海口市七年级数学科期末检测题
- 格式:doc
- 大小:158.50 KB
- 文档页数:6
2023—2024学年度第一学期海口市七年级数学科期末检测题(A 卷)(全卷满分120分,考试时间100分钟)一、选择题(每小题3分,共36分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑.1. 的相反数是( )A. B. C. 3 D. -3【答案】A 【解析】【分析】根据相反数的定义即可解答.【详解】解:的相反数为.故选:A .【点睛】本题考查了相反数,熟记相关定义是解答本题的关键.2. 数据36000000用科学记数法表示为( )A. 36×106B. 3.6×106C. 3.6×107D. 3.6×108【答案】C【解析】【详解】36000000=3.6×107.故选C.点睛:对于一个绝对值较大的数,用科学记数法写成 的形式,其中,n 是比原整数位数少1的数.3. 从数5,,6,中,任取三个不同的数相加,所得到的结果中最小的是( )A. B. 1 C. D. 2【答案】B【解析】【分析】本题考查了有理数的大小比较,有理数的加法运算.熟练掌握有理数的大小比较,有理数的加法运算是解题的关键.13-1313-13-1310n a ⨯110a ≤<3-1-1-2-根据所得到的结果中最小的是,计算求解即可.【详解】解:由题意知,,∴取三个不同的数相加,所得到的结果中最小的是,故选:B .4. 数轴上表示数和表示数的两点之间的距离是 ( )A. -8B. 8C.D. 16【答案】B【解析】【分析】本题考查的是数轴上两点距离,根据数轴上两点间的距离公式求解即可.【详解】解:数轴上两点分别用,表示,在数轴上表示数和表示数的两点之间的距离.故选:B .5. 下列计算结果中正确的是( )A. B. C. D. 【答案】C【解析】【分析】本题考查了合并同类项,根据合并同类项的运算法则逐项分析判断,即可求解.【详解】解:A.,故该选项不正确,不符合题意;B.与不能合并,故该选项不正确,不符合题意;C.,故该选项正确,符合题意;D. ,故该选项不正确,不符合题意;故选:C .6. 已知,则代数式的值是( )A. 2B. 4C. 8D. 10【答案】A【解析】【分析】本题考查代数式求值.由得,整体代入代数式求值即可.【详解】解:∵,的()315-+-+3156-<-<<()3151-+-+=12-4-16- 12-4-∴12-4-()4128---=22624a a -=23ab ab +=33220ab b a -=224325a a a +=222624a a a -=a 2b 33220ab b a -=222325a a a +=220a b --=642a b -+220a b --=22a b -=220a b --=∴,∴.故选:A .7. 某商店把旅游鞋按成本价每双元提高标价,然后再以8折优惠卖出,则每双鞋的售价是( )A. 元B. 元C. 元D. 元【答案】C【解析】【分析】按成本价每双鞋子a 元提高50%标价,则标价是a (1+50%)元,然后乘以0.8就是售价.【详解】解:根据题意得:a (1+50%)×80%=1.2a (元).故选C .【点睛】本题考查了列代数式,理解提高率以及打折的含义是关键.8. 如图是一个长方体被截去一角后得到的几何体,从上面看,得到的图形是( )A. B. C. D.【答案】A【解析】【分析】根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形.【详解】从上面看,是正方形右边有一条斜线,如图:故选A .【点睛】考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.9. 如图,延长线段到点,使,若是的中点,,则等于()22a b -=642a b-+()622a b =--622=-⨯2=a 50%0.4a 0.8a 1.2a 1.5a AB C 12BC AB =D AC 12AB =BDA. 2B. 2.5C. 3D. 4【答案】C【解析】【分析】此题考查了线段的和差计算,线段中点的定义,由,,求出,根据是的中点,求出,计算即可得到答案.数据线段中点定义及掌握逻辑推理能力是解题的关键.【详解】解:∵,,∴,则,∵是的中点,∴,∴,故选:C .10. 如图,于点,,若,则等于( )A. B. C. D. 【答案】D【解析】【分析】本题考查了垂直的定义以及角的计算,根据垂直的定义,得,求出,再利用角度和差即可求的度数,正确理解垂直的定义和熟练掌握角度和差计算是解题的关键.【详解】∵,,∴,∴,∴,12BC AB =12AB =AC D AC AD 12BC AB =12AB =6BC =18AC AB BC =+=D AC 192AD AC ==3BD AB BD =-=AO BO ⊥O CO DO ⊥2740BOC '∠=︒AOD ∠6220'︒11740'︒12440'︒15220'︒90AOB COD ∠=∠=︒BOD ∠AOD ∠OA BO ⊥CO DO ⊥90AOB COD ∠=∠=︒9027406220BOD COD BOC ''∠=∠-∠=︒-︒=︒90622015220AOD AOB BOD ''∠=∠+∠=︒+︒=︒故选:.11. 如图,是四边形的对角线.若,,则等于( )A. B. C. D. 【答案】D【解析】【分析】根据平行线的判定,内错角相等,两直线平行,由∠1=∠2得到AB ∥CD ,然后根据平行线的性质可知∠A+∠ADC=180°,可求得∠ADC.【详解】由∠1=∠2得到AB ∥CD ,所以∠A+∠ADC=,可求得∠ADC=.故选D.【点睛】本题考查了平行线的判定和性质,明确题目中的内错角和同旁内角是解题的关键.12. 如图,一张地图上有A 、B 、C 三地,C 地在A 地东南方向,若∠BAC=83°,则B 地在A 地的( )A. 南偏西38°方向B. 北偏东52º方向C. 南偏西52°方向D. 西南方向【答案】A【解析】【详解】∵C 地在A 地的东南方向,∴∠1=45°.∵∠BAC=83°,∴∠2=83°-45°=38°.故选A.的D BD ABCD 12∠=∠80A ∠=︒ADC ∠60︒80︒90︒100︒180︒100︒点睛:本题考查了方向角的计算,由C 地在A 地的东南方向可得∠1=45°,从而利用角的和差可求出∠2=38°,根据方向角的定义可知B 地在A 地的南偏西38°方向.二、填空题(每小题3分,共12分)13.已知 与的值互为相反数,则的值为_____.【答案】1【解析】【分析】本题考查的是非负数的性质,解题的关键是掌握当几个非负数相加和为0时,则其中的每一项都必须等于0.根据互为相反数的两个数的性质可知:互为相反数的两个数的和0.再结合绝对值的意义分析:几个非负数的和为0,它们同时为0,得到x 和y 的值,即可求解.【详解】解:与互为相反数,,,,即,,,.,故答案为:1.14. 如图,将一副三角板叠放在一起,使角顶点与直角的顶点重合于点O ,并能绕O 点自由旋转,若,则_______度.【答案】【解析】【分析】先根据求出,然后再根据求出结果即可.的4x -3y +x y +4x - 3y +430x y ∴-++=40x ∴-=30y +=40x -=30y +=4x ∴==3y -431x y ∴+=-=60︒112AOC ∠=︒BOD ∠=38112AOC ∠=︒22BOC ∠=︒BOD DOC BOC ∠=∠-∠【详解】解:∵,,∴,∴.故答案为:38.【点睛】本题主要考查了几何图形中角度的计算,解题的关键是数形结合,根据求出.15. 如图,平分,若,,则______度.【答案】110【解析】【分析】根据,,得出,进而得出,,再根据平行线的性质,即可求得的度数.【详解】解:,,,,平分,,,,,故答案为:.【点睛】本题考查角平分线的定义,平行线的性质与判定,熟练掌握平行线的性质定理与判定定理是解题的关键.16. 如图是一组有规律的图案,它们是由边长相同的正方形和等边三角形镶嵌而成,按照这样的规律继续摆下去,第n 个图案有_____个三角形(用含n 的代数式表示).112AOC ∠=︒90AOB OCD ∠=∠=︒1129022BOC AOC AOB ∠=∠-∠=︒-︒=︒602238BOD DOC BOC ∠=∠-∠=︒-︒=︒112AOC ∠=︒22BOC ∠=︒BD ABC ∠C CAD ∠=∠35D ∠=︒BAD ∠=C CAD ∠=∠35D ∠=︒//BC AD 35CBD D ∠=∠=︒70ABC ∠=︒BAD ∠C CAD ∠=∠ //BC AD ∴35D ∠=︒ 35CBD D ∴∠=∠=︒BD Q ABC ∠270ABC CBD ∴∠=∠=︒//BC AD 180BAD ABC ∴∠+∠=︒180110BAD ABC ∴∠=︒-∠=︒110【答案】3n+1【解析】【分析】由题意可知:第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+1=10个三角形,…依此规律,第n 个图案有(3n+1)个三角形.【详解】∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+1=10个三角形,…∴第n 个图案有(3n+1)个三角形.故答案为3n+1【点睛】此题考查图形的变化规律,找出图形之间的运算规律,利用规律解决问题.三、解答题(共72分)17. 计算:(1);(2);(3).【答案】(1)(2)(3)【解析】【分析】此题考查有理数的混合运算,掌握运算顺序,正确判定运算符号是解答本题的关键.(1)先算除法和乘法,再算减法即可;(2)利用乘法分配律简算即可;(3)先算乘方和括号里面的运算,再算乘除,最后算减法即可.【小问1详解】()2343035⎛⎫-÷--⨯- ⎪⎝⎭()35449469⎛⎫-+⨯-⨯ ⎪⎝⎭()()()2024221132134324⎡⎤⎛⎫--+-⨯-÷⨯- ⎪⎢⎥⎝⎭⎣⎦24-13-323解:;【小问2详解】;【小问3详解】.18. 先化简,再求值:,其中,.【答案】,1【解析】()2343035⎛⎫-÷--⨯- ⎪⎝⎭83412=-´-618=--24=-()35449469⎛⎫-+⨯-⨯ ⎪⎝⎭()35436469æöç÷=-+´-ç÷èø()()()354363636469=´--´-+´-()()()273016=---+-273016=-+-13=-()()()2024221132134324⎡⎤⎛⎫--+-⨯-÷⨯- ⎪⎢⎥⎝⎭⎣⎦()142191663éùæöêúç÷-+´-´´-ç÷=êúèøëû()34211623æöç÷=--´´-ç÷èø()141623æöç÷=-´´-ç÷èø323=()22222341242232x xy x y x xy y ⎡⎤⎛⎫⎛⎫--+--+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦23x =-3=-y 24xy y -+【分析】此题考查了整式加减中的化简求值,先去括号,再合并同类项得到化简结果,再把字母的值代入即可得到答案.【详解】解:当,时,原式.19. 某商店1月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案1: 若不购买会员卡,则购买商店内任何商品,一律按商品价格的9折优惠;方案2: 用元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的7折优惠.已知小明1月1日前不是该商店的会员,在促销期间,他购买商品价格为x 元.(1)请分别用含x 的代数式表示两种购买方案下小明应该支付的费用;(2)若小明购买商品价格为元,你认为选择哪种购买方案较为合算?说明理由.【答案】(1)方案1应该支付的费用为:元;方案2应该支付的费用为:元 (2)选择方案2较为合算,理由见解析【解析】【分析】本题考查了列代数式,有理数的混合运算的应用.熟练掌握列代数式,有理数的混合运算的应用是解题的关键.(1)由题意知,方案1应该支付的费用为:元;方案2应该支付的费用为:元;(2)将时,分别代入计算两个方案的费用,比较大小,然后作答即可.【小问1详解】解:由题意知,方案1应该支付的费用为:元;方案2应该支付的费用为:元;【小问2详解】()22222341242232x xy x y x xy y ⎡⎤⎛⎫⎛⎫--+--+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()2222232422x xy x y x xy y =--+-+-2223232x xy x xy y =---+24xy y =-+23x =-3=-y 224()(3)(3)3=-⨯-⨯-+-89=-+1=16812000.9x ()0.7168x +0.9x ()0.7168x +1200x =0.9x ()0.7168x +解:当时,方案1应该支付的费用为(元),方案2应该支付的费用为(元),∵,∴ 选择方案2较为合算.20. 如图,直线、相交于点,平分,于点.(1)若,求和度数;(2)若(),直接写出的度数(用含的代数式表示).【答案】(1),(2)【解析】【分析】本题考查了垂线,邻补角,角平分线,熟练掌握垂直的定义,邻补角互补是解题的关键.(1)由对顶角相等可知,,再根据角平分线的定义求出、的度数,根据邻补角互补即可求出的度数,再根据求解即可;(2)根据对顶角相等及角平分线的定义求出的度数,再根据求出的度数,根据邻补角互补即可求出的度数.【小问1详解】解:∵ 直线、相交于点,∴,∵平分,∴,∴,∵,∴,∴;【小问2详解】的1200x =0.912001080⨯=0.712001681008⨯+=10801008>AB CD O OE AOC ∠EO FO ⊥O 72BOD ∠=︒DOE ∠COF ∠BOD α∠=090α︒<<︒DOF ∠α144DOE ∠=︒54COF ∠=︒9012DOF α∠=︒+72AOC BOD ∠==︒∠COE ∠AOC ∠DOE ∠COF EOF COE ∠=∠-∠COE ∠EO FO ⊥COF ∠DOF ∠AB CD O 72AOC BOD ∠==︒∠OE AOC ∠1362AOE COE AOC ∠=∠=∠=︒180********DOE COE ∠=︒-∠=︒-︒=︒EO FO ⊥90EOF ∠=︒903654COF EOF COE ∠=∠-∠=︒-︒=︒∵ 直线、相交于点,∴,∵平分,∴,∵,∴,∴,则.21. 如图,点是内一点.(1)按下列要求画出图形.①过点画的垂线,垂足为点;②过点画交于点;过点画交于点;③点到直线的距离是线段 的长,约等于 mm (精确到1mm );(2)在(1)所画出的图形中,若,则 度, 度(用含的代数式表示).【答案】(1)①见解析,②见解析,③,(2),【解析】【分析】本题考查了画垂线,平行线,点到直线的距离,平行线的性质;(1)①②利用几何描述画出对应的图形;③根据点到直线的距离可判断的长为点到直线的距离,且实际测量它的长度;(2)先根据平行线的性质得,根据平行线的性质,同旁内角互补可得度,再利用垂直定义得到,然后利用互余计算的度数.【小问1详解】AB CD O AOC BOD α∠=∠=OE AOC ∠1122AOE COE AOC α∠=∠=∠=EO FO ⊥90EOF ∠=︒1902COF EOF COE ∠=∠-∠=︒-1180902DOF COF α∠=︒-∠=︒+P AOB ∠P OA C P PD OB ∥OA D P PE OA ∥OB E P OA O n ∠=︒PEO ∠=DPC ∠=n PC 20()180n -()90n -PC P OB CDP O n ∠=∠=︒()180PEO n ∠=-90PCD ∠=︒DPC ∠①②如图;③点到直线的距离是线段的长,约等于;故答案为:,.【小问2详解】,,,,.故答案为:,.22. 如图,已知点分别在上,交于点,交于点,,.注:本题第()、()小题在下面的解答过程的空格内填写理由或数学式;第()小题要写出解题过程.(1)与平行吗?请说明理由;解:,理由如下:∵ ,( ),( )∴ ,( )∴ ;( )(2)试说明;P OA PC 20mm PC 20 PD OA ∥CDP O n ∴∠=∠=︒()180PEO n ∴∠=-︒PC OB ⊥ 90PCD ∴∠=︒9090DPC CDP n ∴∠=︒-∠=︒-︒()180n -()90n -E F 、AB CD 、BC AF G DE H 12∠=∠A D ∠=∠123AF ED AF ED ∥12∠=∠1CHD ∠=∠2CHD ∠=∠∥B C ∠=∠∵(已知),∴ ,( )∵,(已知)∴ , (等量代换)∴ ,( )∴ ;( )(3)连接,若,则,试说明理由.【答案】(1)已知;对顶角相等;等量代换;;;同位角相等, 两直线平行;(2);两直线平行,同位角相等;;;内错角相等,两直线平行;两直线平行,内错角相等; (3)证明见解析.【解析】【分析】()由,得到,根据同位角相等,两直线平行,即可求证;()由得到,又由得到,根据内错角相等,两直线平行,得到,进而由平行线的性质即可求证;()由平行线的性质得到,,又由,等量代换得到,利用角的和差关系即可求证;本题考查了平行线的判定和性质,掌握平行线的判定和性质是解题的关键.【小问1详解】解:,理由如下:∵ ,(已知),(对顶角相等)∴ ,(等量代换)∴ ,(同位角相等,两直线平行)故答案为:已知;对顶角相等;等量代换;;;同位角相等,两直线平行;【小问2详解】证明:∵,(已知)∴ ,(两直线平行,同位角相等)∵,(已知)∴ , (等量代换)∴ ,(内错角相等,两直线平行)AF ED ∥AFC ∠=∠A D ∠=∠A AFC ∠=∠∥B C ∠=∠EG A AGE ∠=∠2BEG A ∠=∠AF ED D AB CD 112∠=∠1CHD ∠=∠2CHD ∠=∠2AF ED ∥AFC D ∠=∠A D ∠=∠A AFC ∠=∠AB CD ∥3A BED ∠=∠AGE DEG =∠A AGE ∠=∠A BED DEG ∠=∠=∠AF ED ∥12∠=∠1CHD ∠=∠2CHD ∠=∠AF ED ∥AF ED AF ED ∥AFC D ∠=∠A D ∠=∠A AFC ∠=∠AB CD ∥∴ ;(两直线平行,内错角相等)故答案为:;两直线平行,同位角相等;;;内错角相等,两直线平行;两直线平行,内错角相等;小问3详解】证明:∵,(已知)∴,(两直线平行,同位角相等),(两直线平行,内错角相等)∵,(已知)∴, (等量代换)∴.(等量代换)【B C ∠=∠D AB CD AF ED ∥A BED ∠=∠AGE DEG =∠A AGE ∠=∠A BED DEG ∠=∠=∠2BEG BED DEG A ∠=∠+∠=∠。
海口市七年级第二学期数学科期末检测题时间:100分钟 满分:100分 得分:一、选择题(每小题3分,共42分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.题 号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 答 案1.若2m -1=3,则m 等于A .-1B .1C .-2D .22.若a >b ,则下列不等式一定成立的是A . -1+a <-1+bB . 2a <2bC . 2-a >2-bD . b -a <03. 代数式x -2与1-2x 的值相等,则x 等于A . 0B . 1C . 2D . 34. 已知⎩⎨⎧=-=.12y x ,是方程kx +2y =5的一个解,则k 的值为A . 23-B .23C . 32-D .32 5.下列图案中,既是轴对称图形,又是中心对称图形的是6. 一个多边形每一个外角都等于36°,则这个多边形的边数为A .12B .10C .8D .67.已知等腰三角形的两条边的长分别为6cm 和3cm ,则该等腰三角形的周长是A . 9cmB . 12cmC . 15cmD . 12cm 或15cm8. 如图1,直线AB ∥CD ,若∠B =24°,∠D =33°,则∠BED 等于A.24°B.33°C.57°D.67°9. 如图2,△ADE≌△BDE,若△ADC的周长为12,AC的长为5,则CB的长为A.8B.7C.6D.510. 如图3,AD为△ABC的中线,E为AD的中点,若△ABE的面积为15,则△ABC的面积为A.45 B.50 C.60 D.7511. 如图4,四边形ABCD是正方形,点E在BC上,△ABE绕正方形的中心经顺时针旋转后与△DAF重合,则旋转角度是A.120°B.90°C.60°D.45°12. 把边长相等的正五边形和正六边形按照如图5的方式叠合在一起,AB是正六边形的对角线,则∠α等于A.72°B.84°C.88°D.90°13. 某工程队计划在10天内修路8km,前两天一共修完了2km,由于计划发生变化,准备提前两天完成修路任务,以后几天内平均每天至少要修路A.1 km B.0.9 km C.0.8 km D.0.6 km14. 某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度,如果设上半年每月平均用电x度,则所列方程正确的是A.6x+6(x-2000)=150000B. 6x+6(x+2000)=150000C. 6x+6(x-2000)=15D. 6x+6(x+2000)=15二、填空题(每小题3分,共12分)15. 由x -2y -6=0, 得到用x 表示y 的式子为y = .16.图6是由10个相同的小长方形拼成的长方形图案,则每块小长方形的面积为 cm 2. 17. 如图7,△ABC 沿BC 方向平移到△DEF 的位置,若EF =5cm ,CE =2cm ,则AD 的长为 cm .18. 如图8,等边△ABC 中,点D 、E 分别在边AB 、BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ′处,DB ′、EB ′分别交边AC 于点F 、G .若∠ADF =80°,则∠EGC = °. 三、解答题(共46分)19.(第(1)小题4分,第(2)小题5分,共9分) (1)解方程:142532-=---x x ;(2)求不等式组⎪⎩⎪⎨⎧>+->-.2524,232x x x 的所有整数解.20. (6分) 已知y =kx +b ,当x =2时,y =-4;当x =-1时,y =5.(1)求k、b的值;(2)当x取何值时,y的值小于1?21.(7分)本题有两道题,请从(1)、(2)题中任选一题....作答.(1)在水果店里,小李买了5kg苹果、3kg梨,老板少要1元,收了90元;老王买了12kg苹果、6kg梨,老板按九折收钱,收了189元.该店苹果和梨的单价各是多少元?(2)某商店经销甲、乙两种商品.现有如下信息:【信息1】甲、乙两种商品的进货单价之和是3元;【信息2】甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元;【信息3】按零售单价购买甲商品3件和乙商品2件,共付了12元.请根据以上信息,求甲、乙两种商品的零售单价.我选择第小题作答.22.(7分)在如图9的正方形网格中,每个小正方形的边长都是单位1,△ABC的顶点均在格点上.(1)画出△ABC关于直线MN对称的△A1B1C1;(2)画出△A2B2C2,使△A2B2C2与△ABC关于点O成中心对称;(3)△A1B1C1与△A2B2C2是否对称?若对称,请在图中画出对称轴或对称中心.23.(8分)如图10,在△ABC中,∠B=42º,∠C=78º,AD平分∠BAC.(1)求∠ADC的度数;(2)在图中画出BC边上的高AE,并求∠DAE的度数.24.(9分) 在△ABC和△DEF中,∠A=40°,∠E+∠F=70°. 将△DEF放置在△ABC上,使得∠D的两条边DE、DF分别经过点B、C.(1)当将△DEF如图11.1放置在△ABC上时,∠ABD+∠ACD= °;(2)当将△DEF如图11.2放置在△ABC上时.①请求出∠ABD+∠ACD的大小;②能否将△DEF摆放到某个位置,使得BD、CD同时平分∠ABC和∠ACB?直接写出结论:(填“能”或“不能”).2014—2015学年度第二学期海口市七年级数学科期末检测题参考答案一、DDBAD BCCBC BBAA 二、15.y =21x -3 16. 400 17. 3 18.80 三、19.(1)4(2x -3)-5(x -2)=-20…(1分) 8x -12-5x +10=-20…(2分) 3x =-18…(3分)x =-6. …(4分)(2)解不等式①,得x <2. 解不等式②,得x >-3. …(2分) 该不等式组的解集是:-3<x <2.所有整数解为:-2,-1,0,1. …(5分)20.(1)由题意,得⎩⎨⎧=+--=+.5,42b k b k …(1分)解这个方程组,得k =-3,b =2; …(3分)(2)由(1)得,y =-3x +2.y 的值小于1,即 -3x +2<1, …(4分) ∴31>x ,∴ 当31>x 时,y 的值小于1. …(6分)21.(1)设该店苹果的单价为x 元,梨的单价为y 元. …(1分)根据题意,得⎩⎨⎧=⨯+=-+.1899.0)612,90135y x y x ( …(4分)解这个方程组,得⎩⎨⎧==.7,14y x …(6分)答:该店苹果的单价为14元,梨的单价为7元. …(7分) (2)设甲、乙两种商品的进货单价分别为x 元、y 元.…(1分) 根据题意可得:⎩⎨⎧=-++=+.12)12(2)1(3,3y x y x…(4分) 解这个方程组,得⎩⎨⎧==.2,1y x…(6分)甲零售单价:1+1=2(元),乙零售单价:2×2-1=3(元).答:甲、乙零售单价分别为2元和3元. …(7分)22. 如图2,(1)△A 1B 1C 1即为所求的三角形; …(2分) (2)△A 2B 2C 2即为所求的三角形; …(4分) (3)△A 1B 1C 1与△A 2B 2C 2成轴对称,对称轴为直线EF . …(7分)23.(1)∵ ∠B =42°, ∠C =78°, ∴ ∠BAC =180°-∠B -∠C =60°. ∵ AD 平分∠BAC , ∴ ∠BAD =21∠BAC =30°. ∴ ∠ADC =∠B +∠BAD=42°+30°=72°. …(5分)(2)如图2所示,AE 为BC 边上的高. …(6分)∴ ∠AEB =90°.∴ ∠DAE =180°-∠AED -∠ADE =180°-90°-72°=18°. …(8分)(注:用其它方法求解参照以上标准给分.)24.(1)210; …(2分) (2)在△ABC 中,∠A =40°,∴ ∠ABC +∠ACB =140°. …(4分) 在△DEF 中,∠E +∠F =70°, ∴ ∠D =110°,∴ ∠BCD +∠CBD =180°-∠D =70°, …(6分) ∴ ∠ABD +∠ACD =(∠ABC +∠ACB )-(∠BCD +∠CBD )=70°. …(7分) (3)能. …(9分)(注:用其它方法求解参照以上标准给分.)初中数学试卷鼎尚图文**整理制作。
海口市人教版七年级下册数学期末考试试卷及答案一、选择题1.要使(4x ﹣a )(x+1)的积中不含有x 的一次项,则a 等于( )A .﹣4B .2C .3D .4 2.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为( )A .65°B .70°C .75°D .80° 3.下列各式由左边到右边的变形,是因式分解的是( )A .x (x +y )=x 2+xyB .2x 2+2xy =2x (x +y )C .(x +1)(x -2)=(x -2)(x +1)D .2111x x x x x ⎛⎫++=++ ⎪⎝⎭4.新冠病毒(2019﹣nCoV )是一种新的Sarbecovirus 亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA 病毒,其遗传物质是所有RNA 病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm ,平均直径为100nm (纳米).1米=109纳米,100nm 可以表示为( )米.A .0.1×10﹣6B .10×10﹣8C .1×10﹣7D .1×1011 5.下列计算中,正确的是( ) A .(a 2)3=a 5B .a 8÷ a 2=a 4C .(2a )3=6a 3D .a 2+ a 2=2 a 2 6.下列运算正确的是( )A .a 2+a 2=a 4B .(﹣b 2)3=﹣b 6C .2x •2x 2=2x 3D .(m ﹣n )2=m 2﹣n 2 7.下面图案中可以看作由图案自身的一部分经过平移后而得到的是( )A .B .C .D .8.如图,在下列给出的条件下,不能判定AB ∥DF 的是( )A .∠A+∠2=180°B .∠A=∠3C .∠1=∠4D .∠1=∠A9.甲、乙二人同时同地出发,都以不变的速度在环形路上奔跑.若反向而行,每隔3min 相遇一次,若同向而行,则每隔6min 相遇一次,已知甲比乙跑得快,设甲每分钟跑x 圈,乙每分钟跑y 圈,则可列方程为( )A .36x y x y -=⎧⎨+=⎩B .36x y x y +=⎧⎨-=⎩C .331661x y x y +=⎧⎨-=⎩D .331661x y x y -=⎧⎨+=⎩10.已知x a y b =⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解,则32a b -的算术平方根为( ) A .4± B .4 C .2 D .2±二、填空题11.某球形流感病毒的直径约为0.000000085m ,0.000000085用科学记数法表为_____.12.计算:2202120192020⨯-=__________13.已知2m+5n ﹣3=0,则4m ×32n 的值为____14.已知m a =2,n a =3,则2m n a -=_______________.15.计算:(12)﹣2=_____. 16.()a b -+(__________) =22a b -.17.如图,将边长为6cm 的正方形ABCD 先向上平移3cm ,再向右平移1cm ,得到正方形A ′B ′C ′D ′,此时阴影部分的面积为______cm 2.18.如图,两块三角板形状、大小完全相同,边//AB CD 的依据是_______________.19.如果a 2﹣b 2=﹣1,a+b=12,则a ﹣b=_______. 20.已知x 2a +y b ﹣1=3是关于x 、y 的二元一次方程,则ab =_____.三、解答题21.已知a +b =5,ab =-2.求下列代数式的值:(1)22a b +;(2)22232a ab b -+.22.如图,边长为1的正方形ABCD 被两条与边平行的线段EF ,GH 分割成四个小长方形,EF 与GH 交于点P ,设BF 长为a ,BG 长为b ,△GBF 的周长为m ,(1)①用含a ,b ,m 的式子表示GF 的长为 ;②用含a ,b 的式子表示长方形EPHD 的面积为 ;(2)已知直角三角形两直角边的平方和等于斜边的平方,例如在图1,△ABC 中,∠ABC=900,则222AB BC AC +=,请用上述知识解决下列问题:①写出a ,b ,m 满足的等式 ;②若m=1,求长方形EPHD 的面积;③当m 满足什么条件时,长方形EPHD 的面积是一个常数?23.计算:(1)2x 3y •(﹣2xy )+(﹣2x 2y )2;(2)(2a +b )(b ﹣2a )﹣(a ﹣3b )2.24.如图,直线AC ∥BD ,BC 平分∠ABD ,DE ⊥BC ,垂足为点E ,∠BAC =100°,求∠EDB 的度数.25.如图,△ABC 中,AE 是△ABC 的角平分线,AD 是BC 边上的高.(1)若∠B =35°,∠C =75°,求∠DAE 的度数;(2)若∠B =m °,∠C =n °,(m <n ),则∠DAE = °(直接用m 、n 表示).26.解下列方程组(1)29321x y x y +=⎧⎨-=-⎩. (2)34332(1)11x y x y ⎧+=⎪⎨⎪--=⎩.27.(1)已知2(1)()2x x x y ---=,求222x y xy +-的值. (2)已知等腰△ABC 的三边长为,,a b c ,其中,a b 满足:a 2+b 2=6a+12b-45,求△ABC 的周长.28.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即222)2(a ab b a b ±+=±.例如:2224213x x x x -+=-++2(1)3x =-+是224x x -+的一种形式的配方;所以,()213x -+,2(2)x -2x +,22213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项).请根据阅读材料解决下列问题:(1)比照上面的例子,写出249x x -+三种不同形式的配方;(2)已知22610340x y x y +-++=,求32x y -的值;(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x 的一次项,所以让一次项的系数等于0,得a 的等式,再求解.解:(4x-a)(x+1),=4x2+4x-ax-a,=4x2+(4-a)x-a,∵积中不含x的一次项,∴4-a=0,解得a=4.故选D.【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.2.B解析:B【分析】先将一缺了一角的等腰直角三角板补全,再由直尺为矩形,则两组对边分别平行,即可根据∠1求∠4的度数,即可求出∠4的对顶角的度数,再利用等角直角三角形的性质及三角形内角和求出∠2的对顶角,即可求∠2.【详解】解:如图,延BA,CD交于点E.∵直尺为矩形,两组对边分别平行∴∠1+∠4=180°,∠1=115°∴∠4=180°-∠1=180°-115°=65°∵∠EDA与∠4互为对顶角∴∠EDA=∠4=65°∵△EBC为等腰直角三角形∴∠E=45°∴在△EAD中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70°∵∠2与∠EAD互为对顶角∴∠2=∠EAD =70°故选:B.【点睛】此题主要考查平行线的性质,等腰直角三角形的性质,挖掘三角板条件中的隐含条件是解题关键.3.B【分析】根据因式分解的意义求解即可.【详解】A、从左边到右边的变形不属于因式分解,故A不符合题意;B、把一个多项式转化成几个整式积的形式,故B符合题意;C、从左边到右边的变形不属于因式分解,故C不符合题意;D、因式分解是把一个多项式化为几个整式的积的形式,而1x是分式,故D不符合题意.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.4.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:100nm=100×10﹣9m=1×10﹣7m,故选:C.【点睛】本题是对科学记数法知识的考查,熟练掌握负指数幂知识是解决本题的关键.5.D解析:D【分析】直接利用同底数幂的乘除运算法则,积的乘方运算法则以及合并同类项法则分别计算得出答案.【详解】解:A、(a2)3=a6,故此选项错误;B、a8÷a2=a6,故此选项错误;C、(2a)3=8a3,,故此选项错误;D、a2+ a2=2 a2,故此选项正确.故选:D【点睛】此题主要考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握运算法则是解题关键.6.B【分析】根据合并同类项法则、幂的乘方法则、单项式乘单项式法则和完全平方公式法则解答即可.【详解】A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选:B.【点睛】本题考查了整式的运算,合并同类项、幂的乘方、单项式乘单项式和完全平方公式,熟练掌握运算法则是解题的关键.7.C解析:C【解析】【分析】根据平移不改变图形的形状和大小,结合图案,对选项一一分析,排除错误答案.【详解】解:A、图案自身的一部分围绕中心经旋转而得到,故错误;B、图案自身的一部分沿对称轴折叠而得到,故错误;C、图案自身的一部分沿着直线运动而得到,是平移,故正确;D、图案自身的一部分经旋转而得到,故错误.故选C.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.8.D解析:D【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A、∵∠A+∠2=180°,∴AB∥DF,故本选项错误;B、∵∠A=∠3,∴AB∥DF,故本选项错误;C、∵∠1=∠4,∴AB∥DF,故本选项错误;D、∵∠1=∠A,∴AC∥DE,故本选项正确.故选:D.【点睛】点评:本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.解析:C【分析】根据“反向而行,当甲、乙相遇时,甲、乙跑的路程之和等于一圈;同向而行,当甲、乙相遇时,甲跑的路程比乙跑的路程多一圈”建立方程组即可.【详解】设甲每分钟跑x 圈,乙每分钟跑y 圈则可列方组为:331661x y x y +=⎧⎨-=⎩故选:C .【点睛】本题考查了二元一次方程组的实际应用,读懂题意,依次正确建立反向和同向情况下的方程是解题关键. 10.B解析:B【分析】把方程组24213x y x y -=⎧⎨+=⎩的解求解出来即可得到a 、b 的值,再计算32a b -的算术平方根即可得到答案;【详解】解:24213x y x y -=⎧⎨+=⎩①② 把①式×5得:248x y -= ③,用②式-③式得:55y = ,解得:y=1,把1y = 代入①式得到:24x -= ,即:6x = ,又x a y b =⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解, 所以61a b =⎧⎨=⎩, 故3216a b -=,所以32a b -的算术平方根=16的算术平方根,4== ,故答案为:4;【点睛】本题主要考查了二元一次方程组的求解以及算术平方根的定义,掌握用消元法求解二元一次方程组的解是解题的关键;二、填空题11.5×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000085=8.5×10﹣8.故答案为:8.5×10﹣8【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.-1【分析】根据平方差公式即可求解.【详解】=-1故答案为:-1.【点睛】此题主要考查整式乘法公式的应用,解题的关键是熟知其运算法则. 解析:-1【分析】根据平方差公式即可求解.【详解】2202120192020⨯-=()()22220201202012020202012020+⨯--=--=-1故答案为:-1.【点睛】此题主要考查整式乘法公式的应用,解题的关键是熟知其运算法则.13.8【解析】试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.本题解析:∵2m+5n−3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5解析:8【解析】试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.本题解析:∵2m+5n−3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5n=23=8.故答案为8.14.【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:am-2n=am÷a2n=am÷(an)2=2÷9=故答案为【点睛】本题考查了同底数幂的除法和幂的解析:2 9【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:a m-2n=a m÷a2n=a m÷(a n)2=2÷9=2 9故答案为2 9【点睛】本题考查了同底数幂的除法和幂的乘方与积的乘方,解答本题的关键在于熟练掌握各知识点的运算法则.15.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】解:()﹣2===4,故答案为:4.【点睛】本题考查负指数幂的计算,掌握即可.解析:【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】 解:(12)﹣2=2112⎛⎫ ⎪⎝⎭=114=4, 故答案为:4.【点睛】本题考查负指数幂的计算,掌握即可. 16.【分析】根据平方差公式即可求出答案.【详解】解:,故答案为:.【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.解析:a b --【分析】根据平方差公式即可求出答案.【详解】解:()2222()()a b a b a b a b -+--==---,故答案为:a b --.【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型. 17.15【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm的正方形ABCD先向上平移3cm,∴阴影部分的宽为6-3=解析:15【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm的正方形ABCD先向上平移3cm,∴阴影部分的宽为6-3=3cm,∵向右平移1cm,∴阴影部分的长为6-1=5cm,∴阴影部分的面积为3×5=15cm2.故答案为15.【点睛】本题主要考查了平移的性质及长方形的面积公式,解决本题的关键是利用平移的性质得到阴影部分的长和宽.18.内错角相等,两直线平行【分析】利用平行线的判定方法即可解决问题.【详解】解:由题意:,(内错角相等,两直线平行)故答案为:内错角相等,两直线平行.【点睛】本题考查平行线的判定,解题的解析:内错角相等,两直线平行【分析】利用平行线的判定方法即可解决问题.【详解】∠=∠,解:由题意:ABD CDB∴(内错角相等,两直线平行)AB CD//故答案为:内错角相等,两直线平行.【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.19.-2【分析】根据平方差公式进行解题即可∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=,∴a-b=-1÷=-2,故答案为-2.解析:-2【分析】根据平方差公式进行解题即可【详解】∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=12,∴a-b=-1÷12=-2,故答案为-2.20.1【分析】根据题意可知该式是二元一次方程组,所以x、y的指数均为1,这样就可以分别求出a、b的值,代入计算即可.【详解】解:∵是关于x、y的二元一次方程,所以x、y的指数均为1∴2a=1,解析:1【分析】根据题意可知该式是二元一次方程组,所以x、y的指数均为1,这样就可以分别求出a、b 的值,代入计算即可.【详解】解:∵2a b-1x+y=3是关于x、y的二元一次方程,所以x、y的指数均为1∴2a=1,b-1=1,解得a=12,b=2,则ab=122=1,故答案为:1.【点睛】该题考查了二元一次方程的定义,即含有两个未知量,且未知量的指数为1,将其代数式进行求解,即可求出答案.三、解答题21.(1)29;(2)64.(1)根据完全平方公式得到()2222a b a b ab +=+-,然后整体代入计算即可; (2)根据完全平方公式得到()22223227a ab b a b ab -+=+-,然后整体代入计算即可.【详解】解:(1)()()2222252229a b a b b a =+-=-⨯-=+;(2)()()222222232242727257264a ab b a ab b ab a b ab -+=++-=+-=⨯-⨯-=.【点睛】本题考查了代数式求值,完全平方公式和整体代入的思想,熟练掌握完全平方公式是解题的关键.22.(1)①m a b --;②1a b ab --+;(2)①22220m ma mb ab --+=;②12;③m=1 【分析】(1)①直接根据三角形的周长公式即可;②根据BF 长为a ,BG 长为b ,表示出EP ,PH 的长,根据求长方形EPHD 的面积;(2)①直接根据直角三角形两直角边的平方和等于斜边的平方,表示出a ,b ,m 之间的关系式;②根据线段之间的关系利用勾股定理求出长方形EPHD 的面积的值;③结合①的结论和②的作法即可求解.【详解】(1)①∵BF 长为a ,BG 长为b ,△GBF 的周长为m ,∴GF m a b =--,故答案为:m a b --;②∵正方形ABCD 的边长为1 ,∴AB=BC=1,∵BF 长为a ,BG 长为b ,∴AG=1-b ,FC=1-a ,∴EP=AG=1-b ,PH=FC=1-a ,∴长方形EPHD 的面积为:(1)(1)1a b a b ab --=--+,故答案为:1a b ab --+;(2)①△ABC 中,∠ABC=90°,则222AB BC AC +=,∴在△GBF 中, GF m a b =--,∴()222m a b a b --=+, 化简得,22220m ma mb ab --+=故答案为:22220m ma mb ab --+=;②∵BF=a ,GB=b ,∴FC=1-a ,AG=1-b ,在Rt △GBF 中,22222GF BF BG a b ==+=+,∵Rt △GBF 的周长为1,∴1BF BG GF a b ++=+=即1a b =--,即222212(()b a b a b a +=-+++),整理得12220a b ab --+= ∴12a b ab +-=, ∴矩形EPHD 的面积••S PH EP FC AG ==()()11a b =--1a b ab =--+11122=-=. ③由①得: 22220m ma mb ab --+=, ∴212ab ma mb m =+-. ∴矩形EPHD 的面积••S PH EP FC AG ==()()11a b =--1a b ab =--+2112ma mb a m b +-=--+ ()()211121m a m m b =--+-+, ∴要使长方形EPHD 的面积是一个常数,只有m=1.【点睛】本题考查了正方形的特殊性质和勾股定理,根据正方形的特殊性质和勾股定理推出22220m ma mb ab --+=是解题的关键.23.(1)0;(2)﹣5a 2+6ab ﹣8b 2.【分析】(1)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果;(2)原式利用平方出根是,以及完全平方公式化简,去括号合并即可得到结果.【详解】解:(1)原式=﹣4x 4y 2+4x 4y 2=0;(2)原式=﹣4a2+b2﹣(a2﹣6ab+9b2)=﹣4a2+b2﹣a2+6ab﹣9b2=﹣5a2+6ab﹣8b2.【点睛】此题考查了整式的混合运算,熟练掌握运算法则及公式是解本题的关键.24.50°【分析】直接利用平行线的性质,结合角平分线的定义,得出∠CBD=12∠ABD=40°,进而得出答案.【详解】解:∵AC//BD,∠BAC=100°,∴∠ABD=180°﹣∠BAC=180°-100°=80°,∵BC平分∠ABD,∴∠CBD=12∠ABD=40°,∵DE⊥BC,∴∠BED=90°,∴∠EDB=90°﹣∠CBD=90°-40°=50°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠CBD的度数是解题关键.25.(1)20°;(2)11 22 n m【分析】(1)根据∠DAE=∠EAC﹣∠DAC,求出∠EAC,∠DAC即可.(2)计算方法与(1)相同.【详解】解:(1)∵∠B=35°,∠C=75°,∴∠BAC=180°﹣35°﹣75°=70°,∵AE平分∠BAC,∴∠CAE=12∠CAB=35°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣75°=15°,∴∠DAE=∠EAC﹣∠DAC=35°﹣15°=20°.(2)∵∠B=m°,∠C=n°,∴∠BAC=180°﹣m°﹣n°,∵AE平分∠BAC,∴∠CAE =12∠CAB =90°﹣(12m )°﹣(12n )°, ∵AD ⊥BC ,∴∠ADC =90°,∴∠DAC =90°﹣n °,∴∠DAE =∠EAC ﹣∠DAC =(12n ﹣12m )°, 故答案为:(12n ﹣12m ). 【点睛】本题考查三角形内角和定理角平分线的定义,三角形的高的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 26.(1)272x y =⎧⎪⎨=⎪⎩;(2)692x y =⎧⎪⎨=⎪⎩【分析】(1)根据加减消元法,即可求解;(2)先去分母,去括号,移项,合并同类项,再通过加减消元法,即可求解.【详解】(1)29321x y x y +=⎧⎨-=-⎩①②, +①②得:48x =.解得:2x =, 把2x =代入①得:229y +=,解得:72y =, ∴方程组的解为272x y =⎧⎪⎨=⎪⎩; (2)原方程可化为3436329x y x y +=⎧⎨-=⎩①②, ①-②得:627y =,解得:92y =, 把92y =代入②得:399x -=,解得:6x =, ∴方程组的解为692x y =⎧⎪⎨=⎪⎩. 【点睛】本题主要考查解二元一次方程组,掌握加减消元法,是解题的关键.27.(1)2;(2)15.【分析】(1)先化简条件,再把求值的代数式变形,整体代入即可,(2)利用两个非负数之和为0的性质得到等腰三角形的两边长,后分类讨论即可得到答案.【详解】解:(1) 2(1)()2x x x y ---=,222,x x x y ∴--+=2,y x ∴-=2222222()2 2.2222x y x xy y y x xy +-+-∴-==== (2) a 2+b 2=6a+12b-45,226912360,a a b b ∴-++-+=22(3)(6)0,a b ∴-+-=3,6,a b ∴==当3a =为腰时,三角形不存在,当6b =为腰时,三角形三边分别为:6,6,3,∴ △ABC 的周长为:15.【点睛】本题考查的是代数式的求值,熟练整体代入的方法,同时考查非负数之和为零的性质,三角形三边的关系,等腰三角形的性质,掌握以上知识是解题的关键.28.(1)2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+;(2)19;(3)4【分析】(1)根据材料中的三种不同形式的配方,“余项“分别是常数项、一次项、二次项,可解答;(2)将x 2+y 2-6x+10y+34配方,根据平方的非负性可得x 和y 的值,可解答;(3)通过配方后,求得a ,b ,c 的值,再代入代数式求值.【详解】解:(1)249x x -+的三种配方分别为:2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+(或2222549339x x x x ⎛⎫-+=-+ ⎪⎝⎭; (2)∵x 2+y 2-6x+10y+34=x 2-6x+9+y 2+10y+25=(x-3)2+(y+5)2=0,∴x-3=0,y+5=0,∴x=3,y=-5,∴3x-2y=3×3-2×(-5)=19(3)2223240a b c ab b c ++---+=()2222134421044a ab b b bc c -++-++-+= 22213(2)(1)024a b b c ⎛⎫-+-+-= ⎪⎝⎭ ∴102a b -=,3(2)04b -=,10c -= ∴1a =,2b =,1c =,则4a b c ++=【点睛】本题考查的是配方法的应用,首先利用完全平方公式使等式变为两个非负数和一个正数的和的形式,然后利用非负数的性质解决问题.。
2022—2023学年度第一学期七年级数学科期末检测题(考试时间100分钟,满分120分)特别提醒:1.选择题用2B铅笔填涂,其余答案一律用黑色笔填写在答题卡上,写在试题卷上无效。
2.答题前请认真阅读试题及有关说明。
3.请合理安排好答题时间.一、选择题(每小题3分,共36分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑。
1.6的相反数是()A.16B.16C.6D.-62.数据2060000000用科学记数法表示为()A.206×107B.2.06×108C.2.06×109D.20.6×1083.数轴上表示数12和表示数-4的两点之间的距离是()A.8B.-8C.16D.-164.下列合并同类项中,正确的是()A.2x+3y=5xy B.3x2+2x3=5x5C.-2x2+2x2=x2D.x2-3x2=-2x25.已知a-2b=-1,则代数式1-2a+4b的值是()A.-3B.-1C.2D.36.某种商品进价为a元,在销售旺季,提价30%销售,旺季过后,商品以7折价格开展促销活动,这时一件商品的售价为()A.a B.0.7a C.1.03a D.0.91a7.如图所示的几何体的左视图是()A.B.C.D.8.如图,线段AC上依次有D,B,E三点,其中点B为线段AC的中点,AD=BE,若AC=8,则DE等于()A.4B.4.5C.5D.69.如图,直线AB、CD相交于点O,∠AOE=2∠AOC,若∠1=38°,则∠DOE等于()A.66°B.76°C.90°D.144°10.如图,直线a∥b∥c,直角三角板的直角顶点落在直线b上,若∠1=36°,则∠2等于()A.36°B.44°C.54°D.64°11.如图,一张地图上有A、B、C三地,C地在A地的东南方向,若∠BAC=102°,则B地在A地的()A.南偏西57°方向B.南偏西67°方向C.南偏西33°方向D.西南方向12.如图,A,B,C,D,E分别在∠MON的两条边上,若∠1=20°,∠2=40°,∠3=60°,AB∥CD,BC∥DE,则下列结论中错误..的是()A.∠4=80°B.∠BAO=100°C.∠CDE=40°D.∠CBD=120°二、填空题(每小题4分,共16分)Φ±(Φ表示直径,单位:毫米),经检查,一个零件的直径是19.9mm,13.某种零件,标明要求是200.02mm该零件_________(填“合格”或“不合格”).14.如图,将三个形状、大小完全一样的正方形的一个顶点重合放置,∠F AG =45°,∠BAC =30°,则∠DAE =_________度.15.如图,在四边形ABCD 中,∠DAC =∠ACB ,∠D =86°,则∠BCD =_________度.16.如图,观察下列的“蜂窝图”,则第n 个图案中的正六边形的个数是_________(用含n 的代数式表示).三、解答题(共68分)17.计算(第(1)小题4分,第(2)小题5分,第(3)小题6分,共15分) (1)()()35531242⎫⎛⨯-+-⨯-- ⎪⎝⎭;(2)()5714816128⎫⎛-⨯-+- ⎪⎝⎭; (3)()()()202322113130.13210⎡⎤⎫⎛-+-⨯-⨯+- ⎪⎢⎥⎝⎭⎣⎦.18.(8分)先化简,再求值.()()()222222232xy x y x x xy y ⎡⎤--+--+⎣⎦,其中11,2x y =-=. 19.(10分)甲、乙两家超市以相同的价格出售同样的商品,但为了吸引顾客,各自推出不同的优惠方案.在甲超市累计购买商品超过400元后,超出的部分按原价70%收取;在乙超市购买商品只按原价的80%收取.设某顾客预计累计购物x 元.(1)当x >400时,分别用代数式表示顾客在两家超市购物所付的费用; (2)当x =1000时,该顾客应选择哪一家超市购物比较合算?说明理由. 20.(10分)如图,直线AB 、CD 相交于点O ,EO ⊥CD 于点O ,OF 平分∠BOC .(1)若∠AOC=58°,求∠EOF的度数;(2)若∠AOC=α,直接写出∠EOF的度数(用含α的式子表示).21.(12分)如图,在三角形ABC中,∠BAC=90°.(1)按下列要求画出相应的图形.①过点A分别画直线MN∥BC,AD⊥BC,垂足为D;②用刻度尺找出线段AC的中点E,连接BE.(2)在(1)所画的图形中,按要求完成下列问题.①线段_________的长度是点D到直线MN的距离,点B到线段AC所在的直线的距离是线段_________的长,约等于_________mm(精确到1mm);②试写出与∠BAD相等的角,并说明理由.22.(13分)如图,AD∥BC,∠1=∠B,∠2=∠3.(1)试说明EB∥DC;(2)AC与ED的位置关系如何?为什么?(3)∠BED与∠ACD相等吗?请说明理由.注:本题第(1)、(2)小题在下面的解答过程的空格内填写理由或数学式;第(3)小题要写出解题过程.解:(1)∵AD∥BC,(已知)∴∠B=∠_________.(_________)又∵∠1=∠B,(已知)∴∠1=∠,(等量代换)∴_________∥_________.(_________)(2)AC 与ED 的位置关系是:_________.理由如下: ∵AD ∥BC ,(已知)∴∠3=∠_________.(_________) 又∵∠2=∠3,(已知)∴∠_________=∠_________.(等量代换) ∴_________∥_________.(_________) (3)2022—2023学年度第一学期七年级数学科期末检测题参考答案及评分标准一、DCCDD DBAAC AB二、13.合格 14.15 15.94 16.3n +1 三、17.(1)原式51592=-+-172=- (2)原式=-40+48-28+6=-14 (3)原式()33110075210⎫⎛=--⨯⨯-= ⎪⎝⎭ 18.原式=2xy -2x 2-(2y 2+x 2-3x 2+6xy -3y 2) =2xy -2x 2+y 2+2x 2-6xy -x 2 =-4xy +y 2.当11,2x y =-=时,原式()2114122⎫⎛=-⨯-⨯+ ⎪⎝⎭112244=+=.19.(1)当x >400时,甲超市所付的费用400+70%(x -400)=0.7x +120 乙超市所付的费用80%x =0.8x(2)当x =1000时,甲超市所付的费用0.7x +120=0.7×1000+120=820(元) 乙超市所付的费用0.8x =0.8×1000=800(元) 该顾客应选择在乙超市购物比较合算. 20.(1)∵∠AOC =58°,∴∠BOC =180°-∠AOC =180°-58°=122°, ∵OF 平分∠BOC , ∴1612COF BOC ∠=∠=︒, ∵EO ⊥CD , ∴∠COE =90°,∴∠EOF =∠COE -∠COF =90°-61°=29°.(2)12 EOFα∠=.21.(1)①②如图所示;(2)①AD,AB,31(允许误差范围31±2);②∠BAD=∠C=∠CAN.理由:∵∠BAC=90°,∴∠BAD+∠DAC=90°,∵MN∥BC,AD⊥BC,∴AD⊥NN,∴∠DAN=90°,∴∠DAC+∠CAN=90°,∴∠BAD=∠CAN.∵MN∥BC,∴∠C=∠CAN,∴∠BAD=∠C=∠CAN.22.(1)∵AD∥BC,(已知)∴∠B=∠EAD.(两直线平行,同位角相等)又∵∠1=∠B,(已知)∴∠1=∠EAD.(等量代换)∴EB∥DC.(内错角相等,两直线平行)(2)AC与ED的位置关系是:AC∥ED.理由如下:∵AD∥BC,(已知)∴∠3=∠CAD.(两直线平行,内错角相等)又∵∠2=∠3,(已知)∴∠2=∠CAD.(等量代换)∴AC∥ED.(内错角相等,两直线平行)(3)∠BED=∠ACD.理由如下:证法1:∵AC∥ED,∴∠BAC=∠BED.∵EB∥CD,∴∠BAC=∠ACD.∴∠BED=∠ACD.证法2:∵EB∥DC,∴∠BEC=∠ECD.∵AC∥ED,∴∠CED=∠ECA.∴∠BEC+∠CED=∠ECD+∠ECA,∴∠BED=∠ACD.。
2022-2023学年海南省海口市七年级(下)期末数学试卷一、选择题(每小题3分,共36分)1.(3分)方程3x﹣4=x的解是()A.x=﹣2B.x=2C.x=﹣1D.x=12.(3分)若a>b,则下列不等式一定成立的是()A.﹣1+a<﹣1+b B.<C.2﹣a>2﹣b D.b﹣a<0 3.(3分)已知y=3x+4,当y<﹣2时,x的取值范围是()A.x<﹣2B.x>﹣2C.x>2D.x<24.(3分)已知x,y满足方程组,则x﹣y的值是()A.﹣3B.3C.﹣1D.15.(3分)下列四个图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)将一副直角三角板按如图所示方式叠放,点D在边AC上,BC∥EF,则∠1等于()A.45°B.65°C.75°D.85°7.(3分)如图,在△ABC中,点D在BC边上,若∠1=∠B,∠2=∠C,则下列结论错误的是()A.∠ADC=∠C B.∠ADC=2∠B C.BA⊥AC D.8.(3分)如图,长方形ABCD的周长为26,其内部用一些正方形铺满,则正方形d的边长为()A.3B.4C.5D.69.(3分)已知三角形的两边长分别为3cm和8cm,则这个三角形第三边的长可能是()A.5cm B.6cm C.11cm D.13cm10.(3分)如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与点A对应,则角α等于()A.45°B.60°C.90°D.120°11.(3分)小颖用一些完全相同的△ABC纸片拼接图案,已知用6个△ABC纸片按照图1所示的方法拼接可得外轮廓是正六边形图案,若用n个△ABC纸片按照图2所示的方法拼接,则可以得到外轮廓的图案是()A.正八边形B.正九边形C.正十边形D.正十二边形12.(3分)元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得()A.=B.=﹣12C.240(x﹣12)=150x D.240x=150(x+12)二、填空题(每小题3分,共12分)13.(3分)由x﹣2y﹣6=0,得到用x表示y的式子为y=.14.(3分)小宏准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买瓶甲饮料.15.(3分)如图,等边△ABC中,点D、E分别在边AB、BC上,把△BDE沿直线DE折叠,使点B落在点B′处,DB′、EB′分别交边AC于点F、G.若∠ADF=80°,则∠CEG=°.16.(3分)如图,在△ABC中,BC=4cm,∠ACB=30°,将△ABC沿射线AA′方向平移2cm,且AA′⊥B′C′则∠A′C′C=°,阴影部分的面积为cm2三、解答题(共72分)17.(18分)(1)解方程:;(2)解方程组:;(3)求不等式组的所有整数解.18.(9分)已知关于x、y的二元一次方程组的解互为相反数,求k的值.19.(10分)某超市将某种碳酸饮料每瓶的价格上调10%,将某种果汁饮料每瓶的价格下调5%,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元.已知调价前买这两种饮料各一瓶共花费7元,问这两种饮料在调价前每瓶各多少元?20.(10分)在如图的正方形网格中,每个小正方形的边长都是单位1,△ABC的顶点均在格点上.(1)画出△ABC关于直线MN对称的ΔA1B1C1.(2)画出ΔA2B2C2,使ΔA2B2C2和△ABC关于点O成中心对称;(3)指出如何平移△ABC,使得△ABC和ΔA2B2C2能拼成一个正方形;(4)△A1B1C1与△A2B2C2是否对称?若对称,请在图中画出对称轴或对称中心.21.(10分)如图,在△ABC中,∠B=30°,∠ACB=80°,AD平分∠BAC.(1)在△ADC中,画出AD边上的高CE,并延长CE交AB于点F;(2)求∠ADB和∠BCF的度数;(3)试说明:∠AFC=∠ACF.22.(15分)在△ABC中,点E是CA延长线上一点.(1)如图1,过点B作BD⊥BC,交CE于点F,∠D=∠C.①若∠C=36°,则∠DAF=°;②试写出∠DAF与∠C的数量关系,并说明理由;③当∠DAF=∠D时,求∠C的度数;④若∠D=∠ABD,请说明BA⊥CF.(2)如图2,BD交CE于点F,∠D=∠C,直接写出∠DAC、∠C与∠DBC之间的数量关系.2022-2023学年海南省海口市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.【分析】根据解一元一次方程的一般步骤解答即可.【解答】解:将原方程移项,可得:3x﹣x=4,合并同类项,得:2x=4,系数化为1,得:x=2.故选:B.【点评】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.2.【分析】根据不等式的性质进行判断即可.【解答】解:A、在不等式a>b的两边同时减去1,不等式仍成立,即﹣1+a>﹣1+b,故本选项错误;B、在不等式a>b的两边同时除以2,不等式仍成立,即>,故本选项错误;C、在不等式a>b的两边同时乘以﹣1然后加上2,不等式方向改变,即2﹣a<2﹣b,故本选项错误;D、由原不等式得到:b﹣a>0,故本选项正确.故选:D.【点评】本题考查了不等式的性质.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.3.【分析】由题可知3x+4<﹣2,运用不等式的性质解不等式即可.【解答】解:由题意可知:3x+4<﹣2;解不等式得:x<﹣2;故选:A.【点评】本题主要考查了解一元一次不等式,要熟练掌握不等式的基本性质.4.【分析】两式相减,即可求出x﹣y=﹣1.【解答】解:,②﹣①得,x﹣y=﹣1,故选:C.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.5.【分析】根据轴对称图形和中心对称图形的概念得出结论即可.【解答】解:A选项中的图形不是轴对称图形,是中心对称图形,不符合题意;B选项中的图形既不是轴对称图形,也不是中心对称图形,不符合题意;C选项中的图形既是轴对称图形,又是中心对称图形,符合题意;D选项中的图形不是轴对称图形,是中心对称图形,不符合题意.故选:C.【点评】本题主要考查中心对称和轴对称的知识,熟练掌握中心对称图形和轴对称图形的概念是解题的关键.6.【分析】由BC∥EF,得到∠BMD=∠F=45°,由三角形外角的性质得到∠MDC=∠BMD ﹣∠C=15°,由平角定义即可求出∠1=75°.【解答】解:∵BC∥EF,∴∠BMD=∠F=45°,∵∠C=30°,∴∠MDC=∠BMD﹣∠C=15°,∴∠1=180°﹣90°﹣15°=75°.故选:C.【点评】本题考查平行线的性质,三角形外角的性质,平角定义,掌握以上知识点是解题的关键.7.【分析】根据∠ADC是△ABD的一个外角和∠1=∠B可得出∠ADC=2∠B,根据∵∠ADB 是△ADC的一个外角和∠2=∠C可得出∠ADB=2∠C,根据三角形内角和定理可求出∠BAC=90°,无法证明∠ADC=∠C,从而进行判断.【解答】解:∵∠ADC是△ABD的一个外角,∴∠ADC=∠B+∠1,∵∠1=∠B,∴∠ADC=2∠B,故选项B中的结论正确,不符合题意;∵∠ADB是△ADC的一个外角,∴∠ADB=∠C+∠2,∵∠2=∠C,∴∠ADB=2∠C,即,故选项D中的结论正确,不符合题意;∵∠B+∠1+∠2+∠C=180°,又∵∠1=∠B,∠2=∠C,∴2∠1+2∠2=180°,∴∠1+∠2=90°,即∠BAC=90°,∴BA⊥AC,故选项C中的结论正确,不符合题意;无法证得∠ADC=∠C,故选项A符合题意,故选:A.【点评】本题考查了三角形内角和定理,三角形外角的性质,熟知三角形内角和是180°;三角形的一个外角等于与它不相邻的两个内角的和.8.【分析】设正方形a的边长为m,根据图形中各个正方形边长之间的关系得出正方形b 的边长为2m,正方形c的边长为2m+m=3m,正方形d的边长为2m+3m=5m,由长方形的周长为26,列方程求出m的值,进而求出正方形d的边长.【解答】解:设正方形a的边长为m,则正方形b的边长为2m,正方形c的边长为2m+m =3m,正方形d的边长为2m+3m=5m,∵长方形ABCD的周长为26,∴AB+AD=13,即(2m+3m)+(3m+5m)=13,解得m=1,∴正方形d的边长为5m=5,故选:C.【点评】本题考查完全平方公式的几何背景,理解图形中各个正方形边长之间的关系是解决问题的关键.9.【分析】已知三角形的两边长分别为3cm和8cm,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围.【解答】解:设第三边长为xcm,则由三角形三边关系定理得8﹣3<x<8+3,即5<x<11.因此,本题的第三边应满足5<x<11,把各项代入不等式符合的即为答案.4,11,13都不符合不等式5<x<11,只有6符合不等式,故答案为6cm.故选:B.【点评】本题考查了三角形三边关系,此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.10.【分析】如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O 即为旋转中心.连接OA,OB′,∠AOA′即为旋转角.【解答】解:如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′∠AOA′即为旋转角,∴旋转角为90°故选:C.【点评】考查了旋转的性质,解题的关键是能够根据题意确定旋转中心的知识,难度不大.11.【分析】根据第一个图外轮廓是正六边形图案可求得△ABC纸片的∠ACB为40°,则∠CAB=60°,新多边形的一个内角为140°,因为是正多边形,利用正多边形的内角和公式即可求解.【解答】解:正六边形的每个内角为:=120°,∵∠ABC=80°,∴∠ACB=120°﹣80°=40°,∴∠CAB=180°﹣∠ABC﹣∠ACB=60°,由题意可知,新的图案是一个正多边形,∴新多边形的一个内角为∠ABC+∠CAB=140°,设新多边形的边数为n,(n﹣2)×180°=140°n,解得n=9.故选:B.【点评】本题考查了图形的变化类,三角形内角和为180°,正多边形的内角公式,多边形内角和公式,理解题意求出正多边形的一个内角是解题的关键.12.【分析】由慢马先行12天,可得出快马追上慢马时慢马行了(x+12)天,利用路程=速度×时间,结合快马追上慢马时快马和慢马行过的路程相等,即可得出关于x的一元一次方程,此题得解.【解答】解:∵慢马先行12天,快马x天可追上慢马,∴快马追上慢马时,慢马行了(x+12)天.根据题意得:240x=150(x+12).故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.二、填空题(每小题3分,共12分)13.【分析】把x看作已知数求出y即可.【解答】解:方程x﹣2y﹣6=0,解得:y=x﹣3,故答案为:x﹣3【点评】此题考查了解二元一次方程,解题的关键是将x看作已知数求出y.14.【分析】首先设小宏能买x瓶甲饮料,则可以买(10﹣x)瓶乙饮料,由题意可得不等关系:甲饮料的花费+乙饮料的花费≤50元,根据不等关系可列出不等式,再求出整数解即可.【解答】解:设小宏能买x瓶甲饮料,则可以买(10﹣x)瓶乙饮料,由题意得:7x+4(10﹣x)≤50,解得:x≤,∵x为整数,∴x=1,2,3,则小宏最多能买3瓶甲饮料.故答案为:3.【点评】此题主要考查了一元一次不等式的应用,关键是弄清题意,找出合适的不等关系,设出未知数,列出不等式.15.【分析】由对顶角相等可得∠CGE=∠FGB′,由两角对应相等可得△ADF∽△B′GF,那么∠CGE=∠ADF的度数,则∠CEG=180°﹣∠C﹣∠CGE.【解答】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,由翻折可得∠B′=∠B=60°,∴∠A=∠B′=60°,∵∠AFD=∠GFB′,∴△ADF∽△B′GF,∴∠ADF=∠B′GF,∵∠EGC=∠FGB′,∴∠EGC=∠ADF=80°,∴∠CEG=180°﹣∠C﹣∠CGE=180°﹣60°﹣80°=40°.故答案为:40.【点评】本题考查了翻折变换问题,得到所求角与所给角的度数的关系是解决本题的关键.16.【分析】根据平移的性质得到∠A′C′B′=∠ACB=30°,BB′=CC′=2cm,BB′∥AA′∥CC′,推出四边形BB′C′C是矩形,得到∠B′C′C=90°,根据矩形的面积公式即可得到结论.【解答】解:∵将△ABC沿射线AA′方向平移2cm,∴∠A′C′B′=∠ACB=30°,BB′=CC′=2cm,BB′∥AA′∥CC′,∵AA′⊥B′C′,∴BB′⊥B′C′,∴∠BB′C′=90°,∴四边形BB′C′C是矩形,∴∠B′C′C=90°,∴∠A′C′C=30°+90°=120°,阴影部分的面积为4×2=8cm2,故答案为:120,8.【点评】本题考查了平移的性质,矩形的判定和性质,熟练掌握平移的性质是解题的关键.三、解答题(共72分)17.【分析】(1)根据解一元一次方程的求解步骤求解;(2)根据加减法解方程组;(3)先求每一个不等式,再求公共部分.【解答】解:(1)去分母得:3(x+2)﹣2(3x﹣2)=12,去括号得:3x+6﹣6x+4=12,移项/合并同类项得:﹣3x=2,系数化1得:x=﹣;(2)方程组可化为:,②﹣①得:5x=10,解得:x=2,把x=2代入①得:y=5,∴方程组的解为:;(3)解第一个不等式得:x<2,解第二个不等式得:x>﹣2.5,∴不等式组的解集为:﹣2.5<x<2,x的整数解为:﹣1,﹣2,0,1.【点评】本题考查了方程组的解及不等式的组,掌握方程组和不等式组的解题思路是解题的关键.18.【分析】根据一元一次方程的解法求出方程组的解,再根据方程组的解是互为相反数,即x+y=0求出答案即可.【解答】解:关于x、y的二元一次方程组的解,由于方程组的解互为相反数,即x+y=0,所以+=0,解得k=.【点评】本题考查解一元一次方程,掌握一元一次方程的解法是正确解答的前提,理解互为相反数的定义是解决问题的关键.19.【分析】设调价前碳酸饮料每瓶x元,果汁饮料每瓶y元,根据“调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元.调价前买这两种饮料各一瓶共花费7元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设调价前碳酸饮料每瓶x元,果汁饮料每瓶y元,根据题意得:,解得:,答:调价前碳酸饮料每瓶3元,果汁饮料每瓶4元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.【分析】(1)根据对称轴垂直平分对应点连线,可找到各点的对称点,顺次连接即可得到△A1B1C1;(2)根据中心对称点平分对应点连线,可得各点的对称点,顺次连接可得△A2B2C2;(3)由图中可以看出,△ABC向下平移5,向右平移5,即可得解;(4)结合所画图形,即可作出判断.【解答】解:(1)△A1B1C1即为所求的三角形;(2)△A2B2C2即为所求的三角形;(3)如图,(4)△A1B1C1与△A2B2C2成轴对称,对称轴为直线EF.【点评】本题考查了旋转作图及轴对称作图的知识,解答本题的关键是掌握轴对称及中心对称的性质,注意规范作图.21.【分析】(1)根据过直线外一点作已知直线的垂线的基本作法作图;(2)根据外交的性质求解;(3)根据三角形的内角和定理求解.【解答】解:(1)如图:CE即为所求;(2)∵∠B=30°,∠ACB=80°,∴∠BAC=70°,∵AD平分∠BAC,∴∠CAD=∠BAD=∠BAC=35°,∴∠ADB=∠DAC+∠ACD=115°,∴∠BCF=∠ADB﹣∠CED=25°;(3)∵CAD=∠BAD,∠AEC=∠AEF=90°,∴∠AFC=∠ACF.【点评】本题考查了复杂作图,掌握三角形的内角和定理及外角定理是解题的关键.22.【分析】(1)①由题意可知∠D=∠C=36°,由三角形内角和定理可求出∠BFC=54°,由三角形外角性质得∠BFC=∠D+∠DAF,代入计算即可求解;②由三角形内角和定理可求出∠BFC=90°﹣∠C,由三角形外角性质可得∠DAF=∠BFC﹣∠D=90°﹣∠C﹣∠D,由∠D=∠C将∠D替换即可得到结论;③由题意易得∠DAF=∠C=∠D,再利用②中的结论即可求解;④由题意易得∠ABD=∠C=∠D,再利用②中的结论和三角形内角和定理即可求解.【解答】解:(1)①∵BD⊥BC,∴∠CBF=90°,∵∠C=36°,∠D=∠C,∴∠D=∠C=36°,∴∠BFC=90°﹣∠C=90°﹣36°=54°,∵∠BFC=∠D+∠DAF,∴∠DAF=∠BFC﹣∠D=54°﹣36°=18°;故答案为:18;②∵BD⊥BC,∴∠CBF=90°,∴∠BFC=90°﹣∠C,∵∠BFC=∠D+∠DAF,∴∠DAF=∠BFC﹣∠D=90°﹣∠C﹣∠D,∵∠D=∠C,∴∠DAF=90°﹣∠C﹣∠D=90°﹣2∠C;③当∠DAF=∠D时,∵∠D=∠C,∴∠DAF=∠C=∠D,由②知,∠DAF=90°﹣2∠C,∴∠C=90°﹣2∠C,∴∠C=30°;④当∠D=∠ABD时,∵∠D=∠C,∴∠ABD=∠C=∠D,由②知,∠DAF=90°﹣2∠C,∴∠BAF=180°﹣∠ABD﹣∠D﹣∠DAF=180°﹣2∠C﹣(90°﹣2∠C)=90°,∴BA⊥CF;(2)∵∠DAC=∠D+∠AFD,又∵∠AFD=∠C+∠DBC,∴∠DAC=∠D+∠C+∠DBC,∵∠D=∠C,∴∠DAC=2∠C+∠DBC.【点评】本题主要考查三角形内角和定理、三角形外角性质,熟练掌握三角形内角和定理、三角形外角性质是解题关键。
信达海口市七年级第二学期数学科期末检测题(A卷)时间:loo 分钟满分:100分 得分:、选择题(每小题 3分,共42分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代1 .方程3x - 1 = x 的解是A. x =-2 B . x =2C. x 122 .不等式6-3xv0的最小整数解是A. 3B. 2C. 13 .由m =4- x, m =y -3 ,可得出x 与y 的关系是4 .在下列图形中,既是轴对称图形又是中心对称图形的是5 .已知三角形的两边长分别为 3cm 和8cmi 则这个三角形第三边的长可能是A. 5cmB . 6cmC . 11cmD . 13cm6 .某车间有26名工人,每人每天能生产螺栓 12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配 x 名工人生产螺栓,其他工人生产螺 母,所列方程正确的是A. 12x =18(26- x )B. 18 x =12(26- x )C. 2 X18x =12(26- x )D. 2X 12x =18(26- x )D. 0A. x +y =7 B . x + y =-7 x +y =1 D. x +y =-1信达7 .如图 1,直线 a//b,若/ 1=24° , / 2=70° ,贝U/ A 等于A. 46°B . 45°C . 40°8 . 如图 2, ^AB8 ABDIE 若 AB =12, ED=5,则 CD 的长为A.B . 6 C.7 D9 .如图3,正五边形 ABCDE 3, AE CD 的延长线交于点 F,则/ F 等于A. 30° B . 32C .36°D , 38°10 . 一个多边形的内角和是它外角和的 2倍,则这个多边形的边数是A. 3 B . 4 C. 5 D . 611 .如图4,该图形围绕点O 按下列角度旋转后,不能.与其自身重合的是 A . 72°B , 108°C , 144°D , 216°12 .如图5, 4ABC^等边三角形,D 是BC 上一点,若将△ ADCg 点A 顺时针旋转n 度后到 达4八£由勺位置,则n 的值为A. 45B . 50 ^C . 60D. 9013 .取一张长方形纸片,按图 6中所示的方法折叠一角,得到折痕EF,若/ BEF=54贝U/ BFCWA.100 °B.108 °C. 118 °D.120 °14 .某种商品的进价为 800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于 5%则最多可打A. 6折B.7折 C .8折 D .9折8二、填空题(每小题3分,共12分)15.若5-2( a-1)=1 ,则3a - 3 的值为.16.不等式组2x 1 1,的解集为^3x1.17.如图7所示的图燧是一瓷砖镶嵌图的一部分,AEBLCQ则x的值为18.如图8,两个全等的直角三角形重叠在一起,将其中一个直角三角形沿AB的方向平移,平移的距离为线段AA的长,则阴影部分的面积为.三、解答题(共46分)19.(本题满分8分,每小题4分)(1)解方程:土卫1 ;2 33x (2)解方程组:3X4x 4y 2,3y 5.信达20.(6 分)已知y=kx+b,当x=-2 时,y=3;当x=-1 时,y=2.(1)求k、b的值;(2)当x取何值时,y的值是负数.21.(6 分)如图9,在△ ABC\ Z A=68 , / ABG60 的高,求/C计分/ ACB BE为AC边上BOC^/ABE的度数.信达22.(8分)本题有两道题,请从(1)、(2)题中任选一题作答.(1)现有一批机器零件共180件需加工,任务由甲、乙两个小组先后接力完成.甲组每天加工12件,乙组每天加工8件,结果共用20天完成了任务.求甲、乙两组分别加工零件多少件?(2)为了更好地保护环境,治污公司决定购买若干台污水处理设备.现有A B两种型号的设备,已知购买1台A型号设备比购买1台B型号设备多2万元,购买2台A型号设备比购买3台B型号设备少6万元.求A B两种型号设备的单价.23.(9分)在如图10的正方形网格中,每个小正方形的边长都是单位1, △ ABC勺顶点均在格点上.(1)画出△ ABC第A点按逆时针方向旋转90。
2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.下列语句中正确的是( )A .的平方根是B .的平方根是C .的算术平方根是D .的算术平方根是 2.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340的新多边形,则原多边形的边数为( )A .13B .14C .15D .163.若3236a b a b -=-=,,则b a -的值(). A .-2 B .2 C .-4 D .44.已知x y >,则下列不等式成立的是( )A .11x y -<-B .33x y <C .x y -<-D .22x y < 5.在如图所示的网格中,有两个完全相同的直角三角形纸片,如果把其中一个三角形纸片先横向平移m 格,再纵向平移n 格,就能使它的一条边与另一个三角形纸片的一条边重合,拼接成一个四边形,那么m n +的结果( )A .只有一个确定的值B .有两个不同的值C .有三个不同的值D .有三个以上不同的值 6.三条直线相交于一点,则A .90°B .120°C .140°D .180°7.若P (m +3,m ﹣2)是x 轴上的点,则m 的值是( )A.2 B.3 C.﹣2 D.﹣38.不等式组312840xx->⎧⎨-≤⎩的解集在数轴上表示为()A.B.C.D.9.对于两个不相等的实数a、b,我们规定符号Min{a,b}表示a、b中的较小的值,如Min{2,4}=2,按照这个规定,方程Min{1x,3x}=2x﹣1的解为()A.1 B.﹣1C.1或﹣1 D.﹣1或﹣210.如图,在平面直角坐标系中,点A的坐标为(1,3),点B的生标,(2,1),将线段AB沿某一方向平移后,若点A的对应点'A的坐标为(-2,0),则点B的对应点B′的坐标为( )A.(5,2) B.(-1,-2) C.(-1,-3) D.(0,-2)二、填空题题11.写出不等式组11xx≥-⎧⎨<⎩,的整数解为__________.12.小明将同学们周末生活的调查结果绘制成了扇形统计图.其中,看书这一项对应的圆心角度数为72°,则周末看书的同学人数占了总数的______.( 填百分比 )13.将边长为1的正方形纸片按下图所示方法进行对折,第1次对折后得到的图形面积为S1,第2次对折后得到的图形面积为S2,…,第n次对折后得到的图形面积为S n,则4S=_________,S1+S2+S3+…+S2017=_____________.14.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于点D,BE⊥AD于点E.若∠CAB=50°,则∠DBE=______.15.若不等式组20x a b x -⎧⎨-⎩>>的解集是0<x<2,则2019()a b +=_____________. 16.已知:直线12l l ,一块含30角的直角三角板如图所示放置,125︒∠=,则2∠等于________.17.毛泽东在《沁园春·雪》中提到五位历史名人:秦始皇、汉武帝、唐太宗、宋太祖、成吉思汗.小红将这五位名人简介分别写在五张完全相同的知识卡片上.小哲从中随机抽取一张,卡片上介绍的人物是唐朝以后出生的概率是_______.三、解答题18.一个多边形的内角和比它外角和的3倍少180°,求这个多边形的边数.19.(6分)如图,已知AB ∥CD 不添加任何字母和数字,请你再添加一个条件∠1=∠2成立(要求给出三个答案),并选择其中一种情况加以证明.条件1:________________________________;条件2:________________________________;条件3:________________________________.20.(6分)计算:(18a 2b-6ab)÷(-6ab).21.(6分)阅读、填空并将说理过程补充完整:如图,已知点D 、E 分别在△ABC 的边AB 、AC 上,且∠AED =∠B ,延长DE 与BC 的延长线交于点F ,∠BAC 和∠BFD 的角平分线交于点G .那么AG 与FG 的位置关系如何?为什么?解:AG ⊥FG .将AG 、DF 的交点记为点P ,延长AG 交BC 于点Q .因为AG 、FG 分别平分∠BAC 和∠BFD (已知)所以∠BAG = , (角平分线定义)又因为∠FPQ=+∠AED,=+∠B(三角形的一个外角等于与它不相邻的两个内角的和)∠AED=∠B(已知)所以∠FPQ=(等式性质)(请完成以下说理过程)22.(8分)为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.23.(8分)王老师对试卷讲评课中九年级学生参与的深度与广度进行评价调查,每位学生最终评价结果为主动质疑、独立思考、专注听讲、讲解题目四项中的一项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了 名学生;(2)在扇形统计图中,项目“主动质疑”所在扇形的圆心角度数为 度;(3)请将频数分布直方图补充完整;(4)如果全市九年级学生有8000名,那么在试卷评讲课中,“独立思考”的九年级学生约有多少人? 24.(10分)油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:某人计划购入一辆上述品牌的汽车.他估算了用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计行驶的公里数至少为多少公里? 25.(10分)计算:(1)222233a b a b ⎛⎫⎛⎫--- ⎪⎪⎝⎭⎝⎭(2)2(2)x y --(3)2(2)(2)(2)x y x y x y +---参考答案一、选择题(每题只有一个答案正确)1.D【解析】A 选项:-9没有平方根,故是错误的;B 选项:9的平方根有3和-3,故是错误的;C 选项:9的算术平方根是3,故是错误的;D 选项:9的算术平方根是3,故是正确的;故选D .2.B【解析】试题分析:减去一个角之后,得到的多边形比原来的多边形多一条边,只要求出现在多边形的边数就可以得出原多边形的边数.2340÷180+2=15 15-1=14考点:多边形的内角和定理3.A【解析】【分析】将两方程相加可得4a-4b=8,再两边都除以2得出a-b 的值,继而由相反数定义或等式的性质即可得出答案.【详解】解:由题意知3236a b a b -=⎧⎨-=⎩①②①+②,得:4a-4b=8,则a-b=2,∴b-a=-2,故选:A .【点睛】本题考查解二元一次方程组,解题的关键是掌握等式的基本性质的灵活运用及两方程未知数系数与待求代数式间的特点.4.C【解析】【分析】根据不等式的性质逐项分析.【详解】A 在不等式的两边同时减去1,不等号的方向不变11x y ->-,故A 错误;B 在不等式的两边同时乘以3,不等号的方向不变33x y >,故B 错误;C 在不等式的两边同时乘以-1,不等号的方向改变,故C 正确;D 在不等式的两边同时乘以12,不等号的方向不变22x y >,故D 错误. 【点睛】本题主要考查不等式的性质,(1)在不等式的两边同时加上或减去同一个数,不等号的方向不变; (2)在不等式的两边同时乘以或除以(不为零的数)同一个正数,不等号的方向不变;(3)在不等式的两边同时乘以或除以(不为零的数)同一个负数,不等号的方向改变.5.B【解析】【分析】根据使一个三角形的一条边与另一个三角形的一条边重合,分情况讨论平移方式,然后分别求出m+n即可.【详解】解:①上边的三角形向右平移两个单位,向下平移三个单位,此时m+n=5;②上边的三角形向右平移两个单位,向下平移五个单位,此时m+n=7;③上边的三角形向左平移两个单位,向下平移三个单位,此时m+n=5;的结果有两个不同的值,所以m n故选B.【点睛】本题考查图形的平移,根据题目要求判断出平移方式是解题关键.6.D【解析】【分析】根据对顶角相等和平角的定义,即可得到答案.【详解】解:如图:∵∠AOF与∠3是对顶角,∴∠AOF=∠3,∵,∴,故选择:D.【点睛】本题考查了对顶角相等的性质,解题的关键是掌握对顶角相等和平角的定义.7.A【解析】【分析】直接利用在x轴上点的坐标性质得出纵坐标为零进而得出答案.【详解】∵P(m+3,m-1)是x轴上的点,∴m-1=0,解得:m=1.故选A.【点睛】此题主要考查了点的坐标,正确把握x轴上点的坐标性质是解题关键.8.A【解析】【分析】分别求得不等式组中两个不等式的解集,再确定不等式组的解集,表示在数轴上即可.【详解】312840xx->⎧⎨-≤⎩①②解不等式①得,x>1;解不等式②得,x>2;∴不等式组的解集为:x≥2,在数轴上表示为:故选A.【点睛】本题考查了一元一次不等式组的解法,正确求得不等式组中每个不等式的解集是解决问题的关键. 9.C【解析】【分析】分类讨论1x与3x的大小,列出分式方程,求出解即可.【详解】当1x>3x时,x<0,方程变形为3x=2x﹣1,去分母得:3=2﹣x,解得:x=﹣1,经检验x=﹣1是分式方程的解;当1x<3x时,x>0,方程变形得:1x=2x﹣1,去分母得:1=2﹣x,解得:x=1,经检验x=1是分式方程的解,故选:C.【点睛】此题考查了解分式方程,弄清题意是解题的关键.10.B【解析】【分析】点A(1,3)平移到点'A(-2,0),横坐标减3,纵坐标减3,点B的平移规律和点A一样,由此可知点B′的坐标.【详解】解:因为点A(1,3)平移到点'A(-2,0),横坐标减3,纵坐标减3,故点B(2,1)平移到点B′横、纵坐标也都减3,所以B′的坐标为(-1,-2).故选:B【点睛】本题考查了平面直角坐标系中图形的平移变化规律,根据一组对应点的平移找准平移规律是解题的关键.二、填空题题11.-1和1.【解析】【分析】先根据“大小小大中间找”确定出不等式组的解集,继而可得不等式组的整数解.【详解】解:∵不等式组的解集为-1≤x<1,∴不等式组的整数解为-1、1,故答案为-1、1.【点睛】本题考查的是一元一次不等式组的整数解,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.20%【解析】【分析】根据圆心角度数除以360度乘百分之百,即可求解.【详解】 则周末看书的同学人数占了总数的0072100360⨯ =20% 故答案为:20%.【点睛】此题考查扇形统计图,解题关键在于看懂图中数据.13.116 2017112- 【解析】 由题意可知,S 1=12, S 2=212, S 3=312, S 4=412, …,S 2017=201712,剩下部分的面积=S2017=201712,所以,S 1+S 2+S 3+…+S 2017=12+212+312+…+201712=1−201712, 故答案为116,1−201712. 点睛:此题考查了图形的变化.首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决问题. 14.25°.【解析】【分析】证明∠CAD =∠DBE 即可解决问题.【详解】∵∠C=∠E=90°,∠ADC=∠BDE ,∴∠DBE=∠DAC .∵AD 平分∠CAB ,∴∠CAD 12=∠CAB=25°. 故答案为:25°.【点睛】本题考查直角三角形的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.0【解析】【分析】解不等式组20x a b x -⎧⎨-⎩>>得2x a x b >+⎧⎨<⎩,根据不等式组20x a b x -⎧⎨-⎩>>的解集是0<x<2,即可得2+a=0,b=2,由此求得a 、b 的值,即可求得2019()a b +的值.【详解】 解不等式组20x a b x -⎧⎨-⎩>>得2x a x b >+⎧⎨<⎩, ∵不等式组20x a b x -⎧⎨-⎩>>的解集是0<x<2, ∴2+a=0,b=2,即a=-2,b=2,∴2019()a b +=0.故答案为:0.【点睛】本题考查了一元一次不等式组的解集,正确求得a 、b 的值是解决问题的关键.16.35°【解析】【分析】先根据三角形外角的性质求出∠3的度数,再由平行线的性质得出∠4的度数,由直角三角形的性质和对顶角相等即可得出结论【详解】解:如图,∵∠3是△ADG 的外角,∴∠3=∠A +∠1=30°+25°=55°,∴∠3=∠4=55°,∵∠4+∠EFC=90°,∴∠EFC=90°−55°=35°,∴∠2=∠EFC=35°,故答案为:35°.【点睛】本题考查的是平行线的性质、三角形外角的性质及直角三角形两锐角互余的性质,灵活运用各性质进行推理计算是解题关键.17.2 5【解析】【分析】【详解】试题分析:在秦始皇、汉武帝、唐太宗、宋太祖、成吉思汗5五人中,唐朝以后出生的有2人.因此在上述5人中随机抽取一张,所有抽到的人物为唐朝以后出生的概率=25.故答案为25.考点:概率公式三、解答题18.1.【解析】【分析】多边形的外角和是360度,根据多边形的内角和比它的外角和的3倍少180°,即可得到多边形的内角和的度数.根据多边形的内角和定理即可求得多边形的边数.【详解】设这个多边形的边数为n.根据题意,得(n-2)180°=3×360°-180°.解得n=1.答:这个多边形的边数是1.本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.19. (1)∠EBC=∠FCB ,CF ∥BE ,∠E=∠F ;(1)证明见解析【解析】【分析】根据题意可添加条件:①CF ∥BE ;②∠FCB=∠EBC ;③∠E=∠F ;选择①进行证明:根据平行线的性质可得∠ABC=∠DCB ,∠FCB=∠EBC ,由∠ABC-∠EBC =∠DCB-∠FCB 即可证得结论.【详解】条件1:CF ∥BE ;条件1:∠FCB=∠EBC ;条件3:∠E=∠F ;选择:CF ∥BE .证明:∵AB ∥CD ,∴∠ABC=∠DCB ,又∵CF ∥BE ,∴∠FCB=∠EBC ,∴∠ABC-∠EBC =∠DCB-∠FCB ,即∠1=∠1.【点睛】本题考查了平行线的性质,熟练运用平行线的性质是解决问题的关键.20.1DH k =-【解析】【分析】根据多项式除以单项式的运算法则计算即可.【详解】()()21866a b ab ab -÷- =()()218666a b ab ab ab ÷--÷- =31a -+.【点睛】本题考查了多项式除以单项式的计算,熟练掌握多项式除以单项式的运算法则是解答本题的关键.用多项式的每一项分别与单项式相除,再把所得的商相加.21.∠CAG ;∠PFG =∠QFG ;∠CAG ;∠FQG ;∠BAG ;∠FQG【解析】【分析】根据角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和,等角对等边和等腰三角形三线合一来解题即可.【详解】解:AG⊥FG.将AG、DF的交点记为点P,延长AG交BC于点Q.因为AG、FG分别平分∠BAC和∠BFD(已知)所以∠BAG=∠CAG,∠PFG=∠QFG(角平分线定义)又因为∠FPQ=∠CAG+∠AED,∠FQG=∠BAG+∠B(三角形的一个外角等于与它不相邻的两个内角的和)∠AED=∠B(已知)所以∠FPQ=∠FQG(等式性质)所以FP=FQ(等角对等边)又因为∠PFG=∠QFG所以AG⊥FG(等腰三角形三线合一).故答案为:∠CAG;∠PFG=∠QFG;∠CAG;∠FQG;∠BAG;∠FQG.【点睛】本题考查的是三角形的综合运用,熟练掌握三角形的性质是解题的关键.22.(1)200人(2)略(3)560人.【解析】试题分析:(1)用选择劳技拓展性课程的学生人数除以选择劳技拓展性课程的学生人数所占的百分比即可得本次被调查的学生人数;(2)先求得选择文学拓展性课程的学生人数和选择体育拓展性课程的学生人数,再补全条形图即可;(3)用总人数乘以选择体育拓展性课程的学生的人数所占的百分比即可.试题解析:(1)60÷30%=200(人);(2)200×15%=30(人)200-24-60-30-16=70(人)补全条形图如下:;(3)1600×=560(人)答:估计全校选择体育类的学生有560人.考点:条形统计图;扇形统计图;样本估计总体.23.(1)560;(2)54;(3)详见解析;(4)独立思考的学生约有840人. 【解析】【分析】(1)由“专注听讲”的学生人数除以占的百分比求出调查学生总数即可;(2)由“主动质疑”占的百分比乘以360°即可得到结果;(3)求出“讲解题目”的学生数,补全统计图即可;(4)求出“独立思考”学生占的百分比,乘以2800即可得到结果.【详解】(1)根据题意得:224÷40%=560(名),则在这次评价中,一个调查了560名学生;故答案为:560;(2)根据题意得:84560×360°=54°,则在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;故答案为:54;(3)“讲解题目”的人数为560-(84+168+224)=84,补全统计图如下:(4)根据题意得:2800×168840560⨯=(人),则“独立思考”的学生约有840人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.行驶的公里数至少为3公里【解析】【分析】设平均每年行驶的公里数为x公里,根据购买的单价和每百公里燃油的成本列出不等式,再进行求解即可.【详解】解:设平均每年行驶的公里数为x公里,根据题意得:14800+31100x≤29800+46100x , 解得:x≥3.答:行驶的公里数至少为3公里.【点睛】此题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系,列出不等式;注意每百公里燃油成本是31元,不是一公里是31元.25.(1)22449a b -+;(2)2244x xy y ++;(3)242xy y - 【解析】【分析】(1)利用平方差公式进行计算即可;(2)利用完全平方公式进行计算即可;(3)利用平方差公式和完全平方公式进行计算即可.【详解】 (1)原式=22449a b ⎛⎫-- ⎪⎝⎭ 22449a b =-+; (2)原式=2244x xy y ++;(3)原式=()2222444x y x xy y ---+=242xy y - 【点睛】此题考查平方差公式和完全平方公式,解题关键在于掌握运算法.2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.甲、乙两人同求方程ax-by=7的整数解,甲正确地求出一个解为11xy=⎧⎨=-⎩,乙把ax-by=7看成ax-by=1,求得一个解为12xy=⎧⎨=⎩,则a,b的值分别为( )A.25ab=⎧⎨=⎩B.52ab=⎧⎨=⎩C.35ab=⎧⎨=⎩D.53ab=⎧⎨=⎩2.用加减法解方程组32104150x yx y-=⎧⎨-=⎩①②时,最简捷的方法是()A.①×4﹣②消去x B.①×4+②×3消去x C.②×2+①消去y D.②×2﹣①消去y3.如图,在四边形ABCD中,AB CD=,BA和CD的延长线交于点E,若点P使得∆∆=PAB PCDS S,则满足此条件的点P()A.有且积有1B.有且只有2个C.组成B的角平分线D.组成E∠的角平分线所在的直线(E点除外)4.如图,在平面直角坐标系中,()1,1A,()1,1B-,()1,2C--,()1,2D-,把一条长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A B C D A→→→→⋯的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.()1,0-B.()1,2-C.()1,0D.()0,2-5.数学老师在如图所示的木板上写了关于x的两个方程,并解出方程①的解比方程②的解小4,则a的值为()A .32B .32-C .2D .﹣26.3的相反数是( )A .3B .3-C .3D .17.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是( )A .()()()172234-,,,,,B .()()()172243-,,,,,C .()()()172234,,,,,D .()()()172233-,,,,, 8.下列说法中正确的是( )A .9的平方根是3B .4平方根是2±C .16的算术平方根是4D .-8的立方根是2±9.将直尺和直角三角板按如图方式摆放(∠ACB 为直角),已知∠1=30°,则∠2的大小是( )A .30°B .45°C .60°D .65°10.下列命题中的假命题是( )A .当a b =时,有22a b =B .经过已知直线外一点,有且只有一条直线与已知直线平行C .互为相反数的两个数的和为0D .相等的角是对顶角二、填空题题11.正五边形的内角和等于______度.12.李老师带领x 名学生到某动物园参观,已知成人票每张20元,学生票每张10元.设门票的总费用为y 元,则y =________.13.点P (-1,2)在平面直角坐标中位于第______象限.14.如图,点O 为直线AB 上一点,OC OD ⊥,如果132︒∠=,那么2∠的度数是__________.15.一个容量为80的样本,其中数据的最大值是143,最小值是50,若取组距为10,则适合将其分成_______组16.在平面直角坐标系中,若点P (m+3,m ﹣1)在第四象限,则m 的取值范围为_____.17.已知平面直角坐标系内不同的两点A (3a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为_____.三、解答题18.如图,在2×2的正方形格纸中,△ABC 是以格点为顶点的三角形也称为格点三角形,请你在该正方形格纸中找出与△ABC 成轴对称的格点三角形(用阴影描出3个即可).19.(6分)已知:∠A =∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O .试说明DE 平分∠BDC .20.(6分)已知23x y -=,222413x xy y -+=.求下列各式的值:(1)xy .(2)222x y xy -.21.(6分)完成下列证明:如图,已知AD ⊥BC ,EF ⊥BC ,∠1=∠2.求证: DG ∥BA .证明:∵AD⊥BC,EF⊥BC ( 已知)∴∠EFB=90°,∠ADB=90°(_______________________ )∴∠EFB=∠ADB ( 等量代换)∴EF∥AD ( _________________________________ )∴∠1=∠BAD (________________________________________)又∵∠1=∠2 ( 已知)∴(等量代换)∴DG∥BA.(__________________________________)22.(8分)如图,A,B是旧河道l两旁的两个村庄.为方便村民饮水,计划在旧河道l上打一口水井P,用管道引水到两村,要求该井到两村的距离相等,请用尺规在图中作出点P的位置(保留作图痕迹,不要求写作法).23.(8分)先化简,再求值: (2)(2)2(23)x y x y x x y+---,其中3,24x y==-.24.(10分)为了解某县2011年初中毕业生的实验考查成绩等级的分布情况,随机抽取了该县若干名学生的实验考查成绩进行统计分析,并根据抽取的成绩绘制了如下的统计图表:成绩等级 A B C D人数60 x y 10百分比30% 50% 15% m请根据以上统计图表提供的信息,解答下列问题:⑴本次抽查的学生有___________________名;⑵表中x,y和m所表示的数分别为:x=________,y=______,m=_________;⑶请补全条形统计图;⑷根据抽样调查结果,请你估计2011年该县5400名初中毕业生实验考查成绩为D类的学生人数.25.(10分)(原题)已知直线AB∥CD,点P为平行线AB,CD之间的一点.如图1,若∠ABP=50°,∠CDP=60°,BE平分∠ABP,DE平分∠CDP,求∠BED的度数.(探究)如图2,当点P在直线AB的上方时,若∠ABP=α,∠CDP=β,∠ABP和∠CDP的平分线交于点E1,∠ABE1与∠CDE1的角平分线交于点E2,∠ABE2与∠CDE2的角平分线交于点E3,…以此类推,求∠E n的度数.(变式)如图3,∠ABP的角平分线的反向延长线和∠CDP的补角的角平分线交于点E,试猜想∠P与∠E 的数量关系,并说明理由.参考答案一、选择题(每题只有一个答案正确)1.B【解析】把甲的解代入ax-by=7可得a+b=7,把乙的解代入可得a-2b=1,由它们构成方程组可得721a ba b+=⎧⎨-=⎩,解方程组得52ab=⎧⎨=⎩,故选B.2.D【解析】分析:由于y的系数成倍数关系,所以将②中y的系数化为与①中y的系数相同,相减比较简单.详解: 由于②×2可得与①相同的y的系数,且所乘数字较小,之后-①即可消去y,最简单.故选D.点睛:本题考查了用加减法解二元一次方程组,构造系数相等的量是解题的关键.3.D【解析】【分析】根据角平分线的性质分析,作∠E的平分线,点P到AB和CD的距离相等,即可得到S△PAB=S△PCD.【详解】解:作∠E的平分线,可得点P到AB和CD的距离相等,因为AB=CD,所以此时点P满足S△PAB=S△PCD.故选D.【点睛】此题考查角平分线的性质,关键是根据AB=CD和三角形等底作出等高即可.4.C【解析】【分析】根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2019÷10=201…9,∴细线另一端在绕四边形第201圈的第9个单位长度的位置点的坐标为(1,0).故选C.【点睛】本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2019个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.5.C【解析】【分析】分别解一元一次方程,进而利用解出方程①的解比方程②的解小4得出等式求出答案.【详解】解:①方程两边同乘以6得:3(x+a)=1(x+a),解得:x=﹣a,解②得:x=1a﹣1,∵解出方程①的解比方程②的解小4,∴﹣a+4=1a﹣1,解得:a=1.故选:C.【点睛】本题考查一元一次方程的解,解一元一次方程,正确解方程是解题的关键.6.B【解析】【分析】一个数的相反数就是在这个数前面添上“-”号,由此即可求解.【详解】故选B.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1.7.A直接利用平移中点的变化规律求解即可.【详解】解:由题意可在此题平移规律是(x+2,y+3),照此规律计算可知原三个顶点(-1,4),(-4,-1),(1,1)平移后三个顶点的坐标是(1,7),(-2,2),(3,4).故选A.【点睛】本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点.8.B【解析】【分析】根据算术平方根的定义、平方根的定义、立方根的定义即可作出判断.【详解】解:A、9的平方根是±3,故选项错误;B、4的平方根是±2,故选项正确;C、16的算术平方根是2,故选项错误;D、-8的立方根是-2,故选项错误.故选:B.【点睛】本题考查了算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a 的算术平方根.平方根的定义:若一个数的平方等于a,那么这个数叫a的平方根,记作±a(a≥0);也考查了立方根的定义.9.C【解析】试题分析:先根据两角互余的性质求出∠3的度数,再由平行线的性质即可得出结论.∵∠1+∠3=90°,∠1=30°,∴∠3=60°.∵直尺的两边互相平行,∴∠2=∠3=60°.考点:平行线的性质【分析】根据乘方的意义对A进行判断;根据经过已知直线外一点,有且只有一条直线与已知直线平行对B进行判断;根据相反数的定义对C进行判断;根据对顶角的定义对D进行判断.【详解】A. 当a=b时,有a2=b2,所以A为真命题;B. 经过已知直线外一点,有且只有一条直线与已知直线平行,所以B为真命题;C. 互为相反数的两个数的和为0,所以C为真命题;D. 相等的角不一定是对顶角,所以D为假命题;故选D.【点睛】本题考查判断命题的真假,解题的关键是掌握命题的判断方法.二、填空题题11.540【解析】【详解】过正五边形五个顶点,可以画三条对角线,把五边形分成3个三角形∴正五边形的内角和=3 180=540°12.10x+20【解析】根据总费用=成人票用钱数+学生票用钱数,可得y=10x+20.故答案为10x+20.13.二【解析】【分析】根据点P的横纵坐标的符号及四个象限点的符号特点,判断点P所在的象限即可.【详解】解:∵点P(-1)的横坐标为负,纵坐标为正,且第二象限点的符号特点为(-,+),∴点P(-1)在第二象限.故答案为:二.【点睛】解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负. 14.58︒ 【解析】 【分析】由平角的定义和垂直的定义可得2∠的度数. 【详解】 解:OC OD ⊥90COD ︒∴∠=12180,132COD ︒︒∠+∠+∠=∠= 2180329058︒︒︒︒∴∠=--=故答案为:58︒ 【点睛】本题考查了角,把握图中角之间的关系是解题的关键. 15.1 【解析】分析:求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数. 详解:143-50=93, 93÷1=9.3,所以应该分成1组. 故答案为1.点睛:本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数. 16.﹣3<m <1. 【解析】 【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数. 【详解】∵点P (m+3,m-1)在第四象限,∴可得3010m m +⎧⎨-⎩><,解得:-3<m <1. 故答案是:-3<m <1.。
2023-2024学年海南省海口市七年级(下)期末数学试卷一、选择题(每小题3分,共36分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑.1.(3分)若5﹣2(x﹣1)=1,则x等于()A.﹣4B.4C.﹣3D.32.(3分)若a>﹣b,则下列不等式一定成立的是()A.a+b<0B.1﹣a<1+b C.D.﹣2+b<﹣2﹣a3.(3分)当代数式4x+2的值小于代数式x﹣4的值时,x的取值范围是()A.x<﹣2B.x>﹣2C.x>2D.x<24.(3分)已知y=kx+3,当x=﹣4时,y=1,则k的值为()A.﹣1B.1C.﹣D.5.(3分)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.3D.86.(3分)下列四个图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.(3分)一副三角板按图所示方式叠放,若AE∥BC,则∠α等于()A.75°B.95°C.105°D.115°8.(3分)如图,在△ABC中,CD⊥AB于点D、E是CD上一点,若△BDE≌△CDA,AB=14,AC=10,则△BDE的周长为()A.22B.23C.24D.269.(3分)如图,点F在正五边形ABCDE的内部,△ABF为等边三角形,则∠AFC等于()A .108°B .120°C .126°D .132°10.(3分)如图,将正方形ABCD 沿BE 对折,使点A 落在对角线BD 上的A '处,连接A ′C ,则∠BA 'C 等于()A .45°B .57.5°C .60°D .67.5°11.(3分)如图,将△ABC 绕点A 逆时针旋转得到△ADE ,点B 的对应点D 恰好落在边BC 上,点C 的对应点为点E ,连接EC .下列结论一定正确的是()A .AB =BD B .∠B =∠ECAC .AC =DED .EC ⊥BC12.(3分)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x ,y ,则可列方程组为()A .B .C .D .二、填空题(每小题3分,共12分)13.(3分)由,得到用x表示y的式子为y=.14.(3分)已知x、y满足方程组,则x﹣y的值为.15.(3分)如图,△ABC是等边三角形,点D、E、F分别在AB、BC、AC上,若∠1=∠2,∠DFE=80°,则∠EDF=度.16.(3分)利用两块长方体木块测量一张桌子的高度.首先按图1方式放置,再交换两木块的位置,按图2方式放置.测量的数据如图所示,则桌子的高度是cm.三、解答题(共72分)17.(18分)(1)解方程:;(2)解方程组:;(3)求不等式组的所有整数解.18.(9分)若关于x、y的二元一次方程组的解满足4x+y=15,求k的值.19.(10分)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).20.(9分)如图,在△ABC中,∠B=45°,点D、E是BC边上两点,∠BAD=∠BDA,∠EAC=∠C,AE⊥AB于点A.求∠DAE、∠DAC和∠BAC的度数.21.(12分)在如图的正方形网格中,每个小正方形的边长都是单位1,△ABC和△A1B1C1的顶点均在格点上,且△ABC≌△A1B1C1.(1)画出△ABC关于直线x对称的△A2B2C2;(2)画出△A3B3C3,使△A3B3C3和△ABC关于点O成中心对称;(3)△A2B2C2与△A3B3C3是否对称?若对称,请在图中画出对称轴或对称中心;(4)写出一种由△ABC经过轴对称、平移和旋转变换得到△A1B1C1的过程.22.(14分)在△ABC中,AB>AC,AD平分∠BAC,点P是直线BC上的一点,PE⊥AD于点E,交直线AB于点F,交直线AC于点G.设∠ABC=x,∠ACB=y.(1)如图1,当点P在线段BC的延长线上时,①若∠ABC=38°,∠ACB=82°,求∠PFA、∠BPF和∠AGP的度数;②求∠BPF和∠AGP的度数(用含有x、y的代数式表示);(2)如图2,如图3,当点P分别在线段DC和BD上时,判断(1)②中的结论是否成立,若不成立请写出正确的结论.2023-2024学年海南省海口市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑.1.【分析】根据解一元一次方程的步骤解答即可.【解答】解:5﹣2(x﹣1)=1,去括号得:5﹣2x+2=1,移项得:﹣2x=1﹣5﹣2,合并同类项得:﹣2x=﹣6,系数化为1得:x=3.故选:D.【点评】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解答本题的关键.2.【分析】根据不等式的性质结合特值法逐项判断即可.【解答】解:由a>﹣b得:A.不妨设a=2,b=﹣1,则a+b>0,故本选项不合题意;B.﹣a<b,∴1﹣a<1+b,故本选项符合题意;C.,故本选项不合题意;D.b>﹣a,∴﹣2+b>﹣2﹣a,故本选项不合题意;故选:B.【点评】本题考查了不等式的性质,熟记不等式的基本性质是解答本题的关键.3.【分析】根据题意列出不等式解答即可.【解答】解:根据题意,得4x+2<x﹣4,移项、合并同类项,得3x<﹣6,系数化为1,得x<﹣2,故选:A.【点评】此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.4.【分析】把x=﹣4,y=1代入y=kx+3中得:1=﹣4k+3,然后进行计算即可解答.【解答】解:把x=﹣4,y=1代入y=kx+3中得:1=﹣4k+3,4k=3﹣1,4k=2,k=,故选:D.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.5.【分析】根据三角形三边关系定理得出5﹣3<a<5+3,求出即可.【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,即符合的只有3,故选:C.【点评】本题考查了三角形三边关系定理,能根据定理得出5﹣3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.6.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;B.是中心对称图形,不是轴对称图形,故此选项不合题意;C.是中心对称图形,不是轴对称图形,故此选项不合题意;D.既是中心对称图形,也是轴对称图形,故此选项符合题意;故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.7.【分析】根据平行线的性质定理及三角形外角性质求解即可.【解答】解:∵AE∥BC,∠E=45°,∴∠EDC=∠E=45°,∵∠α=∠EDC+∠C,∠C=30°,∴∠α=75°,故选:A.【点评】此题考查了平行线的性质,熟记“两直线平行,内错角相等”是解题的关键.8.【分析】由全等三角形的性质可得DE=DA,BE=CA,即可得△BDE的周长BD+DE+BE=BD+DA+CA =BA+CA,即可求解.【解答】解:∵△BDE≌△CDA,∴DE=DA,BE=CA,∴△BDE的周长BD+DE+BE=BD+DA+CA=BA+CA,∵AB=14,AC=10,∴△BDE的周长为BA+CA=14+10=24.故选:C.【点评】本题主要考查全等三角形的性质,掌握全等三角形的性质是解题的关键.9.【分析】利用多边形内角和及正多边形性质易得∠ABC=108°,AB=BC,再由等边三角形性质可得∠AFB=∠ABF=60°,AB=BF,那么∠CBF=48°,BF=BC,再利用等边对等角及三角形内角和定理求得∠BFC的度数,最后利用角的和差即可求得答案.【解答】解:∵五边形ABCDE为正五边形,∴∠ABC=(5﹣2)×180°÷5=108°,AB=BC,∵△ABF为等边三角形,∴∠AFB=∠ABF=60°,AB=BF,∴∠CBF=∠ABC﹣∠ABF=108°﹣60°=48°,BF=BC,∴∠BFC=∠BCF=(180°﹣48°)÷2=66°,∴∠AFC=∠AFB+∠BFC=60°+66°=126°,故选:C.【点评】本题主要考查多边形内角和及正多边形的性质,由题意求得BF=BC,从而求得∠BFC的度数是解题的关键.10.【分析】由正方形的性质和折叠的性质可得AB=BC=BA',∠DBC=45°,即可求解.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∠DBC=45°,∵将正方形ABCD沿BE对折,使点A落在对角线BD上的A'处,∴AB=A'B,∴A'B=BC,∴∠BA'C=∠BCA'=67.5°,故选:D.【点评】本题考查了正方形的性质,折叠的性质,等腰三角形的性质,证明A'B=BC是解题的关键.11.【分析】根据旋转性质逐项分析判断即可.【解答】解:A、若AB=BD,则△ABD为等边三角形,旋转角必须为60°,没有这个条件,故原说法错误,不符合题意;B、根据旋转性质,∠BAD=∠CAE,AB=AD,AC=AE,故∠B=∠ECA正确,符合题意;C、若AC=DE,则DE=AE,就有AC=BC,而题目没有这个条件,故原说法错误,不符合题意;D、若EC⊥BC,则∠ACE+∠ACB=90°,继而∠B+∠ACB=90°,而题目中没有说△ABC是直角三角形,故原说法错误,不符合题意.故选:B.【点评】本题考查了旋转的性质,掌握旋转的性质是本题的关键.12.【分析】根据如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50,可以列出相应的方程组.【解答】解:由题意可得,,故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,找出等量关系,列出相应的方程组.二、填空题(每小题3分,共12分)13.【分析】先移项,把y的系数化为1,即可求解.【解答】解:,﹣=3﹣x,y=﹣6+2x,故答案为:﹣6+2x.【点评】本题考查了二元一次方程中的化简移项,关键在于移项时的变号问题.14.【分析】一般解法是求得方程组的解,把x,y的值代入到代数式求值,但观察方程组未知数的系数特点,把两方程分别看作整体,直接相减,即可求得x﹣y的值.【解答】解:在方程组中,①﹣②得:x﹣y=1.故答案为:1.【点评】此题考查解二元一次方程组,注意此题的简便方法.15.【分析】由等边三角形的性质得出∠B=60°,再根据三角形外角的性质得出∠DEF+∠2=∠B+∠1,结合已知∠1=∠2,得出∠DEF=∠B=60°,最后根据三角形内角和定理即可求出∠EDF的度数.【解答】解:∵△ABC是等边三角形,∴∠B=60°,∵∠DEC是△DBE的外角,∴∠DEC=∠B+∠1,即∠DEF+∠2=∠B+∠1,∵∠1=∠2,∴∠DEF=∠B=60°,∵∠DFE=80°,∴∠EDF=180°﹣∠DEF﹣∠DFE=180°﹣60°﹣80°=40°,故答案为:40.【点评】本题考查了等边三角形的性质,三角形外角的性质,三角形内角和定理,熟练掌握这些知识点是解题的关键.16.【分析】设桌子的高度是x cm,长方体木块截面的长比宽多y cm,观察图形,根据各边之间的关系,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设桌子的高度是x cm,长方体木块截面的长比宽多y cm,依题意得:,解得:,∴桌子的高度是75cm.故答案为:75.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.三、解答题(共72分)17.【分析】(1)按照解一次方程的步骤解答即可;(2)利用加减消元法解方程组即可;(3)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,即可确定出整数解.【解答】解:(1),4(2x+3)﹣3(4x﹣3)=24,8x+12﹣12x+9=24,﹣4x=3,x=﹣;(2),整理得,②﹣①得:4y=8,解得y=8,把y=8代入①得:2x﹣8=3,解得x=,∴;(3),解不等式①,得x<2.解不等式②,得x>﹣4.∴该不等式组的解集是:﹣4<x<2.∴所有整数解为:﹣3,﹣2,﹣1,0,1.【点评】本题考查了一元一次不等式的整数解、解一元一次方程、二元一次方程组的解,熟练掌握各自的解法是解本题的关键.18.【分析】②+①×12得出5x+2y=0,求出关于x、y的方程组,再代入求出k即可.【解答】解:,②+①×12得,5x+2y=0,∴,解得,代入①得,20﹣25=k,∴k=﹣5.【点评】本题考查了解二元一次方程组和二元一次方程组的解,能求出x、y的值是解此题的关键.19.【分析】设上月萝卜的单价是x元/斤,排骨的单价y元/斤,根据小明的爸爸和妈妈的对话找到等量关系列出方程组求解即可.【解答】解:设上月萝卜的单价是x元/斤,排骨的单价y元/斤,根据题意得:.解得:.这天萝卜的单价是(1+50%)x=(1+50%)×2=3(元/斤),这天排骨的单价是(1+20%)y=(1+20%)×15=18(元/斤),答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤.【点评】本题考查了二元一次方程组的应用,解题的关键是根据题目找到等量关系并列出方程组.20.【分析】利用三角形的内角和定理先求出∠AEB,再求出∠C,再利用角的和差关系、三角形的外角与内角和的关系求出∠DAE、∠DAC和∠BAC的度数.【解答】解:∵AE⊥AB,∴∠BAE=90°.∵∠B=45°,∴∠AEB=45°.∵∠EAC=∠C,∠AEB=∠EAC+∠C,∴∠EAC=∠C=22.5°.∴∠BAC=∠BAE+∠EAC=90°+22.5°=112.5°.∵∠BAD=∠BDA,∠B=45°,∴∠BAD=∠BDA=67.5°.∴∠DAC=∠BAC﹣∠BAD=112.5°﹣67.5°=45°,∠DAE=∠BAE﹣∠BAD=90°﹣67.5°=22.5°.【点评】本题主要考查了三角形的内角和,掌握三角形的内角和定理及推论、角的和差关系等知识点是解决本题的关键.21.【分析】(1)分别作出三个顶点关于直线x的对称点,再首尾顺次连接即可;(2)分别作出三个顶点关于原点O的对称点,再首尾顺次连接即可;(3)由图形可得其对称轴;(4)结合图形,对照平移变换、轴对称变换和旋转变换的概念求解即可.【解答】解:(1)如图所示:(2)如图所示:(3)△A2B2C2与△A3B3C3是轴对称,对称轴如图所示:(4)将△ABC以点B为旋转中心,逆时针旋转90°后,再向右平移6个单位得到△△A1B1C1.【点评】本题主要考查作图—平移变换、轴对称变换和旋转变换,解题的关键是掌握平移变换、轴对称变换和旋转变换的定义和性质.22.【分析】(1)①先求出∠BAC=60°,根据AD平分∠BAC得∠BAD=30°,再根据PF⊥AD,得∠AEF=90°,则∠PFA=60°,进而得∠BFP=120°,由此可得∠BPF的度数;然后根据∠BAC=60°,∠PFA=60°可得∠AGF=60°,由此可得∠AGP的度数;②先求出∠BAC=180°﹣x﹣y,根据AD平分∠BAC得∠BAD=∠CAD=90°﹣x﹣y,再根据PF⊥AD得∠AEF=90°,则∠PFA=x+y,证明∠PFA=∠ABC+∠BPF,由此可得∠BPF的度数,再证明∠AGP=∠PFA+∠BAC,由此可得∠AGP的度数;(2)在图2中,∠BPF=y﹣x,∠AGP=y+x,同①得∠BAD=∠CAD=∠BAC=90°﹣x﹣y,∠PFA=x+y,∠PFA=∠ABC+∠BPF,由此可得∠BPF的度数,再根据PE⊥AD得∠AEG=90°,由此可得∠AGP的度数;在图3中,∠BPF=y﹣x,∠AGP=y+x,同①得∠BAD=∠CAD=∠BAC=90°﹣x﹣y,∠PFA=x+y,∠PFA=∠ABC+∠BPF,由此可得∠BPF的度数,再根据PE⊥AD可得∠AEG=90°,由此可得∠AGP的度数.【解答】解:(1)①∵∠ABC=38°,∠ACB=82°,∴∠BAC=180°﹣(∠ABC+∠ACB)=60°,∵AD平分∠BAC,∴∠BAD=∠BAC=30°,∵PF⊥AD,∴∠AEF=90°,∴∠PFA=180°﹣(∠AEF+∠BAD)=180°﹣(90°+30°)=60°,∴∠BFP=180°﹣∠PFA=120°,∴∠BPF=180°﹣(∠BFP+∠ABC)=180°﹣(120°+38°)=22°,∵∠BAC=60°,∠PFA=60°,∴∠AGF=180°﹣(∠BAC+∠PFA)=60°,∴∠AGP=180°﹣∠AGF=120°,∴∠PFA=60°;∠BPF=22°;∠AGP=120°.②∵∠ABC=x,∠ACB=y,∴∠BAC=180°﹣(∠ABC+∠ACB)=180°﹣x﹣y,∵AD平分∠BAC,∴∠BAD=∠CAD=∠BAC=90°﹣x﹣y,∵PF⊥AD,∴∠AEF=90°,∴∠AFE=90°﹣∠BAD=90°﹣(90°﹣x﹣y)=x+y,∵∠AFE+∠BFP=180°,∠BFP+∠ABC+∠BPF=180°,∴∠AFE=∠ABC+∠BPF即x+y=x+∠BPF,∴∠BPF=y﹣x,∵∠ACB=y,∴∠PCG=180°﹣∠ACB=180°﹣y,∴∠PGC=180°﹣(∠PCG+∠BPF)=180°﹣(180°﹣y+y﹣x)=y+x∴∠AGP=180°﹣∠PGC=180°﹣y﹣x,∴∠BPF=y﹣x;∠AGP=180°﹣y﹣x,(2)在图2中,(1)②中的结论不成立,∠BPF=y﹣x,∠AGP=y+x,理由如下:同①得:∠BAD=∠CAD=∠BAC=90°﹣x﹣y,∠PFA=x+y,∠PFA=∠ABC+∠BPF,∴x+y=x+∠BPF,∴∠BPF=y﹣x,∵PE⊥AD,∴∠AEG=90°,∴∠AGP=180°﹣(∠AEG+∠CAD)=180°﹣(90°+90°﹣x+y)=y+x;在图3中,(1)②中的结论不成立,∠BPF=y﹣x,∠AGP=y+x,理由如下:同①得:∠BAD=∠CAD=∠BAC=90°﹣x﹣y,∠PFA=x+y,∠PFA=∠ABC+∠BPF,∴x+y=x+∠BPF,∴∠BPF=y﹣x,∵PE⊥AD,∴∠AEG=90°,∴∠AGP=180°﹣(∠AEG+∠CAD)=180°﹣(90°+90°﹣x﹣y)=y+x.【点评】此题主要考查了三角形的内角和定理,角平分线的定义,角的计算,准确识图,熟练掌握三角形的内角和定理,角平分线的定义,角的计算是解决问题的关键。
2025届海南省海口市秀英区第十四中学数学七年级第一学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.如图,OA 的方向是北偏东15°,OC 的方向是北偏西40°,若∠AOC=∠AOB,则OB的方向是()A.北偏东70°B.东偏北25°C.北偏东50°D.东偏北15°2.﹣2019的倒数是()A.﹣2019 B.2019 C.﹣12019D.120193.2019年我市有3.7万名初中毕业生参加升学考试,为了了解这3.7万学生的数学成绩,从中抽取2000名学生的数学成绩进行统计,这个问题中样本是()A.3.7万名考生B.2000名考生C.3.7万名考生的数学成绩D.2000名考生的数学成绩4.若与是同类项,则的值是()A.0 B.1 C.2 D.35.观察图形,并阅读相关的文字:那么8条直线相交,最多可形成交点的个数是()A.21 B.28 C.36 D.456.一件工作,甲单独做20小时完成,乙单独做12小时完成,现由甲独做4小时,剩下的甲、乙合做,还需几小时?设剩下部分要x小时完成,下列方程正确的是()A . 41202012x x =--B .41202012x x =+-C . 41202012x x =++D . 41202012x x =-+ 7.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( )A .8×1012B .8×1013C .8×1014D .0.8×1013 8.下列说法中正确的是( )A .所有的有理数都可以用数轴上的点来表示B .在数轴上到原点的距离为2的点表示的数为-2C .近似数3.8和3.80的精确度相同D .所有的有理数的偶次幂都是正数9.下列说法中不正确的是( )①过两点有且只有一条直线②连接两点的线段叫两点的距离③两点之间线段最短④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点A .①B .②C .③D .④10.下列图形是棱锥的是( )A .B .C .D .11.把方程10.2110.40.7x x +--= 中分母化整数,其结果应为( ) A .10121147x x +--= B .101211047x x +--= C .1010210147x x +--= D .10102101047x x +--= 12. “厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合为粮食大约是2.1亿人一年的口粮,将2.1亿用科学记数法表示为( )A .92.110⨯B .100.2110⨯C .82.110⨯D .92110⨯二、填空题(每题4分,满分20分,将答案填在答题纸上)13.比较大小:3232'︒________32.32︒(填“>”、“<”或“=”).14.解一元一次方程的五个步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)系数化为1,其中有用到乘法分配律的有_____.(填序号)15.如图,在直角三角形ABC 中,90ACB ∠=︒,以直角顶点C 为旋转中心,将三角形ABC 逆时针旋转到'''A B C ∆的位置,其中'A ,'B 分别是A 、B 的对应点,且2'ACD A CB ∠=∠,则'ACB ∠=_____.16.若长方形的一边长为3a ,另一边长比它大2a ,且周长为32,则该长方形的面积为_____.17.现将某校七年一班女生按照身高共分成三组,下表是这个班级女生的身高分组情况统计表,则在统计表中b 的值是______. 第一组 第二组 第三组 每个小组女生人数9 8 a 每个小组女生人数占班级女生人数的百分比 b c 15%三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)如图,已知三角形纸片ABC ,将纸片折叠,使点A 与点C 重合,折痕分别与边AC BC 、交于点D E 、.(1)画出直线DE ;(2)若点B 关于直线DE 的对称点为点F ,请画出点F ;(3)在(2)的条件下,联结EF DF 、,如果DEF 的面积为2,DEC 的面积为4,那么ABC 的面积等于 .19.(5分)如图,1l 反映了某公司产品的销售收入1y (元)与销售量x (吨)的关系, 2l 反映了该公司产品的销售成本2y(元)与销售量x(吨)之间的关系,根据图象解答:(1)求1l,2l对应的函数表达式;(2)求利润w(元)(销售收入一销售成本)与销售量x(吨)之间的函数关系式.20.(8分)李老师在黑板上书写了一个正确的验算过程,随后用手掌捂住了一个多项式,形式如下:(1)求所捂住的多项式;(2)若-x2-4x+10=0,求所捂住的多项式的值.21.(10分)按照上北下南,左西右东的规定画出表示东南西北的十字线,然后在图上画出表示下列方向的射线;(1)北偏西60︒;(2)南偏东30;(3)北偏东45︒;(4)西南方向22.(10分)如图,平面上有四个点A、B、C、D:(1)根据下列语句画图:①射线BA;②直线BD与线段AC相交于点E;(2)图中以E为顶点的角中,请写出∠AED的补角.23.(12分)计算(1)|﹣4|+23+3×(﹣5)(2)﹣12016﹣15×[4﹣(﹣3)2].参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、A【解析】先根据角的和差得到∠AOC的度数,根据∠AOC=∠AOB得到∠AOB的度数,再根据角的和差得到OB的方向.【详解】∵OA的方向是北偏东15°,OC的方向是北偏西40°,∴∠AOC=15°+40°=55°.∵∠AOC=∠AOB,∴∠AOB=55°,15°+55°=70°,故OB的方向是北偏东70°.故选A.【点睛】本题考查了方位角,方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.2、C【分析】根据倒数的定义,即可得到答案.【详解】解:﹣2019的倒数是1 2019 ;故选:C.【点睛】本题考查了倒数的定义,解题的关键是熟记定义.3、D【分析】分析:根据样本的定义:从总体中取出的一部分个体叫做这个总体的一个样本,依此即可求解.【详解】抽取2000名考生的数学成绩进行统计分析,在这个问题中抽取的2000名考生的数学成绩为样本.故选D.【点睛】本题考查了总体、个体、样本和样本容量:我们把所要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本;一个样本包括的个体数量叫做样本容量.4、C【解析】利用同类项定义列出方程组,即可求出值.【详解】∵与是同类项,∴,则a−b=2,故选:C.【点睛】此题考查同类项,解题关键在于掌握其定义.5、B【详解】解:找规律的方法是从特殊到一般,由题,观察图形可得:两条直线1个交点,三条直线1+2个交点,四条直线1+2+3个交点n条直线相交最多可形成的交点个数为1+2+3+…+n-1=()12n n-,∴8条直线相交,最多可形成交点的个数为()12n n-=()8182-⨯=28故选B.【点睛】本题属于找规律,利用数形结合思想,正确计算解题是关键.6、C【分析】要列方程,首先要理解题意,根据题意找出等量关系:甲的工作量+乙的工作量=总的工作量,此时可设工作总量为1,由甲,乙的单独工作时间可得到两者各自的工作效率,再根据效率×时间=工作量可以表示甲,乙的工作量,这样再根据等量关系列方程就不难了【详解】解:“设剩下部分要x小时完成”,那么甲共工作了4+x小时,乙共工作了x小时;设工作总量为1,则甲的工作效率为120,乙的工作效率为112.那么可得出方程为:41202012x x =++故选C.【点睛】此题的关键是理解工作效率,工作时间和工作总量的关系,从而找出题中存在的等量关系.7、B【解析】80万亿用科学记数法表示为8×1.故选B .点睛:本题考查了科学计数法,科学记数法的表示形式为10n a ⨯ 的形式,其中110a ≤< ,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.8、A【分析】根据有理数与数轴之间的关系,近似数,乘方的性质逐项判断即可.【详解】A 、有理数都可以用数轴上的点来表示,故本选项正确;B 、在数轴上到原点的距离为2的点表示的数为-2或2,故本选项错误;C 、3.8精确到十分位,3.80精确到百分位,精确度不同,故本选项错误;D 、0的任何正整数次幂都是0,0既不是正数也不是负数,故本选项错误.故选:A .【点睛】本题考查了有理数与数轴之间的关系,近似数,乘方的性质,熟练掌握各基础知识是解题的关键.9、B【解析】依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.【详解】①过两点有且只有一条直线,正确;②连接两点的线段的长度叫两点间的距离,错误③两点之间线段最短,正确;④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点,正确;故选B .10、D【解析】侧面都是三角形,且各侧面交于一点,底面是多凸多边形的几何图形是棱椎,据此即可得出正确结论.【详解】A.是圆柱,故不符合题意;B. 是圆锥,故不符合题意;C. 是棱柱,故不符合题意;D. 是棱锥,故符合题意;故选D.【点睛】本题是考查了立体图形知识,解决本题的关键是熟练掌握立体图形的识别方法并能灵活运用.立体图形:有些几何图形 ( 如长方体 、 正方体 、 圆柱 、 圆锥 、 球等 ) 的各部分不都在同一个平面内,这就是立体图形.11、C【解析】方程利用分数的基本性质变形得到结果,即可做出判断. 【详解】方程整理得:1010210147x x +--=. 故选C.【点睛】考查了解一元一次方程,熟练掌握运算法则是解本题的关键.12、C【分析】先把2.1亿写为:210000000,再根据科学记数法的表示形式a ×10n ,其中1≤|a|<10,n 为整数即可得到答案.【详解】解:∵2.1亿=210000000,∴用科学记数法表示为:82.110⨯,故选C .【点睛】本题主要考查了科学记数法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.表示时关键要正确确定a 的值以及n 的值.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、>【分析】角度的大小比较,先把单位化统一,由'160︒=,'"160=可以化简,然后比较大小.【详解】由题意知:'160︒=,'"160=,∴ '"32.32321912︒=︒, ∴ '"3213232912︒'︒>, 即 323232.32'︒>︒,故答案为:>.【点睛】本题考查了角的大小比较,注意单位要化统一,依据'160︒=,'"160=是解题的关键.14、(2)【分析】通过解一元一次方程的步骤即可判断得到去括号时用到乘法分配律.【详解】解:解一元一次方程的五个步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)系数化为1,其中有用到乘法分配律的有(2),故答案为:(2).【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.15、150°【分析】根据旋转的性质知:90ACB A CB ∠∠''==︒,90ACD DCB ∠∠+=︒,根据2ACD A CB ∠∠'=即可求得A CB ∠',从而求得答案.【详解】根据旋转的性质知:90ACB A CB ∠∠''==︒,∵90ACD A CB ∠∠'+=︒,又2ACD A CB ∠∠'=,∴290A CB A CB ∠∠''+=︒,∴30A CB ∠='︒,∴909030150ACB ACB A CB A CB ∠∠∠∠''=+-=︒+︒-︒=''︒,故答案为:150︒.【点睛】本题主要考查了旋转的性质以及角度的计算,正确得出30A CB ∠='︒是解题的关键.16、60【分析】根据周长的定义得到方程求出a,即可得到长方形的长和宽,即可求解.【详解】依题意得2[3a+(3a +2a )]=32解得a=2∴长方形的宽为6,长为10∴面积为6×10=60故答案为:60.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系列方程.17、45%【分析】先利用第三组女生占班级女生人数的百分比求出第一、二两组和占班级女生人数的百分比,再求出第一、二组女生人数,求出班级女生总人数=第一、二组女生人数÷第一、二两组和占班级女生人数的百分比,利用b=第一组女生人数÷班级女生总数×100%计算即可. 【详解】由第三组女生人数占班级女生人数的百分比15%,一二两组女生9+8=17人占班级女生人数的百分比为1-15%=85%,班级女生人数为:17÷85%=20人, =920100%=45%b ÷⨯.故答案为:45%.【点睛】本题考查统计表中信息问题,仔细阅读,从中找出解决问题需要的信息,会利用第三组女生占班级女生人数的百分比求第一二两组占的百分比,利用一二两组女生人数和,求出总数是解题关键.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、(1)见解析;(2)见解析;(3)12【分析】(1)画出线段AC 的垂直平分线即为直线DE ;(2)作出点B 关于直线DE 的对称点F 即可;(3)先求得S △AEC =8,BDE S =2,再求得BDE CDE S S =BE EC =12和 AECABC S S =EC BC =23,再代入S △AEC 的面积即可求得ABC S .【详解】(1)直线DE 如图所示:(2)点F 如图所:(3)连接AE ,如图所示:由对折可得:S △AED =S △DEC ,S △BDE =S △DEF ,∴S △AEC =8,BDE S =2,设△BED 中BE 边上的高为h , 12121422BDECDE BE h SBE S EC EC h •====,即12BE EC =,则2BE=EC , 设△AEC 中EC 边上的高为h',则:1'222123'2AEC ABC EC h S EC EC BE S BC BE EC BE BE BC h =====++, ∴38122ABC S ⨯==. 【点睛】考查作图-轴对称变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题.19、(1)11000y x =,25002000y x =+;(2)5002000w x =-【分析】(1)通过待定系数法即可求得1l ,2l 的函数解析式;(2)根据销售收入-销售成本=利润,进行列式即可得解.【详解】(1)设1l 的表达式是1y kx =∵它过点(4,4000)40004k ∴=1000k ∴=11000y x ∴=;设2l 的表达式是2y kx b =+∵2l 过点(0,2000)2000b ∴=又2l 过点(4,4000)400042000k ∴=+,解得: 500k =所以25002000y x =+,故1l 的表达式是11000y x =,2l 的表达式是25002000y x =+;(2)121000(5002000)w y y x x =-=-+5002000w x ∴=-.【点睛】本题主要考查了一次函数及正比例函数的应用,熟练掌握待定系数法求一次函数解析式是解决本题的关键.20、(1)x 2+4x +2;(2)1【分析】(1)先根据被减数=差+减数列出算式,再去括号合并即可;(2)将-x 2-4x +10=0变形为x 2+4x =10代入(1)中所求的式子,计算即可.【详解】解:由题意得,被捂住的多项式为:(x 2﹣3x +2)+7x=x 2﹣3x +2+7x=x 2+4x +2;(2)∵-x 2-4x +10=0,∴x 2+4x =10当x 2+4x =10时,原式=10+2=1.【点睛】本题考查了整式的加减,整式的加减的实质就是去括号、合并同类项.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“﹣”时,去括号后括号内的各项都要改变符号.21、答案见详解.【分析】按题意画出表示东南西北的十字线,并作好标识,然后再按题中要求画出表示四个指定方向的射线,并标好字母即可.【详解】如下图所示:(1)射线OA 表示北偏西60°方向;(2)射线OB 表示南偏东30°方向;(3)射线OC 表示北偏东45°方向;(4)射线OD 表示西南方向.【点睛】本题考查方位角有关问题,掌握“方位角”的画法是正确解答本题的关键.22、(1)①答案见解析;②答案见解析;(2)∠AEB ,∠DEC【分析】(1)①作射线BA ;②画直线BD 、线段AC ,作出交点E ;(2)根据角的表示方法解答即可.【详解】(1)①,②如图所示:(2)图中以E 为顶点的角中,∠AED 的补角为:∠AEB ,∠DEC .【点睛】本题考查了基本作图,熟知射线及角的作法是解答此题的关键. 23、 (1)-3;(2)0;【解析】按照有理数的运算顺序进行运算即可.【详解】解:()()314235,++⨯-﹣ 4815,=+-3.=-()()2201612143,5⎡⎤--⨯--⎣⎦ ()1149,5=--⨯- 11,=-+0.=【点睛】本题考查有理数的混合运算,有乘方先算乘方,再算乘除,最后算加减.。
2010—2011学年度第一学期
海口市七年级数学科期末检测题
(华东师大版)
时间:100分钟 满分:100分 得分:
一、选择题(每小题2分,共24分)
在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.
1. -5的倒数是
A. 5
B. 5
1
C. -5
D. 5
1
2.计算 (-1)2
+(-1)3
等于
A. 2
B. 0
C. -1
D.-2 3.化简 -3a +(3a -2)的结果是
A. -6a -2
B. 6a
-2 C. 2
D. -2 4. 数轴上表示
-5与-1
这两点间的距离是
A .-4
B .-6
C .4
D .6
5. 若x -2y =-3,则代数式5-x +2y 的值是
A .8
B .5
C .2
D .0
6. 图1是由5个大小相同的小正方体摆成的立体图形,它的正视图...是
7.
一个整式减去 -2a 2的结果是a 2-b 2,则这个整式是
A .-a 2+b 2
B .a 2+b 2
C .3a 2-b 2
D .-a 2-b 2
8.如图2,钟表中9点30分时,时钟的分针与时针所成角的度数为
A .90°
B .105°
C .120°
D .135°
D
B C A 图1
南
东 北 西 A
B
C
D
O
25º
45º 30º
75º
9.如图3,下列说法中错误..
的是 A .OA 方向是北偏东15º B. OB 方向是西北方向 C. OC 方向是南偏西30º
D. OD 方向是南偏东25º
10. 如图4,CO ⊥AB ,若∠1=∠2,则图中互余的角共有
A. 2对
B. 3对
C. 4对
D. 5对
11.如图5,已知AB ∥CD ,∠D =50°,BC 平分∠ABD ,则∠ABC 等于
A .65°
B .55°
C .50°
D .45°
12. 某人将一枚质量均匀的硬币连续抛10次,落地后正面朝上6次,反面朝上4次,下列说法正确的是
A .出现正面的频率是6
B .出现正面的频率是60%
C .出现正面的频率是4
D .出现正面的频率是40% 二、填空题(每小题3分,共18分) 13. 计算:-3ab 2-5ab 2= .
14. 如图6,O 是直线AB 上一点,若∠AOC =51°38′,则∠BOC = .
15.如图7,C 是线段AB 的中点,D 在线段CB 上,AD =7,DB =4,则CD 的长等于 .
16. 如图8,请填写一个适当的条件: ,使得DE ∥AB . 17. 如图9,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=28°,则∠2等于
度.
18.如图10,房间地面的图案是用大小相同的黑、白正方形镶嵌而成.图中,第1
3个
图
10
B
C D
A
图7
图6
B
C
O A A
E
C
D
B
图8
C
A
E
B
图5
1 2
B
O A
E
C
D
图4
正方形组成,第27个正方形组成,……,那么组成第n 个数是 (用含n 的代数式表示). 三、解答题(共58分)
19.计算(第(1)小题4分,第(2)小题5分,共9分) (1))48()12
14361(-⨯-+-; (2)
3
201124.05311)()()(-⨯÷-+-.
20. (6分)先化简,再求值.
2(2xy 2-21y 2)-(4xy 2+32y 2-x 2y )-3
4
y 2,其中x =23,y =-31.
21.(7分)一种商品每件成本a 元,按成本增加22%定出价格,后来因库存积压减价,按原价的85%出
售. 试用含a 的代数式表示.
(1)该商品最初每件的定价为多少元?
(2)该商品每件按定价的85%出售后,售价为多少元?每件还能盈利多少元?
22.(12分)利用图11.1、图11.2提供的信息,回答下列问题:
(1)某企业2009年管理费支出的金额是 万元,保险费用支出的金额是 万元; (2)原料占2009年总支出额的百分比为 ,这个扇形的圆心角的度数为 °; (3)2009年总支出比2008年增加 万元,增加百分比为 (精确到0.1%).
23.(12分)如图12所示的方格纸中,点C 是∠AOB 的边OB 上的一点,按下列要求画图并回答问题.
(1)过点C 画OB 的垂线,交OA 于点D ,该垂线是否经过格点?若经过格点,请在图中标出垂线所
经过的格点;
(2)过点C 画OA 的垂线,垂足为E .
① 线段CE 的长度是点C 到 的距离, 是点D 到OB 的距离;
② 因为直线外一点与直线上各点连接的所有线段中,垂线段最短,所以线段CD 、CE 、OD 、OC 这四条线段大小关系是 (用“<”号连接); (3)过D 点画直线DF ∥OB ,若∠AOB =x °,
则∠ADC = (用含x 的 代数式表示).
24.(12分) 如图13,已知EF ⊥BC ,∠1=∠C ,∠2+∠3=180°. 试说明直线AD 与BC 垂直.(请在下面
的解答过程的空格内填空或在括号内填写理由). 理由:
图12
图11.2
2009年总支出额的分配图
48%
10%
5%2007年——2009年总支出条形统计图 0
200 400 600 800 1000 2007年
2008年 2009年
总支出额(万元) 图11.1
∵ ∠1=∠C , ( 已知 )
∴ ∥ ,( ) ∴ ∠2= . ( )
又∵ ∠2+∠3=180°,( 已知 )
∴ ∠3+ =180°.( 等量代换 )
∴ ∥ , ( ) ∴ ∠ADC =∠EFC . ( ) ∵ EF ⊥BC , ( 已知 ) ∴ ∠EFC =90°, ∴ ∠ADC =90°, ∴ ⊥ .
参考答案及评分标准
一、DBDCA ADBCC AB
二、13.-8ab 2 14. 128°22′ 15.1.5 16.∠ABD =∠D (答案不唯一) 17.62 18.4n -1
三、19.(1)原式=8-36+4 ……(2分) (2)原式=-1+(1-2
3
)×(-8) ……(2分)
=-24. ……(4分) =-1+(-
2
1
)×(-8) ……(3分) =-1+4 ……(4分) =3 ……(5分)
20. 原式=4xy 2-y 2-4xy 2-32y 2+x 2y -3
4
y 2 ………………………………(2分)
=-3y 2+x 2y . ………………………………(4分)
当x =
23,y =-31时,原式=-3×(-31)2+(23)2×(-3
1). =4331--=12
13
-. ………………………………(6分)
21.(1)1.22a ………………………………(4分)
(2)1.037a , 0.037a ………………………………(7分) 22.(1)80,40 ………………………………(4分) (2)25%,90 ………………………………(8分) (3)200,33.3% ………………………………(12分) 23.(1)如图所示,图中该垂线经过的格点有点D 、M 、N . ………(3分) (2)如图所示,①直线OA ,线段CD 的长度;② CE <CD <OC <OD . (9分) (3)如图所示,90°+x °. ………………………………(12分)
3
B
A
D F
C
E
G
1
2 图13
24. ∵ ∠1=∠C , (已知 )
∴ GD ∥AC , (同位角相等,两直线平行 ) …………(3分) ∴ ∠2=∠DAC . (两直线平行,内错角相等 ) …………(5分) 又∵ ∠2+∠3=180°, (已知 )
∴ ∠3+∠DAC =180°.(等量代换 ) …………(6分) ∴ AD ∥EF , (同旁内角互补,两直线平行 ) …………(8分) ∴ ∠ADC =∠EFC . (两直线平行,同位角相等 ) …………(10分) ∵ EF ⊥BC , (已知 ) ∴ ∠EFC =90°, ∴ ∠ADC =90°,
∴ AD ⊥BC . …………(12分)
3
B
A D F
C
E
G
1 2
图13。