(1-⋃,)+∞【答案】D【解析】由题意得:2230x x +->,即(1)(3)0x x -+> 解得1x >或3x <-所以定义域为(-∞,3)(1-⋃,)+∞ 故选:D .7.(2013•重庆)关于x 的不等式22280(0)x ax a a --<>的解集为1(x ,2)x ,且:2115x x -=,则(a = )A .52B .72C .154D .152【答案】A【解析】因为关于x 的不等式22280(0)x ax a a --<>的解集为1(x ,2)x , 所以122x x a +=⋯①,2128x x a =-⋯②, 又2115x x -=⋯③,①24-⨯②可得2221()36x x a -=,代入③可得,221536a =,解得15562a =±=±, 因为0a >,所以52a =. 故选:A .8.(2010•全国大纲版Ⅱ)不等式2601x x x -->-的解集为( )A .{|2x x <-,或3}x >B .{|2x x <-,或13}x <<C .{|21x x -<<,或3}x >D .{|21x x -<<,或13}x <<【答案】C【解析】2601x x x -->-⇔(3)(2)0(3)(2)(1)0(1)x x x x x x -+>⇔-+->- 利用数轴穿根法解得21x -<<或3x >, 故选:C .9.(2009•山东)在R 上定义运算:2a b ab a b =++⊗⊗,则满足(2)0x x -<⊗的实数x 的取值范围为( ) A .(0,2)B .(2,1)-C .(-∞,2)(1-⋃,)+∞D .(1,2)-【答案】B 【解析】(2)(2)220xx x x x x -=-++-<,∴化简得220x x +-<即(1)(2)0x x -+<,得到10x -<且20x +>①或10x ->且20x +<②,解出①得21x -<<;解出②得1x >且2x <-无解.21x ∴-<<.故选:B .10.(2009•天津)设函数246,0()6,0x x x f x x x ⎧-+=⎨+<⎩则不等式()f x f >(1)的解集是( )A .(3-,1)(3⋃,)+∞B .(3-,1)(2⋃,)+∞C .(1-,1)(3⋃,)+∞D .(-∞,3)(1-⋃,3)【答案】A【解析】f (1)3=,当不等式()f x f >(1)即:()3f x > 如果0x < 则63x +>可得3x >-,可得30x -<<. 如果0x 有2463x x -+>可得3x >或 01x < 综上不等式的解集:(3-,1)(3⋃,)+∞ 故选:A .11.(2014•浙江)已知函数32()f x x ax bx c =+++.且0(1)(2)(3)3f f f <-=-=-,则() A .3c B .36c < C .69c < D .9c >【答案】C【解析】由(1)(2)(3)f f f -=-=-得184212793a b c a b c a b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩,解得611a b =⎧⎨=⎩,则32()611f x x x x c =+++, 由0(1)3f <-,得016113c <-+-+,即69c <,故选:C . 12.(2014•大纲版)不等式组(2)0||1x x x +>⎧⎨<⎩的解集为( )A .{|21}x x -<<-B .{|10}x x -<<C .{|01}x x <<D .{|1}x x >【答案】C【解析】由不等式组(2)0||1x x x +>⎧⎨<⎩可得2,011x x x ⎧-⎨-<<⎩或,解得01x <<,故选:C .13.(2013•江西)下列选项中,使不等式21x x x<<成立的x 的取值范围是( )A .(,1)-∞-B .(1,0)-C .(0,1)D .(1,)+∞【答案】A【解析】利用特殊值排除选项,不妨令12x =-时,代入21x x x <<,得到11224-<-<,显然不成立,选项B 不正确; 当12x =时,代入21x x x <<,得到11224<<,显然不正确,排除C ; 当2x =时,代入21x x x<<,得到1242<<,显然不正确,排除D .故选:A .14.(2013•安徽)已知一元二次不等式()0f x <的解集为{|1x x <-或1}2x >,则(10)0x f >的解集为( )A .{|1x x <-或2}x lg >-B .{|12}x x lg -<<-C .{|2}x x lg >-D .{|2}x x lg <-【答案】D【解析】由题意可知()0f x >的解集为1{|1}2x x -<<,故可得(10)0x f >等价于11102x -<<, 由指数函数的值域为(0,)+∞一定有101x >-,而1102x<可化为121010lg x<,即21010x lg -<,由指数函数的单调性可知:2x lg <- 故选:D .15.(2013•新课标Ⅱ)若存在正数x 使2()1x x a -<成立,则a 的取值范围是( ) A .(,)-∞+∞ B .(2,)-+∞ C .(0,)+∞ D .(1,)-+∞【答案】D【解析】因为2()1x x a -<,所以12xa x >-, 函数12xy x =-是增函数,0x >,所以1y >-,即1a >-, 所以a 的取值范围是(1,)-+∞. 故选:D .16.(2012•重庆)不等式102x x -<+的解集为( ) A .(1,)+∞ B .(,2)-∞-C .(2,1)-D .(-∞,2)(1-⋃,)+∞【答案】C 【解析】不等式102x x -<+等价于(1)(2)0x x -+<,所以表达式的解集为:{|21}x x -<<. 故选:C .17.(2011•辽宁)函数()f x 的定义域为R ,(1)2f -=,对任意x R ∈,()2f x '>,则()24f x x >+的解集为( )A .(1,1)-B .(1,)-+∞C .(,)l -∞-D .(,)-∞+∞【答案】B【解析】设()()(24)F x f x x =-+, 则(1)(1)(24)220F f -=---+=-=,又对任意x R ∈,()2f x '>,所以()()20F x f x '='->, 即()F x 在R 上单调递增, 则()0F x >的解集为(1,)-+∞, 即()24f x x >+的解集为(1,)-+∞. 故选:B .18.(2012•新课标)当102x <时,4log x a x <,则a 的取值范围是( ) A. B.1)C .D .2)【答案】B 【解析】102x<时,142x < 要使4log x a x <,由对数函数的性质可得01a <<, 数形结合可知只需2log a x <, ∴201a a a log a log x<<⎧⎨<⎩ 即201a a x <<⎧⎨>⎩对102x <时恒成立∴20112a a <<⎧⎪⎨>⎪⎩解得21a << 故选:B .19.(2009•湖南)若2log 0a <,1()12b >,则( )A .1a >,0b >B .01a <<,0b >C .1a >,0b <D .01a <<,0b <【答案】D【解析】依题意,根据指数函数与对数函数的图象和单调性知01a <<,0b <,故选:D . 二.填空题(共6小题)20.(2019•天津)设x R ∈,使不等式2320x x +-<成立的x 的取值范围为 . 【答案】2(1,)3-【解析】2320x x +-<,将232x x +-分解因式即有: (1)(32)0x x +-<;2(1)()03x x +-<;由一元二次不等式的解法“小于取中间,大于取两边” 可得:213x -<<; 即:2{|1}3x x -<<;或2(1,)3-;故答案为:2(1,)3-;21.(2017•上海)不等式11x x->的解集为 . 【答案】(,0)-∞ 【解析】由11x x->得: 111100x x x->⇒<⇒<, 故不等式的解集为:(,0)-∞,第11页(共11页)故答案为:(,0)-∞.22.(2019•全国)若12log (41)2x ->-,则x 的取值范围是 . 【答案】15(,)44【解析】1122log (41)2log 4x ->-=,∴410414x x ->⎧⎨-<⎩,∴1544x <<, x ∴的取值范围为15(,)44. 故答案为:15(,)44. 23.(2015•江苏)不等式224xx -<的解集为 . 【答案】(1,2)- 【解析】224x x -<,22x x ∴-<,即220x x --<,解得:12x -<< 故答案为:(1,2)-24.(2013•全国)不等式2(2)1lg x x -->的解集为 .【答案】{|3x x <-或4}x >【解析】y lgx =是单调增函数,∴不等式2(2)1lg x x -->转化为:2(2)10lg x x lg -->,2210x x ∴-->,即2120x x -->,解得:3x <-或4x >,∴不等式的解集为:{|3x x <-或4}x >.故答案为:{|3x x <-或4}x >.25.(2006•重庆)设0a >,1a ≠,函数2()log (23)a f x x x =-+有最小值,则不等式log (1)0a x ->的解集为 .【答案】(2,)+∞【解析】由0a >,1a ≠,函数2()log (23)a f x x x =-+有最小值可知1a >,所以 不等式log (1)0a x ->可化为11x ->,即2x >.故答案为:(2,)+∞。
高考数学不等式的基本性质与不等式的解法考点总结什么叫做不等式用不等号将两个整式连结起来所成的式子。
不等式基本性质①假设xy,那么yx;假设yx,那么xy;〔对称性〕②假设xy,yz;那么xz;〔传递性〕③假设xy,而z为恣意实数或整式,那么x+zy+z;〔加法原那么,或叫同向不等式可加性〕④ 假设xy,z0,那么xzyz;假设xy,z0,那么xzyz;〔乘法原那么〕⑤假设xy,z0,那么x÷zy÷z;假设xy,z0,那么x÷zy÷z;⑥假设xy,mn,那么x+my+n;〔充沛不用要条件〕⑦假设x0,m0,那么xmyn;⑧假设x0,那么x的n次幂y的n次幂〔n为正数〕,x的n 次幂y的n次幂〔n为正数〕或许说,不等式的基本性质有:①对称性;②传递性:③加法单调性:即同向不等式可加性:④乘法单调性:⑤同向正值不等式可乘性:⑥正值不等式可乘方:⑦正值不等式可开方:⑧倒数法那么。
假设由不等式的基本性质动身,经过逻辑推理,可以论证少量的初等不等式,以上是其中比拟有名的。
不等式性质与等式性质的异同点相反点:等式或不等式的两边同时加上〔或减去〕同一个数,等式或不等式依然成立。
不相反点:等式的两边同时乘以〔或除以〕同一个不为0 的数,等式依然成立。
不等式的两边同时乘以〔或除以〕同一个正数,不等式依然成立。
不等式的两边同时乘以〔或除以〕同一个正数,不等式改动方向。
不等式的解法:〔1〕一元二次不等式:一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对停止讨论:〔2〕相对值不等式:假定,那么;;留意:〔1〕解有关相对值的效果,思索去相对值,去相对值的方法有:⑴对相对值内的局部按大于、等于、小于零停止讨论去相对值;〔2〕。
经过两边平方去相对值;需求留意的是不等号两边为非负值。
〔3〕。
含有多个相对值符号的不等式可用〝按零点分区间讨论〞的方法来解。
〔4〕分式不等式的解法:通解变形为整式不等式;〔5〕不等式组的解法:区分求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共局部。
第13讲:等式性质与不等式性质【学习目标】1.了解等式的性质.2.掌握不等式的基本性质,并能运用这些性质解决有关问题.【基础知识】知识点一:等式的基本性质1.如果a =b ,那么b =a .2.如果a =b ,b =c ,那么a =c .3.如果a =b ,那么a ±c =b ±c .4.如果a =b ,那么ac =bc .5.如果a =b ,c ≠0,那么a c =bc .知识点二:不等式的性质性质别名性质内容注意1对称性a >b ⇔b <a ⇔2传递性a >b ,b >c ⇒a >c 不可逆3可加性a >b ⇔a +c >b +c 可逆4可乘性a >b ,c >0⇒ac >bc a >b ,c <0⇒ac <bc c 的符号5同向可加性a >b ,c >d ⇒a +c >b +d 同向6同向同正可乘性a >b >0,c >d >0⇒ac >bd 同向7可乘方性a >b >0⇒a n >b n (n ∈N ,n ≥2)同正【考点剖析】考点一:不等式性质判断真假例1.对于任意实数a ,b ,c ,d ,下列命题正确的是()A.若a b ,则22ac bc B.若a b ,则11a bC.若22ac bc ,则a bD.若0a b ,c d ,则ac bd【答案】C 【详解】A:若0c =,则220ac bc ,故A 错误;B:若1,1a b ,则,1111a b,则11a b ,故B 错误;C:因为22ac bc ,则20c ,两边同除以2c ,得a b ,故C 正确;D:若2,1,1,2a b c d ,则2,2ac bd ,故D 错误.故选:C.变式训练1:若0,10a b ,则下列不等关系一定正确的是()A.a b B.2a b C.a bD.0a b 【答案】B 【详解】0a ,20b ,所以2a b 故选:B变式训练2:已知0b a ,则下列不等式一定成立的是()A.a b B.2b abC.11a bD.22a b 【答案】D 【详解】00b a b a b a b a∵故A 错误;2()b ab b b a ∵00b a b a ∵20b ab 2b ab 故B 错误;11b a a b ab∵00,0b a b a ab ∵110a b 11a b 故C 错误; 22a b a b a b ∵00,0b a a b a b ∵22220a b a b 故D 正确.故选:D变式训练3:下列结论正确的是()A.若a b ,则ac bc B.若a b ,则11a bC.若22ac bc ,则a b D.若a b ,则22a b 【答案】C 【详解】对于A:当a b 时,若取0c ,则有ac bc .故A 不正确;对于B:当a b 时,取1,1a b 时,有11a b.故B 不正确;对于C:当22ac bc ,两边同乘以21c ,则a b .故C 正确;对于D:当a b ,取1,1a b 时,有22=a b .故D 不正确.故选:C.考点二:利用不等式性质证明例2.已知0a b ,0c d ,b c ,求证:(1)0b c ;(2)b aa cb d.【答案】(1)证明见解析;(2)证明见解析.【详解】证明:(1)∵b c 且0b ,0c ,∴b c 即0b c ;(2)∵0c d ,∴0c d ,又0a b ,∴0a c b d ,∴110b d a c ,∴b b aa cb d b d.变式训练1:若0,0ab m .求证bb ma a m.【答案】证明见解析.【详解】由0,0ab m ,得0am bm ,故得am ab bm ab ,即 am b b m a ,又因为0,0ab m ,在不等式两边同时乘以1a a m 得:b b ma a m,不等式得证.变式训练2:已知,0a b c a b c ,求证:c c a c b c【答案】见解析【详解】因为a b c ,故0,0a b b c ,要证c ca cb c,即证 c b c c a c ,即证cb ca ,即证: 0c b a ,因为,0a b c a b c ,故03c c c c ,故0c ,因为b a ,故0b a ,故 0c b a ,故原不等式成立.变式训练3:已知0a b ,0c d .证明:(1)ac bd ;(2)a aa cb c.【答案】(1)证明见解析;(2)证明见解析.【详解】解:证明:(1)∵0a b ,0c ,∴0ac bc ,又0c d Q ,0b ,∴0bc bd ,故ac bd ;(2)由0c ,得0c ,又0a b ∵,∴0a c b c ,即110a c b c,又0a ∵,∴a aa cb c.考点三:不等式求解范围(一)例3.已知23a ,21b ,求2a b 的范围.【答案】225a b 【详解】解:23a ∵,426a ,又21b ∵,225a b .变式训练1:已知13a ,26b ,则23a b 的取值范围是________【答案】 16,12 【分析】由条件可得226a ,1836b ,然后可得答案.【详解】因为13a ,26b ,所以226a ,1836b 所以16<2312a b 故答案为:16,12 变式训练2:若23a b ,则b a 的取值范围是_________.【答案】(0,5)【详解】因为23a b ,故>0b a ,且32a ,所以55b a ,故05b a .故答案为:(0,5).变式训练3:若角, 满足2,则 的取值范围是_________, 的取值范围是__________.【答案】 ,2 ;,02【详解】由2,则2 ,2,2且0 ,所以2 ,02,所以 的取值范围是 ,2 , 的取值范围是,02.故答案为: ,2 ;,02考点四:不等式求解范围(二)例4.已知23a ,21b ,则2a b 的范围___________2a b 的范围___________.【答案】(2,5);4,7【详解】由23a ,可得426a ,又由21b ,所以4(2)26(1)a b ,即225a b ,所以2a b 的范围(2,5);由21b ,可得12b ,所以224b ,又由23a ,所以22234a b ,即427a b ,所以2a b 的范围 4,7.变式训练1:已知实数x ,y 满足023x y ,21x y ,则45x y 的最大值是________.【答案】13【详解】解:令 452x y m x y n x y ,解得:3m ,2n ,又023x y ∵,21x y ,24513x y ,即45x y 的最大值是13.故答案为:13.变式训练2:已知13a b ,则a b 的取值范围是_________,ab的取值范围是________.【答案】 2,6;1,13【详解】13a b ∵,即1a b ,3a b ,13a a b b ,又12a ,36b ,26a b ;又1113b a ,13a a b ,又133a ,113a b.综上所述:a b 的取值范围为 2,6;a b 的取值范围为1,13.故答案为: 2,6;1,13.变式训练3:已知14x y ,23x y ,则x 的范围是_________,32x y 的范围是________.【答案】17,22 ;323,22【详解】14x y ∵,23x y ,两个不等式相加可得127x ,解得1722x ,设 32 x y m x y n x y m n x m n y ,所以,32m n m n ,解得52m ,12n ,因为 551022x y, 13122x y ,由不等式的基本性质可得3233222x y .故答案为:17,22;323,22.【过关检测】1、若0a b ,则下列不等式中,不能成立的是()A.11a bB.11a b aC.a bD.22a b 【答案】B 【详解】若0a b ,则110b aa b ab ,即11a b,A 成立;11()0()()a a b b a b a a a b a a b ,即11a b a,B 不成立;a b ,C 成立;22a b ,D 成立;故选:B2、如果,a b 那么下列说法正确的是()A.ac bc B.22ac bc C.ac bcD.0b a 【答案】D 【详解】因为a b ,不等式两边同时减去a 得0b a ,D 正确,若0c =,则AB 错误,若0c ,C 错误.故选:D.3、已知,,a b c R ,且a b ,那么下列各式中正确的是()A.1abB.11a bC.22ac bc D.33a b 【答案】D 【详解】对于A 选项:举反例1,1a b ,则11ab,则A 不成立;对于B 选项:举反例1,1a b ,则,1111a b,所以11a b ,则B 不成立;对于C 选项:举反例0c =,则220,0a c b c ,所以22a c b c ,则C 不成立;对于D 选项: 2332221324a b a b a ab b a b a b b∵a b ,∴0a b 又∵2213024a b b∴330a b ,即33a b .则D 成立故选:D.4、已知,a b R ,满足0ab ,0a b ,a b ,则()A.11a bB.0b a a bC.22a b D.a b【答案】C 【详解】因0ab ,a b ,则a>0,b<0,110,0a b,A 不正确;0,0b a a b ,则0b aa b ,B 不正确;又0a b ,即0a b ,则22()a b ,22a b ,C 正确;由0a b 得||a b ,D 不正确.故选:C5、下列命题中,正确的是()A.若a b ,则11a bB.若ac bc ,则a b C.若22a bc c ,则a b D.若a b ,cd ,则ac bd【答案】C 【详解】对于A,当1a ,1b 时,满足a b ,但不满足11a b,故A 不正确;对于B,当0c 时,由ac bc 可得a b ,故B 不正确;对于C,若22a b c c ,则2222a b c c c c,即a b ,故C 正确;对于D,当4,1a b ,1,2c d 时,满足,a b c d ,但是42ac bd ,故D 不正确.故选:C6、若,,a b c 为实数,且0a b ,则下列命题正确的是()A.22ac bc B.11a bC.b a a bD.22a ab b【答案】D 【详解】对于A,当0c =时,220ac bc ,A 错误;对于B,当2a ,1b 时,112a ,11b ,此时11a b,B 错误;对于C,220b a b a a b ab∵,b a a b ,C 错误;对于D,0a b Q ,0a b , 20 a ab a a b , 20ab b b a b ,22a ab b ,D 正确.故选:D.7、下列说法不正确的是()A.若..a b m 都是正数,则a m ab m b B.若0c a b ,则a bc a c bC.若...a b c d 都是正数,且bc ad 则a a c cb b d dD.若0.0a b c d ,则a b c d【答案】A 【详解】A 中,由a mb b m a b a m a m a b m b b m b b m b ,当b a 时,a m ab m b,故A 错;B 中,由 0a c b b c a ac ab bc ab a b c 所以 a c b b c a 则a bc a c b,故B 正确;C 中,由 0a b d b a c ab ad ab bc ad bc ,则 0a b d b a c 所以 a b d b a c 得a c ab b d ;由 0acd b d c ad cd bc dc ad bc 所以a c db dc 即a c c b dd ,所以a a c cb b d d,C 正确;D 中,由0.0a b c d 所以ad bc ,则a bc d,D 正确故选:A8、对于任意实数,,,a b c d ,有下列结论:①若a b ,0c ,则ac bc ;②若a b ,则22ac bc ;③若22ac bc ,则a b ;④若a b ,则11a b其中正确的是()A.①B.②C.③D.④【答案】C 【详解】对于①:若a b ,0c ,则ac bc ;故①错误;对于②:若a b ,=0c 则22=ac bc ;故②错误;对于③:若22ac bc ,则0c ,所以210c ,把22ac bc 乘以21c ,得:a b .故③正确;对于④:若a b ,取a=1,b=-1,此时11a b;故④错误.故选:C9、若1,2 a b ,则a b 的取值范围是()A. 3 ,B. ,3 C. 3 ,D.3 ,【答案】C 【详解】因为1,2 a b ,所以3a b ,即a b 的取值范围是 3 ,.故选:C.10、角,x y 满足22x y,则x y 的取值范围是()A. ,0 B. , C.(,0)2D.(,)22【答案】A 【详解】因为22x y,则22y ,所以2222x y,即x y ,又0x y ,所以0x y .故选:A.11、设 , 满足180180 ,则 的取值范围是()A.3600 B.180180 C.1800 D.360360【答案】A 【详解】∵ , 满足180180 ,∴180180 ,180180 ,∴180180 ,∴180180180180 ,∴360360 ,∵ ,∴0 ,∴3600 ,故选:A12、已知13,24a b ,则2a b 的取值范围是()A.624a b B.0210a b C.422a b D.521a b 【答案】A因为13,24a b ,可得226,42a b ,所以24262a b ,即624a b ;故选:A.13、已知实数,x y 满足322,124,x y x y 则()A.x 的取值范围为(1,2) B.y 的取值范围为(2,1) C.x y 的取值范围为()3,3 D.x y 的取值范围为(1,3)【答案】ABD 【详解】因为124x y ,所以2428x y .因为322x y ,所以5510x ,则12x ,故A 正确;因为322x y ,所以6244x y .因为124x y ,所以421x y ,所以1055y ,所以21y ,故B 正确;因为322124x y x y ,,所以9361142,2555555x y x y()(),则22x y ,故C 错误;因为322124x y x y ,,所以213331222555555x y x y(),(),则13x y ,故D 正确.故选:ABD.14、已知660a ,1518b ,则下列正确的是()A.1,43a bB. 21,78a b C.9,42a b D.739,59a b b【答案】AB因为660a ,1518b ,所以1111815b ,1815b ,则6601815a b ,6156018a b ,6186015a b ,即143a b ,2178a b ,1245a b ,则41,53a b a b b;故AB 正确,CD 错.故选:AB.15、已知实数,x y 满足13,429x y x y ,则()A.14x B.21y C.2415x y D.163x y 【答案】AC 【详解】因为13,429,3312x y x y x ,所以14x ,A 正确;因为6222429x y x y,所以2311y ,解得11233y ,B 错误;因为 422x y x y x y , 226,429x y x y ,所以2415x y ,C 正确;12233x y x y x y, 11821,263333x y x y ,所以51933x y ,D 错误.故选:AC.16、已知14,263x y x y ,则34z x y 的取值范围是________________.【答案】[0,11];【详解】解: 3426z x y x y x y ,因为14,263x y x y ,所以 228x y ,所以 02611x y x y ,故答案为:[0,11]17、已知122,34a b a b ,则4a b 的取值范围是____________.【答案】(5,10)【详解】解:令4(2)()(2)()a b m a b n a b m n a m n b ,则241m n m n ,解得12m n,所以4(2)2()a b a b a b ,因为34a b ,所以62()8a b ,因为122a b ,所以1622()28a b a b ,所以5410a b ,所以4a b 的取值范围为(5,10),故答案为:(5,10)18、已知14,24x y x y ,则32x y 的取值范围是_____.【答案】3(,12)2【详解】设,x y m x y n ,因此得:,22m n m nx y,14,24m n ,532322222m n m n m nx y,因为14,24m n ,所以5510,12222m n,因此3512222m n ,所以332122x y.故答案为:3(,12)219、若810x ,24y ,则2x y 的范围是___________,xy的范围是___________.【答案】 12,18; 2,5【详解】因为810x ,所以16220x ,由24y 可得42y ,所以12218x y ,由24y 可得11142y ,因为810x ,所以25xy,所以2x y 的范围是 12,18,xy的范围是 2,5,故答案为: 12,18; 2,5.20、设46,12a b ,则aa b的取值范围是________(取值范围写成区间形式)【答案】(0,3)【详解】解:由12b ,得1112b,所以1112b,所以1111112b ,即11012b ,因为46a ,所以1140(162a b ,即03aa b,所以aa b的取值范围是(0,3),故答案为:(0,3)21、已知,,a b c R ,满足a b c .(1)求证:1110a b b c c a;(2)现推广:把1c a 的分子改为另一个大于1的正整数p ,使110pa b b c c a对任意a b c 恒成立,试写出一个p ,并证明之.【答案】(1)证明见解析;(2)2p ,证明见解析.【详解】(1)由于a b c ,所以0a b ,0b c ,0a c ,要证1110a b b c c a,只需证明111()()0a c a b b c c a.左边111[()()](a b b c a b b c c a130b c a b a b b c(2)要使110p a b b c c a,只需11()()0pa c ab bc c a ,左边11[()()]()24p b c a ba b b c p p a b b c c a a b b c,所以只需40p 即可,即4p ,所以可以取2p ,3代入上面过程即可.22、(1)已知,a b c d ,求证:a c b d ;(2)已知,0a b ab ,求证:11a b;(3)已知0,0a b c d ,求证:a bc d.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【详解】证明:(1)因为,a b c d ,所以,a b c d .则a c b d .(2)因为0ab ,所以10ab.又因为a b ,所以1a b ab ab,即11b a ,因此11a b .(3)因为0c d ,根据(2)的结论,得110c d.又因为0a b ,则11a b c d,即a b c d.23、若0a b ,0c d ,||||b c (1)求证:0b c ;(2)求证:22()()b c a da cb d ;(3)在(2)中的不等式中,能否找到一个代数式,满足2()b c a c 所求式2()a db d ?若能,请直接写出该代数式;若不能,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)能,222()()()b c b c a da cb d b d .【详解】(1)因为||||b c ,且0,0b c ,所以b c ,所以0b c .(2)因为0c d ,所以0c d .又因为0a b ,所以由同向不等式的相加性可将以上两式相加得0a c b d .所以22()()0a c b d .所以22110()()a c b d,因为,a b d c ,所以由同向不等式的相加性可将以上两式相加得a d b c .所以0a d b c ,所以由两边都是正数的同向不等式的相乘可得22()()b c a da cb d .(3)因为0b c ,22110()()a c b d,所以22()()b c b ca cb d ,因为0b c a d ,210()b d ,所以22()()b c a db d b d ,所以222()()()b c b c a da cb d b d .所以在(2)中的不等式中,能找到一个代数式2()b cb d 满足题意.24、设27a ,12b ,求 a b , a b ,ab的范围.【答案】19a b ,46a b ,27ab.【详解】∵27a ,12b ,∴19a b ,21b ,1112b,∴46a b ;当20a 时,02a ,则02a b ,所以20ab;当0a 时,0ab;当07a 时,07a b,综上,27a b ,故19a b ,46a b ,27a b.25、实数,a b 满足32a b ,14a b .(1)求实数,a b 的取值范围;(2)求32a b 的取值范围.【答案】(1)23a ,7322b;(2)43211a b .【分析】(1)直接利用不等式的性质即可求得a ,b 的取值范围;(2)设32()()a b m a b n a b ,求解m ,n 的值,再由不等式的可乘积性与可加性求得32a b 的取值范围.【详解】(1)由32a b ,14a b ,两式相加得,426a ,则23a ,由14a b ,得41a b ,又32a b ,两式相加得,723b ,即7322b ;(2)设 32a b m a b n a b m n a m n b ,则32m n m n ,解得1252m n,∴ 153222a b a b a b ,∵32,14a b a b ,∴ 31551,102222a b a b ,则43211a b .。
2015年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2} 2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1B.0C.1D.23.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.845.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.126.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.108.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x 的函数f(x),则y=f(x)的图象大致为()A.B.C.D.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】解一元二次不等式,求出集合B,然后进行交集的运算即可.【解答】解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.【点评】考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1B.0C.1D.2【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】首先将坐标展开,然后利用复数相等解之.【解答】解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,4a=0,并且a2﹣4=﹣4,所以a=0;故选:B.【点评】本题考查了复数的运算以及复数相等的条件,熟记运算法则以及复数相等的条件是关键.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.84【考点】88:等比数列的通项公式.【专题】11:计算题;54:等差数列与等比数列.【分析】由已知,a1=3,a1+a3+a5=21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求.【解答】解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7==3×(2+4+8)=42.故选:B.【点评】本题主要考查了等比数列通项公式的应用,属于基础试题.5.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.12【考点】3T:函数的值.【专题】11:计算题;51:函数的性质及应用.【分析】先求f(﹣2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.【解答】解:函数f(x)=,即有f(﹣2)=1+log2(2+2)=1+2=3,f(log212)==2×=12×=6,则有f(﹣2)+f(log212)=3+6=9.故选:C.【点评】本题考查分段函数的求值,主要考查对数的运算性质,属于基础题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.10【考点】IR:两点间的距离公式.【专题】11:计算题;5B:直线与圆.【分析】设圆的方程为x2+y2+Dx+Ey+F=0,代入点的坐标,求出D,E,F,令x=0,即可得出结论.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,∴D=﹣2,E=4,F=﹣20,∴x2+y2﹣2x+4y﹣20=0,令x=0,可得y2+4y﹣20=0,∴y=﹣2±2,∴|MN|=4.故选:C.【点评】本题考查圆的方程,考查学生的计算能力,确定圆的方程是关键.8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【解答】解:由a=14,b=18,a<b,则b变为18﹣14=4,由a>b,则a变为14﹣4=10,由a>b,则a变为10﹣4=6,由a>b,则a变为6﹣4=2,由a<b,则b变为4﹣2=2,由a=b=2,则输出的a=2.故选:B.【点评】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.9.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x 的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【考点】HC:正切函数的图象.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.【解答】解:设M在双曲线﹣=1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,﹣=1,可得a=b,c==a,即有e==.故选:D.【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M的坐标是解题的关键.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)【考点】6B:利用导数研究函数的单调性.【专题】2:创新题型;51:函数的性质及应用;53:导数的综合应用.【分析】由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.故选:A.【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.【考点】96:平行向量(共线).【专题】11:计算题;34:方程思想;4O:定义法;5A:平面向量及应用.【分析】利用向量平行的条件直接求解.【解答】解:∵向量,不平行,向量λ+与+2平行,∴λ+=t(+2)=,∴,解得实数λ=.故答案为:.【点评】本题考查实数值的解法,考查平面向量平行的条件及应用,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y轴的截距最大值.【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过D点时,z 最大,由得D(1,),所以z=x+y的最大值为1+;故答案为:.【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a= 3.【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】给展开式中的x分别赋值1,﹣1,可得两个等式,两式相减,再除以2得到答案.【解答】解:设f(x)=(a+x)(1+x)4=a0+a1x+a2x2+…+a5x5,令x=1,则a0+a1+a2+…+a5=f(1)=16(a+1),①令x=﹣1,则a0﹣a1+a2﹣…﹣a5=f(﹣1)=0.②①﹣②得,2(a1+a3+a5)=16(a+1),所以2×32=16(a+1),所以a=3.故答案为:3.【点评】本题考查解决展开式的系数和问题时,一般先设出展开式,再用赋值法代入特殊值,相加或相减.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=﹣.【考点】8H:数列递推式.【专题】54:等差数列与等比数列.﹣S n=a n+1可知S n+1﹣S n=S n+1S n,两边同时除以S n+1S n可知﹣【分析】通过S n+1=1,进而可知数列{}是以首项、公差均为﹣1的等差数列,计算即得结论.=S n+1S n,【解答】解:∵a n+1﹣S n=S n+1S n,∴S n+1∴﹣=1,又∵a1=﹣1,即=﹣1,∴数列{}是以首项是﹣1、公差为﹣1的等差数列,∴=﹣n,∴S n=﹣,故答案为:﹣.【点评】本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【考点】HP:正弦定理;HT:三角形中的几何计算.【专题】58:解三角形.【分析】(1)如图,过A作AE⊥BC于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC及正弦定理可得sin∠B=,sin∠C=,从而得解.(2)由(1)可求BD=.过D作DM⊥AB于M,作DN⊥AC于N,由AD平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.【点评】本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.【考点】BA:茎叶图;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(1)根据茎叶图的画法,以及有关茎叶图的知识,比较即可;(2)根据概率的互斥和对立,以及概率的运算公式,计算即可.【解答】解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意评分的平均值高于B地区用户满意评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散;(2)记C A1表示事件“A地区用户满意度等级为满意或非常满意”,记C A2表示事件“A地区用户满意度等级为非常满意”,记C B1表示事件“B地区用户满意度等级为不满意”,记C B2表示事件“B地区用户满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,则C=C A1C B1∪C A2C B2,P(C)=P(C A1C B1)+P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2),由所给的数据C A1,C A2,C B1,C B2,发生的频率为,,,,所以P(C A1)=,P(C A2)=,P(C B1)=,P(C B2)=,所以P(C)=×+×=0.48.【点评】本题考查了茎叶图,概率的互斥与对立,用频率来估计概率,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.【考点】MI:直线与平面所成的角.【专题】5G:空间角;5H:空间向量及应用.【分析】(1)容易知道所围成正方形的边长为10,再结合长方体各边的长度,即可找出正方形的位置,从而画出这个正方形;(2)分别以直线DA,DC,DD1为x,y,z轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确定A,H,E,F几点的坐标.设平面EFGH的法向量为,根据即可求出法向量,坐标可以求出,可设直线AF与平面EFGH所成角为θ,由sinθ=即可求得直线AF 与平面α所成角的正弦值.【解答】解:(1)交线围成的正方形EFGH如图:(2)作EM⊥AB,垂足为M,则:EH=EF=BC=10,EM=AA1=8;∴,∴AH=10;以边DA,DC,DD1所在直线为x,y,z轴,建立如图所示空间直角坐标系,则:A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8);∴;设为平面EFGH的法向量,则:,取z=3,则;若设直线AF和平面EFGH所成的角为θ,则:sinθ==;∴直线AF与平面α所成角的正弦值为.【点评】考查直角三角形边的关系,通过建立空间直角坐标系,利用空间向量解决线面角问题的方法,弄清直线和平面所成角与直线的方向向量和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【考点】I3:直线的斜率;KH:直线与圆锥曲线的综合.【专题】2:创新题型;5E:圆锥曲线中的最值与范围问题.【分析】(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,建立方程关系即可得到结论.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=,则x M==,y M=kx M+b=,于是直线OM的斜率k OM==,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m﹣m,∴k2m2>9(m﹣m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM的方程为y=x,设P的横坐标为x P,由得,即x P=,将点(,m)的坐标代入l的方程得b=,即l的方程为y=kx+,将y=x,代入y=kx+,得kx+=x解得x M=,四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,于是=2×,解得k1=4﹣或k2=4+,∵k i>0,k i≠3,i=1,2,∴当l的斜率为4﹣或4+时,四边形OAPB能为平行四边形.【点评】本题主要考查直线和圆锥曲线的相交问题,联立方程组转化为一元二次方程,利用根与系数之间的关系是解决本题的关键.综合性较强,难度较大.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】2:创新题型;52:导数的概念及应用.【分析】(1)利用f′(x)≥0说明函数为增函数,利用f′(x)≤0说明函数为减函数.注意参数m的讨论;(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m的取值范围.【解答】解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是[﹣1,1]【点评】本题主要考查导数在求单调函数中的应用和恒成立在求参数中的应用.属于难题,高考压轴题.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【考点】N4:相似三角形的判定.【专题】26:开放型;5F:空间位置关系与距离.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC ﹣S△AEF计算即可.【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2c osθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【考点】29:充分条件、必要条件、充要条件;R6:不等式的证明.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。
2015届高考数学一轮总复习 7-1不等式的性质及解法基础巩固强化一、选择题1.已知函数f (x )=3ax +1-2a ,在(-1,1)上存在x 0,使f (x 0)=0,则a 的取值范围是( ) A .-1<a <15B .a >15C .a <-1或a >15D .a <-1[答案] C[分析] a ≠0时,f (x )为一次函数,故由x 0∈(-1,1)时,f (x 0)=0知,f (-1)与f (1)异号. [解析] 由题意得f (-1)·f (1)<0, 即(-3a +1-2a )·(3a +1-2a )<0,即(5a -1)(a +1)>0,∴a <-1或a >15.故选C.2.(文)(2013·北京东城区统一检测)“x 2-2x -3>0成立”是“x >3成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件[答案] B[解析] 由x 2-2x -3>0得x <-1或x >3,所以x 2-2x -3>0是x >3成立的必要不充分条件. (理)(2012·河北保定模拟)若a >0且a ≠1,b >0,则“log a b >0”是“(a -1)(b -1)>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件[答案] C[解析] ∵a >0且a ≠1,b >0,∴log a b >0⇔⎩⎪⎨⎪⎧ 0<a <1,0<b <1,或⎩⎪⎨⎪⎧a >1,b >1.⇔(a -1)(b -1)>0.3.(文)(2013·西安模拟)设α∈(0,π2),β∈[0,π2],那么2α-β3的取值范围是( )A .(0,5π6)B .(-π6,5π6)C .(0,π)D .(-π6,π)[答案] D[解析] 由题设得0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,∴-π6<2α-β3<π.(理)(2013·汉中一模)若a 、b 均为不等于零的实数,给出下列两个条件.条件甲:对于区间[-1,0]上的一切x 值,ax +b >0恒成立;条件乙:2b -a >0,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] ∵当x ∈[-1,0]时,恒有ax +b >0成立, ∴当x =-1时,b -a >0,当x =0时,b >0, ∴2b -a >0,∴甲⇒乙;但乙推不出甲, 例如:a =32b ,b >0时,则2b -a =12b >0,但是,当x =-1时,a ·(-1)+b =-32b +b =-12b <0,∴甲是乙的充分不必要条件.4.(文)(2013·天津)设a 、b ∈R ,则“(a -b )·a 2<0”是“a <b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件[答案] A[解析] 因为a 2≥0,而(a -b )a 2<0,所以a -b <0,即a <b ;由a <b ,a 2≥0,得到(a -b )a 2≤0,所以(a -b )a 2<0是a <b 的充分不必要条件.(理)(2013·安徽盟校联考)已知a ,b ∈R ,下列四个条件中,使ab >1成立的必要不充分条件是( )A .a >b -1B .a >b +1C .|a |>|b |D .ln a >ln b[答案] C[解析] 由a b >1⇔ab -1>0⇔a -b b >0⇔(a -b )b >0⇔a >b >0或a <b <0⇒|a |>|b |,但由|a |>|b |不能得到a >b >0或a <b <0,即得不到a b >1,故|a |>|b |是使ab>1成立的必要不充分条件.故选C.5.(文)(2013·安徽名校模拟)已知a ∈[-1,1],不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为( )A .(-∞,2)∪(3,+∞)B .(-∞,1)∪(2,+∞)C .(-∞,1)∪(3,+∞)D .(1,3) [答案] C[解析] 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +(x 2-4x +4),则f (a )>0对于任意的a ∈[-1,1]恒成立,易知只需f (-1)=x 2-5x +6>0且f (1)=x 2-3x +2>0即可,联立方程并解得x <1或x >3.(理)已知p :∃x ∈R ,mx 2+2≤0,q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是( )A .m ≥1B .m ≤-1C .m ≤-1或m ≥1D .-1≤m ≤1[答案] A[解析] ∵p ∨q 为假命题,∴p 和q 都是假命题. 由p :∃x ∈R ,mx 2+2≤2为假,得∀x ∈R ,mx 2+2>0, ∴m ≥0. ①由q :∀x ∈R ,x 2-2mx +1>0为假,得∃x 0∈R ,x 20-2mx 0+1≤0, ∴Δ=(-2m )2-4≥0⇒m 2≥1⇒m ≤-1或m ≥1. ② 由①和②得m ≥1,故选A.6.(文)已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f ⎝⎛⎭⎫12=2,则不等式f (log 4x )>2的解集为( )A .(0,12)∪(2,+∞)B .(2,+∞)C .(0,22)∪(2,+∞) D .(0,22) [答案] A[解析] 作出函数f (x )的示意图如图,则log 4x >12或log 4x <-12,解得x >2或0<x <12.故选A.(理)(2013·北京西城区期末)已知a >b >0,给出下列四个不等式:①a 2>b 2;②2a >2b -1;③a -b >a-b ;④a 3+b 3>2a 2b .其中一定成立的不等式为( ) A .①②③ B .①②④ C .①③④ D .②③④[答案] A[解析] 由a >b >0可得a 2>b 2,①正确;由a >b >0可得a >b -1,而函数f (x )=2x 在R 上是增函数,∴2a >2b -1,②正确;∵a >b >0,∴a >b ,∴(a -b )2-(a -b )2=2ab -2b =2b (a -b )>0,∴a -b >a -b ,③正确;若a =3,b =2,则a 3+b 3=35,2a 2b =36,a 3+b 3<2a 2b ,④错误.二、填空题7.(文)(2013·烟台模拟)已知关于x 的不等式ax 2+2x +c >0的解集为(-13,12),则不等式-cx 2+2x -a >0的解集为________.[答案] (-2,3)[解析] 由条件知-13,12是方程ax 2+2x +c =0的两根,由根与系数的关系可得,⎩⎨⎧-13+12=-2a ,-13×12=c a ,∴⎩⎪⎨⎪⎧a =-12,c =2. ∴不等式-cx 2+2x -a >0化为,x 2-x -6<0, 解之得-2<x <3,∴所求不等式的解集为(-2,3).(理)规定记号“⊙”表示一种运算,定义a ⊙b =ab +a +b (a 、b 为正实数),若1⊙k <3,则k 的取值范围为________.[答案] (0,1)[解析] 由题意得1⊙k =k +1+k <3,即(k +2)(k -1)<0,所以0<k <1.8.(文)(2013·扬州期末)若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2与a 1b 2+a 2b 1的大小关系是________. [答案] a 1b 1+a 2b 2>a 1b 2+a 2b 1[解析] 作差可得(a 1b 1+a 2b 2)-(a 1b 2+a 2b 1)=(a 1-a 2)(b 1-b 2),∵a 1<a 2,b 1<b 2,∴(a 1-a 2)(b 1-b 2)>0,即a 1b 1+a 2b 2>a 1b 2+a 2b 1.(理)(2013·南京一模)给出下列四个命题: ①若a >b >0,则1a >1b ;②若a >b >0,则a -1a >b -1b ;③若a >b >0,则2a +b a +2b >ab;④设a ,b 是互不相等的正数,则|a -b |+1a -b≥2.其中正确命题的序号是________(把你认为正确命题的序号都填上). [答案] ②[解析] ①作差可得1a -1b =b -a ab ,而a >b >0,则b -a ab <0,∴①错误.②若a >b >0,则1a <1b ,进而可得-1a >-1b ,所以可得a -1a >b -1b 正确.∵2a +b a +2b -a b =b (2a +b )-a (a +2b )(a +2b )b =b 2-a 2(a +2b )b =(b -a )(b +a )(a +2b )b <0,∴③错误.④当a -b <0时此式不成立,∴④错误.9.(2013·黄山模拟)定义a *b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b .已知a =30.3,b =0.33,c =log 30.3,则(a *b )*c =________.(结果用a ,b ,c 表示)[答案] c[解析] ∵log 30.3<0<0.33<1<30.3, ∴c <b <a ,∴(a *b )*c =b *c =c .10.若关于x 的不等式m (x -1)>x 2-x 的解集为{x |1<x <2},则实数m 的值为________. [答案] 2[解析] 解法1:由m (x -1)>x 2-x 整理得(x -1)(m -x )>0,即(x -1)(x -m )<0,又m (x -1)>x 2-x 的解集为{x |1<x <2},所以m =2.解法2:由条件知,x =2是方程m (x -1)=x 2-x 的根, ∴m =2.能力拓展提升一、选择题11.(文)(2013·长沙模拟)已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( )A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)[答案] C[解析] ∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0, ∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点, 又f (x )在(-2,-1)上有一个零点, 则f (-2)f (-1)<0, ∴(6a +5)(2a +3)<0, ∴-32<a <-56,又a ∈Z ,∴a =-1,不等式f (x )>1即为-x 2-x >0,解得-1<x <0.(理)对于实数x ,规定[x ]表示不大于x 的最大整数,那么使不等式4[x ]2-36[x ]+45<0成立的x 的取值范围是( )A .(32,152)B .[2,8]C .[2,8)D .[2,7][答案] C[解析] 由4[x ]2-36[x ]+45<0,得32<[x ]<152,又[x ]表示不大于x 的最大整数,所以2≤x <8.12.(文)(2012·包头一中期末)设偶函数f (x )满足f (x )=2x -4(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}[答案] B[解析] 令t =x -2,则f (x -2)>0化为f (t )>0,∴t ≥0时,2t -4>0,∴t >2,又f (x )为偶函数,∴t <0时,f (t )>0的解为t <-2,∴x -2>2或x -2<-2,∴x >4或x <0,故选B.[点评] 也可以先由偶函数定义求出f (x )在R 上的解析式,再代入f (x -2)>0中化为关于x 的不等式组求解.(理)(2013·山西诊断)已知定义在R 上的函数f (x )满足f (1)=1,且f (x )的导数f ′(x )在R 上恒有f ′(x )<12,则不等式f (x 2)<x 22+12的解集为( ) A .(1,+∞) B .(-∞,-1)C .(-1,1)D .(-∞,-1)∪(1,+∞)[答案] D[解析] 记g (x )=f (x )-12x -12,则有g ′(x )=f ′(x )-12<0,g (x )是R 上的减函数,且g (1)=f (1)-12×1-12=0.不等式f (x 2)<x 22+12,即f (x 2)-x 22-12<0,即g (x 2)<0,即g (x 2)<g (1),由g (x )是R 上的减函数得x 2>1,解得x <-1或x >1,即不等式f (x 2)<x 22+12的解集是(-∞,-1)∪(1,+∞),选D.13.(2013·银川一中二模)已知函数y =f (x )是定义在R 上的增函数,函数y =f (x -1)的图象关于点(1,0)对称,若对任意的x ,y ∈R ,不等式f (x 2-6x +21)+f (y 2-8y )<0恒成立,则当x >3时,x 2+y 2的取值范围是( )A .(3,7)B .(9,25)C .(13,49)D .(9,49)[答案] C[解析] 因为函数y =f (x -1)的图象关于点(1,0)对称,所以函数y =f (x )的图象关于原点对称,所以函数y =f (x )为R 上的奇函数,不等式f (x 2-6x +21)+f (y 2-8y )<0恒成立,即为f (x 2-6x +21)<-f (y 2-8y )=f (8y -y 2)恒成立,因为函数y =f (x )是定义在R 上的增函数,所以x 2-6x +21<8y -y 2恒成立,即x 2+y 2-6x -8y +21<0恒成立,即点(x ,y )恒在圆(x -3)2+(y -4)2=4内,当x >3时,x 2+y 2表示半圆(x -3)2+(y -4)2=4(x >3)上的点到原点的距离的平方,所以最大为(32+42+2)2=49,最小为点(3,2)到原点的距离的平方,即为32+22=13,所以x 2+y 2的取值范围是(13,49).二、填空题14.(2013·徐州调研)用锤子以均匀的力敲击铁钉进入木板,随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板部分的铁钉长度为前一次的1k (k ∈N *).已知一个铁钉受击3次后全部进入木板,且第1次受击后进入木板部分的铁钉长度是铁钉长的47,则从中提炼出一个不等式组为________.[答案] ⎩⎨⎧47+47k<147+47k +47k 2≥1(k ∈N *)[解析] ∵每次钉入木板部分的铁钉长度是前一次的1k ,且第一次钉入木板部分是铁钉长的47,∴第二、三次钉入木板部分的铁钉长度依次为铁钉总长的47k ,47k 2,由题意知,第二次铁钉还没有全部进入木板, ∴47+47k<1, 第三次铁钉已经全部进入木板,∴47+47k +47k2≥1,∴不等式组为⎩⎨⎧47+47k<1,47+47k +47k 2≥1.[点评] 没说“铁钉受击3次后恰好..全部进入木板”,第二个不等式就必须是“≥”号. 15.(文)若关于x 的不等式4x -2x +1-a ≥0在[1,2]上恒成立,则实数a 的取值范围为________.[答案] (-∞,0][解析] ∵4x -2x +1-a ≥0在[1,2]上恒成立,∴4x -2x +1≥a 在[1,2]上恒成立.令y =4x -2x +1=(2x )2-2×2x +1-1=(2x -1)2-1.∵1≤x ≤2,∴2≤2x ≤4.由二次函数的性质可知:当2x =2,即x =1时,y 有最小值0,∴a ∈(-∞,0].(理)已知a >1,若不等式log a +1x -log a x +5<n +6n 对任意n ∈N *恒成立,则实数x 的取值范围是________.[答案] (1,+∞)[解析] ∵n >0,n +6n ≥26,当n =6时取等号,但n ∈N *,∴n =2或3,当n =2时,n +6n =5,当n =3时,n +6n =5,∴n +6n ≥5,由条件知,log a +1x -log a x +5<5,∴log a +1x <log a x ,又a >1,∴x >1.三、解答题16.(文)(2013·淮南质检)已知抛物线y =(m -1)x 2+(m -2)x -1(x ∈R ). (1)当m 为何值时,抛物线与x 轴有两个交点?(2)若关于x 的方程(m -1)x 2+(m -2)x -1=0的两个不等实根的倒数平方和不大于2,求m 的取值范围.[解析] (1)根据题意,m ≠1且Δ>0,由Δ=(m -2)2-4(m -1)(-1)>0, 得m 2>0,所以m ∈R ,且m ≠1,m ≠0. (2)在m ≠0且m ≠1的条件下, ⎩⎪⎨⎪⎧x 1+x 2=m -21-m ,x 1·x 2=11-m,因为1x 1+1x 2=x 1+x 2x 1x 2=m -2,所以1x 21+1x 22=(1x 1+1x 2)2-2x 1x 2=(m -2)2+2(m -1)≤2. 得m 2-2m ≤0,所以0≤m ≤2.所以m 的取值范围是{m |0<m <1或1<m ≤2}.(理)(2013·金华模拟)设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ). (1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a ,比较f (x )与m 的大小.[解析] (1)由题意知,F (x )=f (x )-x =a (x -m )(x -n )(a ≠0), 当m =-1,n =2时,不等式F (x )>0, 即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =F (x )+x -m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), ∵a >0,且0<x <m <n <1a ,∴x -m <0,1-an +ax >0. ∴f (x )-m <0,即f (x )<m .考纲要求1.了解现实世界和日常生活中的不等关系. 2.了解不等式(组)的实际背景.3.了解证明不等式的基本方法——比较法. 4.会从实际情境中抽象出一元二次不等式模型.5.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系. 6.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图. 补充说明1.实际应用中不等关系与数学语言间的关系将实际问题中的不等关系写成相应的不等式(组)时,应注意关键性的文字语言与对应数学符号之间的正确转换.2.利用不等式性质求数(式)的取值范围应用不等式的性质求多个变量线性组合的范围问题时,由于变量间相互制约,“取等号”的条件会有所不同,故解此类题目要特别小心.一般来说,可采用整体换元或待定系数法解决.3.数的大小比较比较数或式的大小时,可以利用不等式的性质进行比较;也可以作差(与0比)和作商(与1比)比较;还可以利用函数的单调性进行比较,要注意结合题目的特点选取恰当的方法.4.含参数的不等式问题一般分为两类:一类是已知参数的取值范围,求不等式的解;另一类是求使不等式有解(或恒成立)的参数的取值范围,求解时要注意分类讨论.对于含参数的一元二次不等式,往往既要按二次项系数a 的正负分类,又要按判别式Δ的符号分类.5.恒成立问题一般地,a >f (x )恒成立,f (x )的最大值为M ,则a >M ; a <f (x )恒成立,f (x )的最小值为m ,则a <m . 6.不等式的解法 (1)分式不等式的解法 先通分化为一边为f (x )g (x ),一边为0的形式,再等价转化为整式不等式.注意A B >0⇔A ·B >0;AB <0⇔A ·B <0;A B ≥0⇔⎩⎪⎨⎪⎧ A ·B ≥0B ≠0;AB ≤0⇔⎩⎪⎨⎪⎧A ·B ≤0B ≠0.如果用去分母的方法,一定要考虑分母的符号. (2)高次不等式的解法只要求会解可化为一边为0,另一边可分解为一次或二次的积式的,解法用穿根法,要注意穿根时“奇过偶不过”.(3)含绝对值不等式的解法:一是令每个绝对值式为0,找出其零点作为分界点,分段讨论;二是平方法.(4)含根号的不等式解法,一是换元法,二是平方法.(5)解含参数的不等式时,要对参数分类讨论(常见的有一次项系数含字母、二次项系数含字母、二次不等式的判别式Δ、指对不等式中的底数含参数等).(6)超越不等式讨论解的个数可用图解法.7.(1)无理不等式和含绝对值的不等式多数题目都可以用平方法求解,平方后要注意取值范围是否发生变化.(2)关于不等式解集的选择题,大多能用检验排除法求解.(3)去掉绝对值号时可以用绝对值的定义.(4)含无理式时,必须注意定义域的制约.(5)注意方程的根、函数的零点,不等式解集的端点三者之间的关系.8.求解含参不等式恒成立问题的常用方法 (1)变换主元,转化为一次函数问题;(2)转化为二次函数或二次方程,利用根的判别式或数形结合思想求解. (3)分离参变量,构造函数求最值. 备选习题1.(2012·哈尔滨三中模拟)已知f (x )是周期为2的奇函数,当0<x <1时,f (x )=lg x .设a =f (65),b=f (32),c =f (52),则( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b[答案] D[解析] ∵f (x )是周期为2的奇函数, ∴f (52)=f (12),f (32)=-f (12),f (65)=-f (45),∵0<x <1时,f (x )=lg x ,∴f (12)<f (45)<0,∴f (12)<0<-f (45)<-f (12),即c <a <b .2.关于x 的不等式x 2-ax -20a 2<0任意两个解的差不超过9,则a 的最大值与最小值的和是( ) A .2 B .1 C .0 D .-1 [答案] C[解析] 方程x 2-ax -20a 2=0的两根是x 1=-4a ,x 2=5a ,则由关于x 的不等式x 2-ax -20a 2<0任意两个解的差不超过9,得|x 1-x 2|=|9a |≤9,即-1≤a ≤1,且a ≠0,故选C.3.(2013·山东期末)下列四个条件中,使a >b 成立的充分而不必要的条件是( ) A .(a +b 2)2>abB .ac >bcC .a 2>b 2D .a -b >1[答案] D[解析] 对于选项A ,由(a +b 2)2>ab 可得a 2+2ab +b 2>4ab ,即a 2-2ab +b 2>0,(a -b )2>0,故(a +b 2)2>ab 不能推出a >b 成立,排除A ;对于选项B ,由ac >bc 可得(a -b )c >0,当c >0时,a >b 成立,当c ≤0时,a >b 不成立,排除B ;对于选项C ,由a 2>b 2可得(a +b )(a -b )>0,不能推得a >b 成立,排除C ;对于选项D ,由a -b >1可得a >b ,但由a >b 不能推得a >b +1,即a -b >1成立,故a -b >1是a >b 成立的充分不必要条件,故选D.4.已知0<x <y <a <1,m =log a x +log a y ,则有( ) A .m <0B .0<m <111 C .1<m <2D .m >2[答案] D [解析] 由0<x <y <a 得,0<xy <a 2,又0<a <1,故m =log a x +log a y =log a (xy )>log a a 2=2,故选D.5.若规定⎪⎪⎪⎪⎪⎪a b c d =|ad -bc |,则不等式log 2⎪⎪⎪⎪⎪⎪111x <0的解集为________. [答案] (0,1)∪(1,2) [解析] 据题意⎪⎪⎪⎪⎪⎪111x =|x -1|, ∴不等式log 2⎪⎪⎪⎪⎪⎪111x <0化为log 2|x -1|<0, ∴0<|x -1|<1,∴1<x <2或0<x <1.。
2015年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2015•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为5.考点:并集及其运算.专题:集合.分析:求出A∪B,再明确元素个数解答:解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:5点评:题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.(5分)(2015•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为6.考点:众数、中位数、平均数.专题: 概率与统计.分析:直接求解数据的平均数即可.解答:解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6.故答案为:6.点评:本题考查数据的均值的求法,基本知识的考查.3.(5分)(2015•江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为.考点:复数求模.专题:数系的扩充和复数.分析:直接利用复数的模的求解法则,化简求解即可.解答:解:复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:.点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.(5分)(2015•江苏)根据如图所示的伪代码,可知输出的结果S为7.考点:伪代码.专题: 图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I<8,退出循环,输出S的值为7.解答:解:模拟执行程序,可得S=1,I=1满足条件I<8,S=3,I=4满足条件I<8,S=5,I=7满足条件I<8,S=7,I=10不满足条件I<8,退出循环,输出S的值为7.故答案为:7.点评:本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.(5分)(2015•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.考点:古典概型及其概率计算公式.专题:概率与统计.分析:根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.解答:解:根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=.故答案为:.点评:本题考查了用列举法求古典概型的概率的应用问题,是基础题目.6.(5分)(2015•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m ﹣n的值为﹣3.考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:直接利用向量的坐标运算,求解即可.解答:解:向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.点评:本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.7.(5分)(2015•江苏)不等式2<4的解集为(﹣1,2).考点: 指、对数不等式的解法.专题:函数的性质及应用;不等式的解法及应用.分析:利用指数函数的单调性转化为x2﹣x<2,求解即可.解答:解;∵2<4,∴x2﹣x<2,即x2﹣x﹣2<0,解得:﹣1<x<2故答案为:(﹣1,2)点评:本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.8.(5分)(2015•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为3.考点:两角和与差的正切函数.专题: 三角函数的求值.分析:直接利用两角和的正切函数,求解即可.解答:解:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3.故答案为:3.点评:本题考查两角和的正切函数,基本知识的考查.9.(5分)(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.考点:棱柱、棱锥、棱台的体积.专题:计算题;空间位置关系与距离.分析:由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r.解答:解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:.点评:本题考查了圆柱与圆锥的体积公式,是基础的计算题.10.(5分)(2015•江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2.考点:圆的标准方程;圆的切线方程.专题:计算题;直线与圆.分析:求出圆心到直线的距离d的最大值,即可求出所求圆的标准方程.解答:解:圆心到直线的距离d==≤,∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2.故答案为:(x﹣1)2+y2=2.点评:本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.11.(5分)(2015•江苏)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),利用“累加求和"可得a n=.再利用“裂项求和”即可得出.解答:解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=+n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:本题考查了数列的“累加求和"方法、“裂项求和"方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.12.(5分)(2015•江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.考点:双曲线的简单性质.专题: 计算题;圆锥曲线的定义、性质与方程.分析:双曲线x2﹣y2=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离.解答:解:由题意,双曲线x2﹣y2=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:本题考查双曲线的性质,考查学生的计算能力,比较基础.13.(5分)(2015•江苏)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为4.考点:根的存在性及根的个数判断.专题: 综合题;函数的性质及应用.分析::由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1,分别作出函数的图象,即可得出结论.解答:解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有两个交点;g(x )与φ(x)=﹣f (x )﹣1的图象如图所示,图象有两个交点;所以方程|f (x )+g(x )|=1实根的个数为4. 故答案为:4. 点评:本题考查求方程|f (x )+g (x )|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.14.(5分)(2015•江苏)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k •a k+1)的值为.考点:数列的求和. 专题:等差数列与等比数列;平面向量及应用. 分析: 利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出. 解答解:=+:=++++=++ =++,∴(a k •a k+1)=+++++++…+++++++…+=+0+0 =.故答案为:9.点评: 本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤) 15.(14分)(2015•江苏)在△ABC 中,已知AB=2,AC=3,A=60°. (1)求BC 的长; (2)求sin2C 的值.考点: 余弦定理的应用;二倍角的正弦. 专题: 解三角形. 分析:(1)直接利用余弦定理求解即可. (2)利用正弦定理求出C 的正弦函数值,然后利用二倍角公式求解即可. 解答:解:(1)由余弦定理可得:BC 2=AB 2+AC 2﹣2AB •ACcosA=4+8﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB <BC ,∴C 为锐角, 则cosC===.因此sin2C=2sinCcosC=2×=.点评:本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.16.(14分)(2015•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.考点: 直线与平面平行的判定;直线与平面垂直的性质.专题: 证明题;空间位置关系与距离.分析:(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1.解答:证明:(1)根据题意,得;E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.点评:本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题,是基础题目.17.(14分)(2015•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2。