组成原理 超前进位加法器设计
- 格式:doc
- 大小:495.50 KB
- 文档页数:5
超前进位加法器的设计原理概述及解释说明1. 引言1.1 概述超前进位加法器是一种用于在数字电路中进行二进制数的加法运算的特殊电路。
相较于传统的二进制加法器,超前进位加法器通过预先计算进位,从而实现更快速的运算。
本文旨在对超前进位加法器的设计原理进行概述和解释说明。
1.2 文章结构本文分为五个主要部分,分别是引言、超前进位加法器的设计原理、实现步骤和流程、优势与应用范围以及结论。
首先介绍引言部分,接下来详细解释超前进位加法器的设计原理,然后说明实现步骤和流程。
之后介绍该加法器的优势及其应用范围,并最后得出结论。
1.3 目的本文旨在向读者阐明超前进位加法器的设计原理并提供相关解释说明。
对于数字电路领域的研究者和工程师而言,了解超前进位加法器背后的原理可以帮助他们更好地应用这一技术,并且展示其在优势与应用范围方面所具备的潜力。
2. 超前进位加法器的设计原理2.1 超前进位加法器的定义和背景超前进位加法器是一种常用于数字电路中的加法器,用来实现两个二进制数的相加操作。
与传统的普通进位加法器不同,超前进位加法器在进行计算时能够提前计算并预测进位信号,从而减少计算时间并提高加法运算速度。
2.2 原理解释超前进位加法器采用了两级运算的方式,利用了先行进位预测的思想,以优化传统加法器的运算效率。
其基本原理如下:- 首先,对于每一位(bit)进行相应位置的逻辑门电路设计。
- 然后,在相邻位之间引入前导输入(Generate input)和进位输出(Carry output),这样可以使得下一级可以预测到当前级别产生的所有可能进位。
- 通过与门、或门和异或门等逻辑门之间巧妙的组合连接,实现了高速、低功耗的超前进位运算。
超前进位加法器主要依靠已知最高有效输入块(G代表Generate, P代表Propagate, C代表Carry In) 确定其对应输出(S代表Sum, C代表Carry Out),并将这些信息传递给下一级加法器。
加法器设计(三)超前进位加法器(Verilog)超前进位加法器module add4_head ( a, b, ci, s, pp, gg);input[3:0] a;input[3:0] b;input ci;output[3:0] s;output pp;output gg;wire[3:0] p;wire[3:0] g;wire[2:0] c;assign p[0] = a[0] ^ b[0];assign p[1] = a[1] ^ b[1];assign p[2] = a[2] ^ b[2];assign p[3] = a[3] ^ b[3];assign g[0] = a[0] & b[0];assign g[1] = a[1] & b[1];assign g[2] = a[2] & b[2];assign g[3] = a[3] & b[3];assign c[0] = (p[0] & ci) | g[0];assign c[1] = (p[1] & c[0]) | g[1];assign c[2] = (p[2] & c[1]) | g[2];assign pp = p[3] & p[2] & p[1] & p[0];assign gg = g[3] | (p[3] & (g[2] | p[2] & (g[1] | p[1] & g[0])));assign s[0] = p[0] ^ ci;assign s[1] = p[1] ^ c[0];assign s[2] = p[2] ^ c[1];assign s[3] = p[3] ^ c[2];endmodule首先要明确几个概念:p表示进位否决信号(pass),如果p为0就否决调前一级的进位输入。
否决的意思就是即使前一级有进位,本级也不会向后一级产生进位输出。
实验名称:十六位超前进位加法器一、实验目的设计、验证并优化16位超前进位加法器的逻辑功能。
二、实验原理1、1位全加器原理全加器的求和输出信号和进位信号,定义为输入变量A、B、C的两种组合布尔函数:求和输出信号 = A ⊕ B ⊕ C进位信号 = AB + AC + BC实现这两个函数的门级电路如下图。
并不是单独实现这两个函数,而是用进位信号来产生求和输出信号。
这样可以减少电路的复杂度,因此节省了芯片面积。
上述全加器电路可以用作一般的n位二进制加法器的基本组合模块,它允许两个n 位的二进制数作为输入,在输出端产生二进制和。
最简单的n位加法器可由全加器串联构成,这里每级加法器实现两位加法运算,产生相应求和位,再将进位输出传到下一级。
这样串联的加法器结构称为并行加法器,但其整体速度明显受限于进位链中进位信号的延迟。
因此,为了能够减少从最低有效位到最高有效位的最坏情况进位传播延时,最终选择的电路是十六位超前加法器。
2、超前进位加法器原理超前进位加法器的结构如下图。
超前进位加法器的每一位由一个改进型全加器产生一个进位信号gi和一个进位传播信号pi,其中全加器的输入为Ai和Bi,产生的等式为:改进的全加器的进位输出可由一个进位信号和一个进位传输信号计算得出,因此进位信号可改写为:式中可以看出,当gi = 1(Ai = Bi = 1)时,产生进位;当pi = 1(Ai =1或Bi = 1)时,传输进位输入,这两种情况都使得进位输出是1。
近似可以得到i+2和i+3级的进位输出如下:下图为一个四位超前进位加法器的结构图。
信号经过pi和gi产生一级时延,经过计算C产生一级时延,则A,B输入一旦产生,首先经过两级时延算出第1轮进位值C’不过这个值是不正确的。
C’再次送入加法器,进行第2轮2级时延的计算,算出第2轮进位值C,这一次是正确的进位值。
这里的4个4位超前进位加法器仍是串行的,所以一次计算经过4级加法器,一级加法器有2级时延,因此1次计算一共经过8级时延,相比串行加法器里的16级时延,速度提高很多。
试验二超前进位加法器设计练习2. 4位超前进位加法器行波进位加法器延时较长,可采用超前进位加法器减少延时,但是由此会造成电路的复杂。
超前进位加法器原理参见《数字集成电路》(周润德第二版)424页。
对以上公式的注解:公式中的C O,K 表示第K 为的进位输出,G K 为第K 位的进位产生,P K 为第K 为的进位传播。
且:K K KK K KG A B P A B ==⊕ A K ,B K 为输入加数的第K 位。
将Co 和S 用G,P 重写为: O ii C G PC S P C =+=⊕由于低位的输出进位是高位的输入进位,所以有上面的(11.15)式源程序://this is a carry lookahead of 4bitmodule clad(ina,inb,ci,co,sum);input[3:0] ina,inb;input ci;output co;output[3:0]sum;wire co0,co1,co2,G0,G1,G2,G3,P0,P1,P2,P3;assignG0=ina[0]&inb[0],P0=ina[0]^inb[0],G1=ina[1]&inb[1],P1=ina[1]^inb[1],G2=ina[2]&inb[2],P2=ina[2]^inb[2],G3=ina[3]&inb[3],P3=ina[3]^inb[3],co0=G0|(P0&ci),co1=G1|(P1&co0),co2=G2|(P2&co1),co=G3|(P3&co2),sum[0]=P0^ci,sum[1]=P1^co0,sum[2]=P2^co1,sum[3]=P3^co2;endmodule测试程序:module clad_test;reg[3:0] ina,inb;reg ci;wire co;wire[3:0]sum;clad CI(.ina(ina),.inb(inb),.ci(ci),.co(co),.sum(sum)); initialbeginina=0;inb=0;ci=0;endalways #5 ina=ina+1'b1;always #80 inb=inb+1'b1;always #1280 ci=~ci;endmodule仿真结果:注:该结果为10进制显示练练手:参考《数字集成电路》(周润德第二版)420-421,设计一个16位的超前进位加法器,基本单元使用4位的加法器,结构自选。
超前进位加法器的设计分解沈阳航空航天大学课程设计报告课程设计名称:计算机组成原理课程设计课程设计题目:超前进位加法器的设计院(系):计算机学院专业:计算机科学与技术班级:学号:姓名:指导教师:完成日期:2014年01月10日第2章详细设计方案2.1 顶层方案图的设计与实现顶层方案图主要实现一位全加器的逻辑功能,采用原理图设计输入方式完成,超前进位加法器电路的是实现基于XCV200可编程逻辑芯片。
在完成原理图的功能设计后,经过检测调试,把输入/输出信号通过引脚编号安排到XCV200指定的引脚上去,最终实现芯片的引脚锁定。
2.1.1顶层方案的整体设计顶层图形文件主要由2个四位超前进位加法器构成,总共17位输入,9位输出。
顶层图形文件由Xilinx Foundation F3.1软件编辑得到相应的模块,顶层图形的整体设计如下图2.1所示:图 2.1八位超前进位加法器整体设计图2.1.2元器件选择和引脚锁定(1)元器件的选择由于在设计的过程中,硬件设计环境是基于伟福COP2000型计算机组成原理实验仪和XCV200实验板,故采用的目标芯片为Xilinx XCV200可编程逻辑芯片。
(2)引脚锁定在Xilinx Foundation F3.1上面完成软件的设计之后,把顶层图形文件中的输入/输出信号用引脚编号安排到Xilinx XCV200芯片指定的引脚上去,从而实现芯片的设计电路的引脚锁定,各信号及Xilinx XCV200芯片引脚对应关系如下表2.1所示:表 2.1 信号和芯片引脚对应关2.2 功能模块的设计与实现在八位超前进位加法器和四位超前进位加法器的设计中均是采用Schematic 设计输入方式,而在四位超前进位加法器的设计中是由一列的门电路构成,最后在由2个四位超前进位加法器模块构成8位超前进位加法器。
可以扩展开来,16位,32位超前进位加法器原理类似8位的设计原理。
2.2.1 八位超前进位加法器的设计与实现(1)设计描述根据上面在1.1中讲述的四位超前进位加法器的设计原理那样,四位超前进位加法器的实现是建立在进位C1,C2,C3,C4的基础之上的。
16位超前进位加法器设计目录摘要 (1)1需求分析1.1加法器的发展........................................................................ 错误!未定义书签。
1.2几种串行加法器性能比较 (3)1.2.1串行进位加法器 (3)1.2.1超前进位加法器 (3)2主要内容 (4)2.1设计原理 (6)2.2设计思路 (4)3 设计思想 (5)4 实现方法 (6)4.1顶层方案图的设计与实现 (6).4.1.1顶层方案的整体设计 (6)4.1.2元器件选择和引脚锁定 (7)4.2功能模块的设计与实现 (8)4.2.1设计描述 (8)4.2.2创建RTL代码并得到电路图....................................................... .94.3功能仿真 (11)4.4编程与下载 (12)4.5硬件仿真结果 (12)5小结 (13)参考文献 (13)附录 (14)摘要:加法运算是最重要最基本的运算,所有的其他基本算术运算乘除等都最终可以用加法运算来表示在不同的场合对加法器的要求不同,要的要求速度快有的要求面积小超前进位加法器相比于串行进位加法器是一种快速加法运算器,根据用户的要求追求速度与面积的平衡。
关键词:超前进位加法器串行进位加法器速度面积1需求分析1.1 加法器的发展加法运算是最基本的运算,所有其他基本算术运算都是以加法运算为基础。
但因为加法运算存在进位问题,使得某一位计算结果的得出和所有低于他的位相关,因此,为了减少进位传输所耗的时间提高计算速度人们设计了多种类型的加法器。
如跳跃进位加法器,进位选择加法器,超前进位加法器等他们都是利用各位之间的状态来预先产生高位进位信号从而减少进位从低位到高位的传递时间1.2 几种加法器的性能比较1.2.1串行进位加法器串行进位加法器的每一位加和值都依赖于上一位进位信号,即进位信号是串行的经过加法器的每一位。
8位超前进位加法器设计说明书超前进位加法器就是使各位的进位直接由加数和被加数来决定,而不需要依赖低位进位。
即有如下逻辑表达式:1)(-++=i i i i i i C B A B A C当第i 位被加数A i 和加数B i 均为1时,有1=i i B A ,不论低位运算结果如何本位必然有进位输出(1=i C ),所以定义i i i B A G =为进位产生函数。
当A i 和B i 中只有一个为1时,有0=i i B A ,1=+i i B A ,使得1-=i i C C ,所以定义i i i B A P +=为进位传递函数。
将P i 和G i 代入全加器的“和”及“进位”表达式有:1-⊕⊕=i i i i C B A Y从而构成超前进位加法器。
VHDL 示例程序如下:(本程序在MAXPLUSII V9.6上编译通过)--*****8位超前进位加法器*****LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE. STD_LOGIC _ARITH.ALL;USE IEEE. STD_LOGIC _UNSIGNED.ALL;ENTITY ADDER8BIT ISPORT(A, B: IN UNSIGNED(7 downto 0);CI,clk: IN STD_LOGIC;Y_OUT: OUT STD_LOGIC_VECTOR(7 downto 0);CO_OUT: OUT STD_LOGIC);END ADDER8BIT;ARCHITECTURE doing OF ADDER8BIT ISSIGNAL CO,Y: STD_LOGIC_VECTOR(7 downto 0);BEGINY(0)<=A(0) xor B(0) xor CI;CO(0)<=(A(0) and B(0)) or (B(0) and CI) or (A(0) and CI);GEN:for i in 1 to 7 GENERATEY(i)<=A(i) xor B(i) xor CO(i-1); --1-⊕⊕=i i i i C B A YCO(i)<=(CO(i-1) and A(i)) or (CO(i-1) and B(i)) or (A(i) and B(i)); -- 1)(-++=i i i i i i C B A B A Cend GENERATE;process(clk)beginif clk'event and clk='1' thenY_OUT<=Y(7) & Y(6) & Y(5) & Y(4) & Y(3) & Y(2) & Y(1) & Y(0);CO_OUT<=CO(7);end if;end process;END doing;附:仿真时序波形。
沈阳航空航天大学课程设计报告课程设计名称:计算机组成原理课程设计课程设计题目:超前进位加法器的设计院(系):计算机学院专业:班级:学号:姓名:指导教师:完成日期:沈阳航空航天大学课程设计报告目录第1章总体设计方案 (1)1.1设计原理 (1)1.2设计思路 (2)1.3设计环境 (3)第2章详细设计方案 (4)2.1顶层方案图的设计与实现 (4)2.1.1创建顶层图形设计文件 (4)2.1.2器件的选择与引脚锁定 (5)2.1.3编译、综合、适配 (7)2.2功能模块的设计与实现 (7)2.2四位超前进位加法器模块的设计与实现 (7)2.3仿真调试 (9)第3章编程下载与硬件测试 (11)3.1编程下载 (11)3.2硬件测试及结果分析 (11)参考文献 (13)附录(程序清单或电路原理图) (14)第1章总体设计方案1.1设计原理八位超前进位加法器,可以由2个四位超前进位加法器构成。
由第一个四位超前进位加法器的进位输出作为第二个超前进位加法器的进位输入即可实现八位超前进位加法器的设计。
超前进位产生电路是根据各位进位的形成条件来实现的。
只要满足下述条件,就可形成进位C1、C2、C3、C4。
所以:第一位的进位C1=X1*Y1+(X1+Y1)*C0第二位的进位C2=X2*Y2+(X2+Y2)*X1*Y1+(X2+Y2)(X1+Y1)C0第三位的进位C3=X3*Y3+(X3+Y3)X2*Y2+(X3+Y3)*(X2+Y2)*X1*Y1+(X3+Y3)(X2+Y2)(X1+Y1)*C0第四位的进位C4=X4*Y4+(X4+Y4)*X3*Y3+(X4+Y4)*(X3+Y3) * X2*Y2+(X4+Y4)(X3+Y3)(X2+Y2)*X1*Y1+(X4+Y4)(X3+Y3)(X2+Y2)(X1+Y1)*C0 下面引入进位传递函数Pi和进位产生函数Gi的概念。
它们定义为:Pi=Xi+YiGi=Xi*YiP1的意义是:当X1和Y1中有一个为1时,若有进位输入,则本位向高位传递此进位。
v e r i l o g12位超前进位加法器12位流水线加法器的设计2016311030103 吴昊1.实验目的用verilog实现12位流水线加法器2.实验原理12位加法器是将3个4位加法器串行连接而形成的。
如果每个4位加法器都有100ns的吞吐延迟,那么该结构的最大延迟时间将是300ns。
在同步电路中,这种结构是为了使所有的操作都在同一时钟周期内进行。
本文采用另一种流水线结构可以通过把该处理过程分配到多个时钟周期上,以更高的吞吐速率进行操作。
速度和物理资源的折中保证了这种方法是可行的。
这种流水线结构包含一个数据输入寄存器IR,输出寄存器OR 和之间的传播寄存器PR1和PR2.这种结构对数据进行序列化,因此在一个给定的时钟周期内,进位只能在1/3个数据路径中传播。
输入数据通路接口以同步方式给运算单元提供完整的输入字,但是此时仅仅形成了低4位数据字节的和。
然后将那个“和”与其左面的数据一起存入20位内部寄存器PR1中。
在下一个时钟周期内,形成中4位数据字节的和,并且将其与低4位字节和,这一周期的进位一起存入PR2中。
在第三个时钟周期内,形成高4位数据字节的和,并将低、中4位数据字节的和输出进位一并存入12位输出寄存器OR。
利用这种内部寄存器,该流水线单元可以近似工作在原价发起频率的三倍平频率上。
在最初的延迟周期后,每隔100ns就会在单元的输出端出现一个新的和。
12位加法器流水线结构:3.Verilog代码源代码:module add12(a,b,c_in,c_out,sum,clock);input [11:0] a,b;input c_in,clock;output [11:0] sum;output c_out;reg [24:0] IR;reg [20:0] PR1;reg [16:0] PR2;reg [12:0] OR;wire [3:0] A,C,E;wire B,D,F;assign{c_out,sum}=OR;add4 wh1(A,B,IR[4:1],IR[8:5],IR[0]);add4 wh2(C,D,PR1[8:5],PR1[12:9],PR1[4]); add4 wh3(E,F,PR2[12:9],PR2[16:13],PR2[8]); always@(posedge clock)beginIR[0]<=c_in;IR[4:1]<=a[3:0];IR[8:5]<=b[3:0];IR[12:9]<=a[7:4];IR[16:13]<=b[7:4];IR[20:17]<=a[11:8];IR[24:21]<=b[11:8];PR1[3:0]<=A;PR1[4]<=B;PR1[8:5]<=IR[12:9];PR1[12:9]<=IR[16:13];PR1[16:13]<=IR[20:17];PR1[20:17]<=IR[24:21];PR2[7:4]<=C;PR2[8]<=D;PR2[3:0]<=PR1[3:0];PR2[12:9]<=PR1[16:13];PR2[16:13]<=PR1[20:17];OR[11:8]<=E;OR[12]<=F;OR[7:0]<=PR2[7:0];endEndmodule4位超前进位加法器模块:module add4(sum,c_out,a,b,c_in);output [3:0] sum;output c_out;input [3:0] a;input [3:0] b;input c_in;wire [3:0] g=a&b;wire [3:0] p=a^b;wire c1,c2,c3,c4;assignc1=(p[0]&c_in)|g[0],c2=(p[1]&p[0]&c_in)|(p[1]&g[0])|g[1],c3=g[2]|(p[2]&g[1])|(p[2]&p[1]&g[0])|(p[3]&p[2]&p[1]&p[0]&c_in),c4=g[3]|(p[3]&g[2])|(p[3]&p[2]&g[1])|(p[3]&p[2]&p[1]&g[0])|(p[3]&p[2]&p[1]&p[ 0]&c_in);assignsum[0]=p[0]^c_in,sum[1]=p[1]^c1,sum[2]=p[2]^c2,sum[3]=p[3]^c3;assignc_out=c4;endmodule测试代码:module add12_test;reg [11:0] a,b;reg c_in,clock;wire c_out;wire [11:0] sum;add12 k(a,b,c_in,c_out,sum,clock);initialbeginclock=0;a=12'h123;b=12'h321;c_in=0;#100 a=12'h111;b=12'h222;#100 a=12'h189;b=12'h739;#100 a=12'h458;b=12'hc52;endalwaysbegin#50 clock=~clock;endendmodule4.实验数据仿真图:由仿真图可知,加法器输出结果正确,并在三个时钟周期后,每一个时钟周期输出一个新的和,成功加快了三倍频率。
《计算机组成原理》实验报告
专业:
学号:
学生姓名:
实验日期:
实验二
一、实验名称:超前进位加法器设计
二、实验目的:
1 掌握超前进位加法器的原理及其设计方法。
2 熟悉CPLD 应用设计及EDA 软件的使用。
三、实验设备:
PC 机一台,TD-CMA 实验系统一套,排线若干。
四、实验内容:
1.了解加法器的工作原理,掌握超前进位产生电路的设计方法.
2.正确将电路原理图下载到试验箱中.
3.正确通过实验箱连线实现4位二进制数的相加并得到正确结果
五、实验原理:
加法器是执行二进制加法运算的逻辑部件,也是CPU 运算器的基本逻辑部件(减法可以通过补码相加来实现)。
加法器又分为半加器和全加器(FA),不考虑低位的进位,只考虑两个二进制数相加,得到和以及向高位进位的加法器为半加器,而全加器是在半加器的基础上又考虑了低位过来的进位信号。
表1-2-1 1 位全加器真值表
A、B 为2 个1 位的加数,Ci 为来自低位的进位,S 为和,Co 为向高位的进位,根据表1-2-1所示的真值表,可得到全加器的逻辑表达式为:
S = ABCi + ABCi + ABCi + ABCi
Co = AB+ ACi + BCi
根据逻辑表达式,可得到如图1-2-1 所示的逻辑电路图。
有了 1 位全加器,就可以用它来构造多位加法器,加法器根据电路结构的不同,可以分为串行加法器和并行加法器两种。
串行加法器低位全加器产生的进位要依次串行地向高位
进位,其电路简单,占用资源较少,但是串行加法器每位和以及向高位的进位的产生都依赖于低位的进位,导致完成加法运算的延迟时间较长,效率并不高。
C0 = 0
Ci+1 = AiBi + AiCi + BiCi = AiBi + (Ai + Bi)Ci
设
gi = AiBi
pi = Ai + Bi
则有:
Ci+1 = gi + piCi
= gi + pi(gi-1 + pi-1Ci-1)
= gi + pi(gi-1 + pi-1(gi-2 + pi-2Ci-2))
…
= gi + pi (gi-1 + pi-1(gi-2 + pi-2(…(g0 + p0C0)…)))
= gi + pigi-1 + pipi-1gi-2 + … + pipi-1…p1g0 + pipi-1…p1p0C0
由于gi、pi 只和Ai、Bi 有关,这样Ci+1 就只和Ai、Ai-1、…、A0,Bi、Bi-1、…、B0 及C0
有关。
所以各位的进位Ci、Ci-1、…、C1 就可以并行地产生,这种进位就叫超前进位。
定义
Gi,j = gi + pigi-1 + pipi-1gi-2 + … + pipi-1…pj+1gj
Pi,j = pipi-1…pj+1pj
则有
Gi,i = gi
Pi,i = pi
Gi,j = Gi,k + Pi,kGk-1,j
Pi,j = Pi,kPk-1,j
Ci+1 = Gi,j + Pi,jCj
从而可以得到表1-2-2 所示的算法,该算法为超前进位算法的扩展算法,这里实现的是一个8 位加法器的算法。
表1-2-2 超前进位扩展算法
六、实验步骤:
(1) 根据上述加法器的逻辑原理使用 Quartus II 软件编辑相应的电路原理图并进行编译,其在EPM1270 芯片中对应的引脚如图1-2-7 所示,框外文字表示I/O 号,框内文字表示该引脚的含义(本实验例程见‘安装路径\Cpld\Adder\’工程)。
(2) 关闭实验系统电源,按图1-2-8 连接实验电路。
(3) 打开实验系统电源,将生成的POF 文件下载到EPM1270 中去。
(4) 以CON 单元中的SD17…SD10 八个二进制开关为被加数A,SD07…SD00 八个二进制开关为加数B,K7 用来模拟来自低位的进位信号,相加的结果在CPLD 单元的L7…L0 八个LED灯显示,相加后向高位的进位用CPLD 单元的L8 灯显示。
给A 和B 置不同的数,观察相加的结果。
七、实验结果
1、输入:00100000 00110000
结果:01010000
2、输入: 01100001
结果:0
八、心得体会
实验的过程不仅体现了我们的动手能力,还考察了我们对所学内容的掌握程度,协助我们更加清晰地了解我们所学习的东西。
本次实验让我知道了,相比于其他加法器,超前进位加法器最大优点在于减少了进位等待延迟,大大提高了运算的速度,因此在其他的运算器中得到了广泛应用。
通过这次实验使我懂得了理论与实际相结合是很重要的.从理论中得出结论,才能真正验证理论知识的正确性,从而提高自己的实际动手能力和独立思考的能力。