第4章 可逆调速系统Liu1
- 格式:ppt
- 大小:2.72 MB
- 文档页数:117
第一章可逆调速系统理论1.1可逆运行及可逆电路电动机可逆运行的本质是电磁转矩可逆,所以实现可逆运行的关键是使电动机的电磁转矩改变方向。
由电动机的工作原理可知,直流电动机的电磁转矩T e=K mΦI a转矩方向有磁场方向和电枢电压的极性共同决定。
磁场方向不变,通过改变电枢电压极性实现可逆运行的系统,叫电枢可逆调速系统;电枢电压极性不变,通过改变励磁电流方向,实现可逆运行的系统,叫磁场可逆调速系统。
与此相对应,晶闸管——电动机系统的可逆调速就有两种方式,即电枢反接可逆电路和励磁反接可逆电路。
1.1.1电枢反接可逆线路采用两组晶闸管装置供电的可逆线路如图1-1所示。
图1-1两组晶闸管分别有两套触发器控制,当正组晶闸管装置VF向电动机供电时,提供正电枢电流I d,电动机正转;当反组晶闸管装置VR向电动机供电时提供反向电枢电流—I d,电动机反转。
两组晶闸管装置供电的可逆线路在连接上又有两种形式:反并联和交叉连接,如图1-2所示。
两者的差别在于反并联线路中的两组晶闸管由同一个交流电源供电,且要有四个限制环流的电抗器,而交叉连接线路由两个独立的交流电源供电。
只要两个限制环流的电抗器。
这里所说的两个独立的交流电源可以是两台整流变压器,也可以是一台整流变压器的两个二次绕组。
由两组晶闸管组成的电枢可逆线路,具有切换速度快、控制灵活等优点,在要求频繁、快速正反转的可逆系统中得到广泛应用,是可逆系统的主要型式。
(a)(b)图1-21.1.2励磁反接可逆线路要使直流电动机反转,除了改变电枢电压极性外,改变励磁电流方向也能使直流电动机反转。
因此又有励磁反接可逆线路,如图1-3所示。
这时电动机电枢只要用一组晶闸管装置供电并调速,如图1-3(a)所示,而励磁绕组则由另外的两组晶闸管装置反并联供电,想电枢反接可逆线路一样,可采用反并联或交叉连接中的任意一种方案来改变其励磁电流的方向。
(a)(b)由于励磁功率只占电动机额定功率的1%~5%,显然励磁反接所需的晶闸管容量装置容量要比电枢反接可逆装置小的多,只要在电枢回路中用一组大容量的装置就够了,这对于大容量的调速系统,励磁反接的方案投资较少。
摘要本次课程设计直流电机可逆调速系统利用的是双闭环调速系统,因其具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动系统中得到了广泛的应用。
直流双闭环调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流。
本文对直流双闭环调速系统的设计进行了分析,对直流双闭环调速系统的原理进行了一些说明,介绍了其主电路、检测电路的设计,介绍了电流调节器和转速调节器的设计以及系统中一些参数的计算。
关键词:双闭环,可逆调速,参数计算,调速器。
目录1. 设计概述 01.1 设计意义及要求 01.2 方案分析 01.2.1 可逆调速方案 01.2.2 控制方案的选择 (1)2.系统组成及原理 (3)3.1设计主电路图 (6)3.2系统主电路设计 (7)3.3 保护电路设计 (7)3.3.1 过电压保护设计 (7)3.3.2 过电流保护设计 (8)3.4 转速、电流调节器的设计 (8)3.4.1电流调节器 (9)3.4.2 转速调节器 (9)3.5 检测电路设计 (10)3.5.1 电流检测电路 (10)3.5.2 转速检测电路 (10)3.6 触发电路设计 (11)4. 主要参数计算 (13)4.1 变压器参数计算 (13)4.2 电抗器参数计算 (13)4.3 晶闸管参数 (13)5设计心得 (14)6参考文献 (15)直流电动机可逆调速系统设计1.设计概述1.1设计意义及要求直流电动机具有良好的起、制动性能,宜于在大范围内实现平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
从控制的角度来看,直流拖动控制系统又是交流拖动控制系统的基础,所以应该首先掌握直流拖动控制系统。
本次设计最终的要求是能够是电机工作在电动和制动状态,并且能够对电机进行调速,通过一定的设计,对整个电路的各个器件参数进行一定的计算,由此得到各个器件的性质特性。
1.2 方案分析1.2.1 可逆调速方案使电机能够四象限运行的方法有很多,可以改变直流电机电枢两端电压的方向,可以改变直流电机励磁电流的方向等等,即电枢电压反接法和电枢励磁反接法。
逻辑无环流可逆直流调速系统一、原理图逻辑无环流系统的主电路由二组反并联的三相全控整流桥组成,由于没有环流,两组可控整流桥之间可省去限制环流的均衡电抗器,电枢回路仅串接一个平波电抗器。
控制系统主要由速度调节器ASR,电流调节器ACR,反号器AR,转矩极性鉴别器DPT,零电流检测器DPZ,无环流逻辑控制器DLC,触发器,电流变换器FBC,速度变换器FBS等组成。
其系统原理图如图1-9所示。
正向起动时,给定电压Ug为正电压,无环流逻辑控制器的输出端Ubif为1态,即正桥触发脉冲开通,反桥触发脉冲封锁,主回路正组可控整流桥工作,电机正向运转。
减小给定时,Ug<Ufn,使Ugi反向,整流装置进入本桥逆变状态,而Ubif,Ubir不变,当主回路电流减小并过零后,Ubif,Ubir输出状态转换,Ubif为“1”态,Ubir为“0”,即进入它桥制动状态,使电机降速至设定的转速后再切换成正向运行;当Ug=0时,则电机停转。
反向运行时,Ubir为1态,Ubif为0态,主电路反组可控整流桥工怍。
无环流逻辑控制器的输出取决于电机的运行状态,正向运转,正转制动本桥逆变及反转制动它桥逆变状态,Ubif为0态,Ubir为1态,保证了正桥工作,反桥封锁;反向运转,反转制动本桥逆变,正转制动它桥逆变阶段,则Ubir为1态,Ubir为0态,正桥被封锁,反桥触发工作。
由于逻辑控制器的作用,在逻辑无环流可逆系统中保证了任何情况下两整流桥不会同时触发.一组触发工作时,另一组被封锁,因此系统工作过程中既无直流环流也无脉冲环流。
二、接线图1、按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。
(1)用示波器观察双脉冲观察孔,应有间隔均匀,幅度相同的双脉冲(2)检查相序,用示波器观察“1”,“2”脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。
(3)将控制一组桥触发脉冲通断的六个直键开关弹出,用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V—2V的脉冲。
目录摘要 (2)一.逻辑无环流可逆直流调速系统工作原理 (2)二.无环流逻辑装置的组成 (4)三.无环流逻辑装置的设计 (5)四.逻辑无环流可逆调速控制系统各种运行状态 (10)五.系统参数计算及测定 (13)六、参考文献 (16)摘要:逻辑无环流可逆直流调速系统省去了环流电抗器,没有了附加的环流损耗,节省变压器和晶闸管装置的附加设备容量。
和有环流系统相比,因换流失败造成的事故率大为降低。
关键词:无环流;可逆直流调速系统;逻辑控制器一.逻辑无环流可逆直流调速系统工作原理逻辑无环流可逆直流调速系统主电路如图 1 所示,两组桥在任何时刻只有一组投入工作(另一组关断),所以在两组桥之间就不会存在环流。
但当两组桥之间需要切换时,不能简单的把原来工作着的一组桥的触发脉冲立即封锁,而同时把原来封锁着的一组桥立即开通,因为已经导通晶闸管并不能在触发脉冲取消的一瞬间立即被关断,必须待晶闸管承受反压时才能关断。
如果对两组桥的触发脉冲的封锁和开放式同时进行,原先导通的那组桥不能立即关断,而原先封锁着的那组桥已经开通,出现两组桥同时导通的情况,因没有环流电抗器,将会产生很大的短路电流,把晶闸管烧毁。
为此首先应是已导通的的晶闸管断流,要妥当处理主回路中的电感储存的一部分能量回馈给电网,其余部分消耗在电机上,直到储存的能量释放完,主回路电流变为零,使原晶闸管恢复阻断能力,随后再开通原来封锁着的那组桥的晶闸管,使其触发导通。
图2 逻辑无环流可逆调速系统原理图ASR ——速度调节器ACR1﹑ACR2——正﹑反组电流调节器 GTF 、GTR ——正反组整流装置 VF 、VR ——正反组整流桥 DLC ——无环流逻辑控制器 HX ——推 装置TA ——交流互感器 TG ——测速发电机 M ——工作台电动机 LB ——电流变换器 AR ——反号器 GL ——过流保护环节这种逻辑无环流系统有一个转速调节器ASR ,一个反号器AR ,采用双电流调节器1ACR 和2ACR ,双触发装置GTF 和GTR 结构。
1、不属于电力拖动自动控制系统构成单元的是()。
CA、电动机B、功率放大与变换装置C、柴油机D、传感器2、电动机转速与转角控制的根本是()控制,但同时也需要做好()控制。
BA、磁链、转矩B、转矩、磁链C、手动、自动D、自动、手动3、直流电力拖动控制系统和交流电力拖动控制系统比较,()流电力拖动控制系统的数学模型简单;()流电力拖动控制系统调节器的设计简单。
CA、直、交B、交、直C、直、直D、交、交4、船舶电力推进是通过()拖动螺旋桨的系统。
DA、柴油机B、汽轮机C、燃气轮机D、电动机5、()电动机的转速与电源频率保持严格对应关系,机械特性硬。
CA、直流B、异步C、同步D、永磁6、典型机械负载中,起重机提升重物属于()负载。
BA、反抗性恒转矩B、位能性恒转矩负载C、通风机类D、恒功率负载7、典型机械负载中,船舶螺旋桨属于()负载。
CA、反抗性恒转矩B、位能性恒转矩负载C、通风机类D、恒功率负载8、根据转速-转矩四象限,电动机在第四象限为()状态。
DA、正向电动B、反向电动C、正向制动D、反向制动9、转速-转矩四象限中的第三象限,电动机电磁转矩与转速方向相(),为()性质。
AA、同、驱动B、反、驱动C、同、制动D、反、制动10、根据运动方程式,转速变化是因为()。
DA、电磁转矩为驱动转矩B、电磁转矩为制动转矩C、电磁转矩等于阻转矩D、电磁转矩不等于阻转矩11、吊车电动机提升下放重物时,电动机所承担的机械负载属于典型机械负载中的()负载。
BA、反抗性恒转矩B、位能性恒转矩C、通风机类D、恒功率负载第二章转速反馈控制的直流调速系统转速反馈控制的直流调速系统测验1、直流调速系统要求一定范围内无级平滑调速,以()调速方式为最好。
BA、电枢回路串电阻B、降低电枢电压C、降低励磁电压D、励磁回路串电阻2、V-M直流调速系统中采用了平波电抗器来抑制电流脉动,改善()问题。
AA、轻载时电流断续B、低速时的高次谐波C、堵转时电流过大D、功率因数3、在V-M系统主电路的等效电路图中,不属于整流装置电阻的是()。
4.4 可逆直流调速系统由于晶闸管的单向导电性,只用一组晶闸管变流器对电动机供电的自动调速系统只能获得单方向的运行,因此仅适用于不要求改变电动机的转向,或不要求频繁改变电动机的转向,或对停车的快速性无特殊要求的生产机械,这类系统称不可逆调速系统,如造纸机、车床、镗床等。
但要求能快速起动、制动以及正反转以缩短过渡过程时间的生产机械,例如,轧机的主传动和辅助传动,龙门刨床、起重机、提升机等,其拖动系统就必须是可逆系统。
采用可逆系统,还能在制动时将拖动系统的机械能转换成电能回送电网,特别对大功率的拖动系统,其节能的效果是显著的。
4.4.1 V-M 系统的可逆线路怎样实现电机的可逆拖动呢?由电动机工作原理可知,要求改变直流电动机的转向,或者要实现电动机的制动,就都必须改变电机电磁转矩的方向。
由电动机的转矩公式a T I C T =可知,改变电磁转矩的方向有两种方法,一是改变电枢电流的方向,即改变电枢供电电压的方向,形成电枢可逆自动调速系统;另一种是改变电动机励磁电流的方向,形成磁场可逆自动调速系统。
(a)RCFT R(b )图 4-33 电枢可逆电路接线方式(a)接触器切换电枢可逆线路 (b)由晶闸管开关切换的电枢可逆电路B FC1.电枢可逆线路由晶闸管整流器构成的电枢可逆供电装置和可逆激磁电流供电装置都因晶闸管的单向导电性而变得复杂,并带来一些特殊的技术问题。
要实现电枢可逆,当只由一组整流装置供电时,可用接触器或晶闸管开关来来切换电枢的连接,如图4-33(a )和(b )所示。
在图4-33(a)中,采用正、反向接触器来切换电动机电枢电流的方向,当正向接触器C F 闭合时,电动机电枢得到A(+),B(-)的电压U d ,电动机正转;当C F 打开,而反向接触器C R 闭合时,电动机电枢得到A(-),B(+)的电压U d ,电动机反转。
接触器的切换要在主回路电流降到零时才能进行,且要防止在切换后的电流冲击,这要由控制线路的逻辑关系来保证。
第1章 绪论1、电机的分类?①发电机(其他能→电能)直流发电机和交流发电机②电动机(电能→其他能)直流电动机:有换向器直流电动机(串励、并励、复励、他励)和无换向器直流电动机(又属于一种特殊的同步电动机)交流电动机:同步电动机异步电动机:鼠笼式、绕线式、伺服电机控制电机:旋转变压器自整角机力矩电机测速电机步进电机(反应式、永磁式、混合式)2、根据直流电机转速方程n — 转速(r/min ); U — 电枢电压(V ) I — 电枢电流(A ); R — 电枢回路总电阻( Ω ); Φ — 励磁磁通(Wb );Ke — 由电机结构决定的电动势常数。
三种方法调节电动机的转速:(1)调节电枢供电电压 U ; (2)减弱励磁磁通 Φ;(3)改变电枢回路电阻 R 。
调压调速:调节电压供电电压进行调速,适应于:U ≤Unom ,基频以下,在一定范围内无级平滑调速。
弱磁调速:无级,适用于Φ≤Φnom ,一般只能配合调压调速方案,在基频以上(即电动机额定转速以上)作小范围的升速。
变电阻调速:有级调速。
问题3:请比较直流调速系统、交流调速系统的优缺点,并说明今后电力传动系统的发展的趋势。
* 直流电机调速系统优点:调速范围广,易于实现平滑调速,起动、制动性能好,过载转矩大,可靠性高,动态性能良好。
缺点:有机械整流器和电刷,噪声大,维护困难;换向产生火花,使用环境受限;结构复杂,容量、转速、电压受限。
* 交流电机调速系统(正好与直流电机调速系统相反)优点:异步电动机结构简单、坚固耐用、维护方便、造价低廉,使用环境广,运行可靠,便于制造大容量、高转速、高电压电机。
大量被用来拖动转速基本不变的生产机械。
缺点:调速性能比直流电机差。
* 发展趋势:用直流调速方式控制交流调速系统,达到与直流调速系统相媲美的调速性能;或采用同步电机调速系统.第2章 闭环控制的直流调速系统1、常用的可控直流电源有以下三种⏹ 旋转变流机组——用交流电动机和直流发电机组成机组,以获得可调的直流电压。
第1章 绪论1. 什么是运动控制? 电力传动又称电力拖动,是以电动机作为原动机驱动生产机械的系统的总称。
运动控制系统是将电能转变为机械能的装置,用以实现生产机械按人们期望的要求运行,以满足生产工艺及其它应用的要求。
2. 运动控制系统的组成:现代运动控制技术是以电动机为控制对象,以计算机和其它电子装置为控制手段,以电力电子装置为弱电控制强电的纽带,以自动控制理论和信息处理理论为理论基础,以计算机数字仿真或计算机辅助设计为研究和开发的工具。
3. 运动控制系统的基本运动方程式:第2章 转速反馈控制的直流调速系统1. 晶闸管-电动机( V-M )系统的组成:纯滞后环节,一阶惯性环节。
2. V-M 系统的主要问题:由于电流波形的脉动,可能出现电流连续和断续两种情况。
3. 稳态性能指标:调速范围D 和静差率s 。
D =n N s∆n N (1−s) ,额定速降 ∆n N ,D =n maxn min ,s =∆n N n 04. 闭环控制系统的动态特性;静态特性、结构图?5. 反馈控制规律和闭环调速系统的几个实际问题,积分控制规律和比例积分控制规律。
积分控制规律:⎰∆=t0n c d 1t U U τ 比例积分控制规律:稳态精度高,动态响应快6. 有静差、无静差的主要区别:比例调节器的输出只取决于输入偏差量的现状;而积分调节器的输出则包含了输入偏差量的全部历史。
比例积分放大器的结构:PI 调节器7. 数字测速方法:M 法测速、T 法测速、M/T 法测速。
8. 电流截止负反馈的原理:采用某种方法,当电流大到一定程度时才接入电流负反馈以限制电流,而电流正常时仅有转速负反馈起作用控制转速。
电流截止负反馈的实现方法:引入比较电压,构成电流截止负反馈环节9. 脉宽调制:利用电力电子开关的导通与关断,将直流电压变成连续可变的电压,并通过控制脉冲宽度或周期达到变压变频的目的。
10. 直流蓄电池供电的电流可反向的两象限直流斩波调速系统,已知:电源电压Us=300V,斩波器占空比为30%,电动机反电动势E=100V,在电机侧看,回路的总电阻R=1Ω。
第三章作业思考题3-1 在恒流起动过程中,电枢电流能否达到最大值 I dm ?为什么?答:不能达到最大值,因为在恒流升速阶段,电流闭环调节的扰动是电动机的反电动势,它正是一个线性渐增的斜坡扰动量,所以系统做不到无静差,而是I d 略低于I dm 。
3-2 由于机械原因,造成转轴堵死,分析双闭环直流调速系统的工作状态。
答:转轴堵死,则n=0,U n =α×n =0,∆U n =U n ∗−U n =U n ∗比较大,导致U i ∗=∆U n ×K ASE 比较大,U C =(U i ∗−U i )×K ACR 也比较大,然后输出电压U d0=U C ×K S 较大,最终可能导致电机烧坏。
3-3 双闭环直流调速系统中,给定电压 Un*不变,增加转速负反馈系数 α,系统稳定后转速反馈电压 Un 和实际转速 n 是增加、减小还是不变?答:反馈系数增加使得U n =α×n 增大,∆U n =U n ∗−U n 减小,U i ∗=∆U n ×K ASE 减小,U C =(U i ∗−U i )×K ACR 减小,输出电压U d0=U C ×K S 减小,转速n 减小,然后U n =α×n 会有所减小,但是由于α增大了,总体U n 还是增大的。
3-4 双闭环直流调速系统调试时,遇到下列情况会出现什么现象? (1) 电流反馈极性接反。
(2)转速极性接反。
答:(1)转速一直上升,ASR 不会饱和,转速调节有静差。
(2)转速上升时,电流不能维持恒值,有静差。
3-5 某双闭环调速系统,ASR 、 均采用 PI 调节器,ACR 调试中怎样才能做到 Uim*=6V 时,Idm=20A ;如欲使 Un*=10V 时,n=1000rpm ,应调什么参数?答:前者应调节β=U im ∗Idm=0.3,后者应调节α=U n∗n=0.01。