工厂制冷系统集中控制方案
- 格式:doc
- 大小:215.00 KB
- 文档页数:8
电厂集中制冷及集中供热操作规程一、夏季制冷:(一)制冷系统投用1、检查确认机房各处空气处理机组的冷冻水放水门以及集控楼屋顶冷冻水系统放水门关闭,检查确认各处空气处理机组冷冻水进出水门开启。
2、在加热站开启加热站控制柜,将“运行”打到手动位置,确认补水泵阀门在开启状态,在控制柜上手动打开补水泵向制冷站制冷系统补水。
3、在制冷站内开启定压膨胀补水机组(待机),稳定系统的压力(平衡压力在0.4MPa左右)。
4、开启相应运行机组出口的冷冻水蝶阀,启动相应的冷冻水循环泵,在屋顶管道排气口处进行排气,待压力稳定后,然后启动相应冷水机组并设置出水温度。
5、根据房间温度运行需要依次打开各区域空气处理机组送、回风机(共29台,有两台机组的为一用一备,可根据需要每半月切换一次):(1)集控楼制冷站内集控室空气处理机组(2台)(2)集控楼制冷站内电子设备间空气处理机组(2台)(3)集控楼制冷站内炉用400V开关室空气处理机组(2台)(4)集控楼23.5米层会议室空气处理机组(2台)(5)集控楼23.5米层暖通控制间空气处理机组(1台)(6)集控楼17米层走廊空气处理机组(4台)(7)集控楼0米#1、2号蓄电池室空气处理机组(2台)(8)汽机房17米层#1、2号机组励磁小室空气处理机组室(4台)(9)汽机房11.9米层1、2号机组6KV及PC\MCC小室空气处理机组(6台)(10)汽机房8.6米层1、2号机疏水泵变频室空气处理机组(2台)(11)汽机房0米层精处理小室空气处理机组(1台)(12)汽机房0米层仪表架间空气处理机组(1台)6、检查继电器楼、脱硫综合楼、除灰除渣电控楼屋顶空调机组控制柜电源是否正常,空调机组外观是否完好,人孔门是否关闭。
确保一切正常后,确认就地控制柜上机组处于制冷状态,点击“启动”按钮,将机组投入到自动运行状态,机组进入制冷状态。
7、化水楼、脱硫综合楼变冷媒多联空调机组投运时,需在开关柜上送电后,在每个房间的空调室内机可通过遥控器进行启停。
集中供冷工程节能措施方案一、建筑节能措施1.合理设计建筑结构和立面建筑的结构和立面设计可以影响建筑内部的热量传递和建筑外部的日照情况,因此应该合理设计建筑结构和立面以实现良好的隔热性能和采光性能,降低建筑的能耗。
2.有效利用 passivhaus 技术利用 passivhaus 技术,即被动房技术,通过合理设计建筑结构、隔热材料和节能窗等手段,在不使用机械设备的情况下最大限度地减少建筑室内外的热量交换,实现室内舒适度与节能的平衡。
3.充分利用太阳能通过合理的设计和配置太阳能设备,充分利用太阳能进行供热、供电等,减少建筑的能耗。
二、制冷系统节能措施1.采用高效节能冷却设备在制冷系统中使用高效节能的冷却设备,如高效节能冷却塔、高效节能制冷剂等,可以降低能耗。
2.优化制冷系统配置通过对制冷系统的优化配置,合理选型设备、减少系统的冗余、提高系统的运行效率,进而减少能耗。
3.使用新型制冷技术利用新型制冷技术,如变频调压、气冷式制冷等,提高制冷系统的能效比,减少能耗。
三、运行管理节能措施1.建立完善的运行管理制度建立完善的运行管理制度,严格执行运行管理规程,提高设备运行的效率,减少能耗。
2.定期进行制冷设备检修维护定期进行制冷设备的检修维护,及时发现和排除设备故障,保持设备的正常运行,减少能耗。
3.合理控制制冷设备运行参数合理控制制冷设备的运行参数,如温度、湿度等,提高设备的运行效率,减少能耗。
四、系统优化节能措施1.进行供冷系统能效评估通过能效评估,定期监测系统的运行状况,找出系统的不足之处,及时进行优化,提高系统能效。
2.优化供冷系统设计通过优化供冷系统的设计方案,制定更合理的系统方案和工艺流程,提高系统的能效。
3.实施智能节能管理系统利用智能节能管理系统,对供冷系统进行实时监测和控制,提高供冷系统的运行效率,减少能耗。
以上仅是供冷工程节能措施的一部分,实际实施还需要根据具体情况进行综合考虑和分析。
通过实施上述节能措施,可以有效减少供冷系统的能耗,提高能源利用效率,降低环境污染,为可持续发展做出积极贡献。
制冷机房群控系统施工方案制冷机房群控系统施工方案旨在介绍制冷机房群控系统施工的背景和意义。
制冷机房是一种重要的设施,广泛应用于各种行业和领域,例如工厂、医院、实验室等。
制冷机房的运行对于维持设备和环境的稳定至关重要。
传统的制冷机房通常采用人工操作的方式进行控制和管理,但这种方式存在一定的局限性和不足。
为了解决这些问题,制冷机房群控系统应运而生。
制冷机房群控系统是通过将各个制冷机房的设备和仪表连接起来,实现集中控制和管理的一种技术方案。
通过该系统,可以对制冷机房的温度、湿度、压力等参数进行实时监测和调控,提高运行效率和节能效果。
制冷机房群控系统施工方案的实施具有重要意义。
首先,该方案可以提高制冷机房的运行效率和可靠性,减少由于人为操作而引起的错误和故障。
其次,该方案可以实现对制冷机房的集中监控和管理,提高操作人员的工作效率和便捷性。
最后,该方案可以为制冷机房的运行和维护提供数据支持和决策依据,提升设备的使用寿命和降低维护成本。
通过制冷机房群控系统施工方案的实施,可以实现制冷机房的智能化和自动化,提高整个系统的性能和可持续发展能力。
二、施工目标本文档旨在说明制冷机房群控系统施工的具体目标。
制冷机房群控系统施工方案三、施工方案本文档描述制冷机房群控系统施工的具体方案和步骤。
方案概述制冷机房群控系统的施工旨在实现对多个制冷机房的远程集中控制和监测。
通过该系统,可以实时监测机房环境温度、湿度等参数,并对制冷设备进行远程控制。
施工方案将涉及系统硬件的安装、软件的配置以及网络的搭建。
施工步骤步骤一:确定系统需求和功能与业主和相关部门进行沟通,明确系统的具体功能和需求。
确定制冷机房的数量以及每个机房所需的监测和控制功能。
步骤二:选购和安装硬件设备根据系统需求,选购适当的传感器、控制器等硬件设备。
安装硬件设备并进行连接测试和调试。
步骤三:配置系统软件根据机房数量和功能需求,配置系统软件,并进行相应的参数设置。
确保软件与硬件设备的兼容性和稳定性。
厂房空调集中控制方案
厂房空调集中控制方案
随着工业化的不断发展,厂房的空调系统也变得越来越重要。
为了提高生产效率和员工的舒适度,采取集中控制方案是一个不错的选择。
首先,集中控制方案可以统一管理厂房的空调系统。
通过集中控制器,可以实时监测和调整各个空调设备的状态和温度。
这样可以避免因为空调设备操作不当或故障造成的温度不均衡或断电等问题,提高工作环境的稳定性和可靠性。
其次,集中控制方案可以节约能源和降低成本。
通过集中控制器的智能调度,可以根据实际需求合理地调整厂房各个区域的温度和湿度,避免因为空调设备运行时间过长或过短而造成的能源浪费。
此外,集中控制方案还可以将相关数据进行分析,提供节能建议,进一步优化能源使用和降低运营成本。
再次,集中控制方案可以提高空调系统的维护效率。
通过集中控制器,工作人员可以远程监测空调设备的运行状态和维护信息,及时发现和解决问题。
此外,集中控制方案还可以进行定期巡检和维护,提前发现潜在问题,减少设备故障和停机时间,提高设备的利用率和寿命。
最后,集中控制方案还可以提供更加智能化的功能。
通过集中控制器的连接和软件控制,可以实现智能调度、智能预警、智能分析等功能,提供更加便捷和高效的管理方式。
比如,可以
根据厂房的工作时间和人员流量情况自动调整温度,提供最佳的舒适度和节能效果;可以通过数据分析,提供员工工作效率和健康状况的反馈,为企业提供更加科学的管理参考。
综上所述,厂房空调集中控制方案可以提高空调系统的可靠性和稳定性,节约能源和降低成本,提高维护效率和设备寿命,提供更加智能化的管理方式。
因此,采用集中控制方案是一个值得推广的措施。
冷机群控控制方案背景:随着现代工业和商业活动的发展,人们对冷却设备的需求日益增长。
冷机作为主要的冷却设备之一,被广泛应用于建筑、工厂、医院、超市等场所,带来了许多便利。
然而,随着冷机数量的增加,如何有效地管理和控制这些冷机成为了重要的问题。
为了提高冷机的运行效率和降低能耗,冷机群控技术应运而生。
一、冷机群控系统的基本原理冷机群控系统是一种将多台冷机集中控制的技术方案。
它通过集中控制器实时监测和调度冷机的运行状态,以达到统一管理、优化调度、提高能效的目的。
冷机群控系统的基本组成包括以下几个方面:1.集中控制器集中控制器是冷机群控系统的核心设备,负责实时监测和调度冷机的运行状态。
它可以通过与冷机的通信接口实现对冷机的远程监控和控制。
2.数据采集器数据采集器负责采集冷机运行相关的数据,并将数据传输给集中控制器。
数据采集器可以直接连接到冷机,也可以通过无线传输的方式实现与集中控制器的通信。
3.远程监控终端远程监控终端允许用户通过电脑、手机等设备实时监控冷机群控系统的运行状态。
用户可以在远程监控终端上查看冷机的运行数据、历史记录、报警信息等。
4.云平台云平台是冷机群控系统的数据存储和管理中心。
它可以存储和管理冷机运行数据、历史记录、报警信息等,并提供数据分析和报表生成功能。
二、冷机群控系统的优势冷机群控系统相比传统的单独控制方式具有以下优势:1.能耗优化通过冷机群控系统,可以对冷机进行统一调度和优化控制,根据场所的需求实时调整冷机的运行状态,从而达到最佳能效的目的。
这将显著降低能耗并降低运营成本。
2.故障预警冷机群控系统可以实时监测冷机的运行状态,并根据设定的阈值进行故障预警。
一旦冷机发生故障或运行异常,系统将立即发送报警信息给相关人员,以便及时处理并减少停机时间。
3.远程监控冷机群控系统具有远程监控功能,可以通过电脑、手机等设备随时随地监控冷机的运行状态,提供实时数据和报警信息,方便管理人员进行决策和调度。
冷水机组群控系统方案一、概述冷水机组是工业和商业建筑中最常见的冷却设备之一,其通过制冷剂循环、换热和输送等工作方式将室内的温度降低至所需温度,从而满足室内制冷需求。
随着可编程智能化技术的发展,冷水机组的控制方式也发生了重大变化,群控系统成为冷水机组控制的一种先进控制方式,具有高效、可靠、节能等优点。
本文将为大家介绍一种适用于冷水机组群控的系统方案和技术特点。
该方案可以实现对多个冷水机组集中控制和监测,提高控制精度和运行效率,节能降耗,为用户提供更好的冷却服务。
二、方案设计1、系统结构冷水机组群控系统由服务器、控制器、通讯网和各个设备组成,采用B/S结构设计,主要包括以下模块:(1)数据管理模块:负责冷水机组的数据存储、管理和分析。
(2)协议转换模块:负责将冷水机组的各种通讯协议转换为标准协议。
(3)控制模块:负责对冷水机组的运行状态进行监测、控制和调节。
(4)报警模块:负责对冷水机组异常信息的监测和处理。
(5)用户界面模块:负责向用户提供图形界面,以便用户可以方便地设置和监测冷水机组的运行状态。
2、技术特点(1)系统高度集成化,可以实现对多台冷水机组的集中控制和管理,便于用户查看和操作。
(2)支持多种通讯协议,如Modbus、LonWorks、BACnet等,并能将其转换为标准协议,提高系统兼容性和通用性。
(3)系统具有严格的安全性和可靠性,能够对用户权限进行控制和管理,防止系统被未经授权的用户篡改和操作。
(4)系统能够实时监测冷水机组的运行状态和能耗情况,根据实际情况自动调节设备运行参数,降低设备能耗。
(5)系统提供灵活的设置界面、运行监测界面及历史数据查询界面,可方便的定制化用户需求,提供更好的操作交互体验。
(6)系统对控制器进行集成管理,可以对控制器进行简单的配置和维护,并对各类异常情况及时报警提示。
三、总结该冷水机组群控系统方案为广大客户提供了一种高效、可靠、节能的控制方式,可以大大提高多个冷水机组的控制精度和运行效率,减少对设备的损耗,延长设备使用寿命,并简化了操作和维护流程。
工厂空调集中控制工程方案项目概述本工程方案旨在提供一个集中控制工厂内各层空调的解决方案。
通过集中控制,可以实现对整个工厂空调系统的智能化管理,提高空调系统的节能效果及运行效率,降低环境噪音和管理成本,让工艺车间在恒定温湿度下稳定生产。
方案设计空调型号根据工厂房屋面积大小及需求制冷/制热量,选用适当的空调型号。
建议选用通过能效标准认证的环保新风空调,能够有效提高空调系统效率,降低能耗成本。
集中控制系统选用智能化的集中控制系统,将各层空调系统集成到同一系统中,实现对整个工厂内空调系统进行实时监控和管理。
集中控制系统应具备以下功能:•温度、湿度、空气质量等环境数据的实时监测和记录;•空调系统开/关、制冷/制热、风速等参数的远程控制;•故障报警、定期保养提醒等功能;•数据分析和报表生成功能,方便管理者及时了解系统运行情况。
安装位置空调室内机应安装于建筑物内部,室外机应安装在适当的位置上,远离火源、明火等危险设备,同时避免与杂物、障碍物的干扰。
集中控制系统设备应安装于工厂办公室/管理中心,确保设备的稳定运行和便捷管理。
配管敷设空调配管应优化设计,以便提高系统效率、方便维护和清洁。
空调配管需避免长距离转弯,尽量减少水平或垂直高度差,避免水平管道低于室内机高度。
维护保养建议选用经验丰富、专业化的环境管理和维护团队,为整个系统提供全面的维护保养服务,确保系统能够稳定高效运行。
系统管理和维护应严格按照相关规定和要求进行,做到定期巡查、保养、清洁和更换空滤等工作。
项目收益•提高生产效率:工艺车间恒定温湿度下可提高生产效率5%-10%;•节能减排:智能化控制可降低能耗成本20%-30%以上;•管理便捷:集中控制系统可实现对整个工厂空调系统的智能化管理,提高空调系统运行效率,降低环境噪音和管理成本;•空调质量优化:选用经验丰富、专业化的环境管理和维护团队,为整个系统提供全面的维护保养服务,确保系统能够稳定高效运行。
总结本工程方案设计借鉴了国内外智能化集中控制系统的优秀经验,针对工厂室内空气品质、节能、管理等问题提出了一套可行的技术解决方案。
冷机群控方案随着科技的不断发展和进步,冷机群控方案在工业和商业领域中得到了广泛应用。
冷机群控方案基于先进的控制系统和网络技术,能够实现对多台冷机的集中控制和调度,有效提高冷却系统的性能和运行效率。
本文将介绍冷机群控方案的运作原理、优势和应用场景。
一、冷机群控方案的原理冷机群控方案采用了现代化的监控和控制技术,通过与冷机系统的传感器和执行器连接,实现对冷机的智能控制。
具体而言,冷机群控方案主要包括以下几个方面:1. 传感器网络:通过在冷机系统中安装传感器,实时监测冷却水温度、冷却水流量、冷机负荷等参数,并将数据传输给控制中心。
2. 控制中心:冷机群控方案的核心是控制中心,它采集来自传感器的数据,并根据预设的控制策略进行冷机的控制和调度。
控制中心还可以实现对冷机系统的参数设置、故障诊断和报警处理等功能。
3. 通信网络:冷机群控方案通过通信网络将传感器和控制中心连接起来,实现数据的传输和控制指令的下发。
通信网络可以采用有线或无线的方式,如以太网、Modbus、CAN等。
4. 控制策略:冷机群控方案基于先进的控制算法,结合实时的冷机工作条件和运行要求,自动调节冷机的工作模式,以满足系统的冷却需求,并尽量降低能耗。
二、冷机群控方案的优势冷机群控方案相比传统的单机控制方式,具有以下几个显著的优势:1. 高效节能:通过对多台冷机进行集中控制和调度,可以实现冷机的最优运行,避免冷机的空转和重复操作,从而提高冷却系统的能效。
2. 系统可靠性提高:冷机群控方案具备故障诊断和报警功能,能够及时发现和处理冷机系统中的故障,保证系统的正常运行,减少故障停机时间。
3. 远程监控和管理:控制中心可以通过互联网远程监控和管理冷机系统,实时获取冷机运行数据和报警信息,方便运维人员进行远程诊断和维护。
4. 灵活可扩展性:冷机群控方案支持冷机系统的灵活扩展,可以方便地增加或替换冷机设备,满足不同负载工况下的需求。
三、冷机群控方案的应用场景冷机群控方案适用于各种规模的冷却系统,特别是那些需要同时控制多台冷机的场景。
大型制冷系统自动控制与节能方法初探随着工业化的不断发展,大型制冷系统在各个行业中的应用越来越广泛,如化工、食品加工、医药制造、冷链物流等领域。
随之而来的问题就是如何提高制冷系统的运行效率,减少能源消耗,降低运行成本。
在这个背景下,制冷系统自动控制与节能成为了研究的热点。
本文旨在探讨大型制冷系统自动控制与节能方法,通过引入先进的控制技术和节能策略,提高系统的运行效率,降低能源消耗,从而达到节能减排的目的。
一、大型制冷系统自动控制1. 控制策略优化大型制冷系统通常由多个压缩机、冷凝器、蒸发器等部件组成,采用不同的控制策略可以实现系统的自动化运行。
常见的控制策略包括压缩机容量调节、换热器流量调节、冷却水流量控制等。
通过对控制策略进行优化,可以提高系统的稳定性和运行效率。
2. 智能化控制系统随着人工智能和物联网技术的不断发展,智能化控制系统在大型制冷系统中得到了广泛应用。
智能化控制系统可以通过数据分析和学习算法,自动调整系统的运行参数,实现优化控制和节能运行。
3. 故障诊断与预测大型制冷系统在长时间运行过程中可能会出现各种故障,及时发现和处理故障对于系统的稳定运行至关重要。
通过引入故障诊断和预测技术,可以实现对系统状态的实时监测和分析,及时发现潜在故障,提高系统的可靠性和安全性。
二、大型制冷系统节能方法1. 换热器改进换热器是制冷系统中的重要组成部分,对其进行改进可以有效提高系统的传热效率。
常见的换热器改进方法包括增加换热面积、优化换热器结构、采用高效换热器材料等。
2. 压缩机优化压缩机是制冷系统的核心设备,对其进行优化可以提高系统的压缩效率。
常见的压缩机优化方法包括采用高效压缩机、优化压缩机运行参数、减少压缩机的启停次数等。
3. 冷却水系统优化大型制冷系统中的冷却水系统消耗了大量的能源,对其进行优化可以有效降低能源消耗。
常见的冷却水系统优化方法包括采用高效冷却水泵、优化冷却水循环系统、减少冷却水的使用量等。
工厂制冷系统集中控制方案
一、项目背景
现有生产车间一号生产线基于AHU风机盘管基础上的新风系统一套,功率小于5KW。
现有生产车间二号生产线基于AHU风机盘管基础上的新风系统一套,功率小于5KW。
现有基于工艺冷冻水制冷系统基础上的水蓄冷系统一套,功率55KW。
现有工艺冷冻水制冷机组三套,每套系统设备功率如下统计表所示:
工艺冷冻水制冷系统设备功率统计表
系统设备名称额定功率(KW)固定功率(KW)可变功率
(KW)
备注
A 螺杆式制冷压缩机组
A
156.078.078.0实际功率随负荷变化而变化冷冻水泵18.518.5
功率与冷负荷变化无关
冷却水泵22.022.0
冷却水塔风机 5.5 5.5
小计202.0124.078.0
B 螺杆式制冷压缩机组
B
218.0109.0109.0实际功率随负荷变化而变化冷冻水泵22.022.0
功率与冷负荷变化无关
冷却水泵30.030.0
冷却水塔风机7.57.5
小计277.5168.5109.0
C 螺杆式制冷压缩机组
C
300.0150.0150.0实际功率随负荷变化而变化冷冻水泵22.022.0
功率与冷负荷变化无关
冷却水泵55.055.0
冷却水塔风机11.011.0
小计388.0238.0150.0
合计867.5 530.5 337.0
二、基于AHU风机盘管基础上的新风系统简介
在AHU风机盘管系统的基础上做出部分调整,把室外的冷空气(新风)作为冷源,并联接入室内原有的风机盘管入风口,使其冬季或过渡季将引入室外空气为冷源,对AHU风机供冷区域进行供冷,达到节约能源的目的。
此系统的优点是:节省运行费用,充分利用天然冷源,减少制冷用电及其附属设备的用电。
三、基于工艺冷冻水制冷系统基础上的水蓄冷系统简介
水蓄冷系统是用水为介质,将夜间电网多余的谷段电力(低电价时)与水的显热相结合来蓄冷,以低温冷冻水形式储存冷量,即夜间制出5℃~7℃左右的低湿水,并在用电高峰时段(高电价时)使用储存的低温冷冻水来作为冷源,通过末端系统中的风机盘管, 生产工艺设备或空调箱等设备,满足建筑物舒适空调温度或生产工艺要求。
在电网高峰用电(高价电)时间内,制冷机组停机或者满足部分用冷负荷,其余部分用蓄存的冷量来满足,从而达到“削峰填谷”,均衡用电及降低电力设备容量的目的。
水蓄冷技术特点
1、获取分时供电政策的电价差,“高抛低吸”,大量节省运行电费。
2、节约电能
A、年总的开机台时数少于常规系统;
B、当夜间蓄冷时,气温降低,冷却效果提高,机组处于高效运转,效率可提高5%左右;
3、由于夜间已蓄冷,白天在突然停电时,只需较少的动力驱动水泵和末端负荷马达,即可维持冷负荷系
统的供冷。
蓄冷系统示意图
四、现有制冷系统与水蓄冷系统结构示意图
该系统主要有三种运行工况,具体如下:
1.原系统制冷机组直接制冷供应用冷负载:该工况必须关闭蓄冷系统的电动阀门DV3、DV4、DV5、DV6、DV7、DV8、DV9及停止运行蓄、放冷水泵,同时打开系统的其它阀门;按原冷冻机组冷冻水循环系统的制冷模式运行即可。
2.蓄冷运行工况:该工况必须开启蓄冷系统电动阀门 DV6 、DV7 、DV8、DV9及启动蓄、放冷水泵、制冷机组C的冷却水系统和制冷机组C, 同时关闭阀门DV1、DV2、DV3、
DV4、DV5,此时系统便进入蓄冷工况运行。
3.放冷运行工况:该工况必须开启蓄冷系统电动阀门DV1 、DV2 、DV3、DV4、DV5及启动蓄、放冷水泵,同时关闭电动阀门DV6 、DV7 、DV8、DV9及停止制冷机组C 的冷却水系统和制冷机组C,此时系统便进入放冷工况运行;系统中的其它电动阀门根据终端用冷负荷决定是否打开或关闭。
备注:系统中SV为手动阀门,一般情况为常开,DV为电动阀门,由系统决定打开或关闭。
五、目前影响制冷系统能效比的因素
现实中的制冷系统为满足在最恶劣的条件下都能够满足生产需要,往往都是按照整个系统的最大冷负荷再乘以一定的安全系数设计的。
因此,在绝大多数工况条件下,制冷系统都以较低的工作
负荷率下运行,导致系统能效比低,单位能耗下的制冷量小。
制冷系统,特别是中央空调系统的冷负荷受季节性的气象条件,如温度、湿度和日照强度的影响非常大。
在气温不高、日照不强的天气条件下,空调系统的冷负荷较小,制冷系统的负荷率较
低,造成系统能效比低。
生产线产品订单波动,导致部分生产线停产,而整个制冷系统仍然需要全部处于运行状态,使之工作于较低的负荷率,也造成系统能效比低。
终端冷负荷组合结构
组合
编号组合名称
一号生产线
(L1)
二号生产线
(L1)
三号生产线
(L3)
空调系统
(HVAC)
1L1+HVAC ON ON 2L2+HVAC ON ON 3L3+HVAC ON ON 4HVAC ON 5L1+L2+HVAC ON ON ON 6L1+L3+HVAC ON ON ON 7L2+L3+HVAC ON ON ON
8L1+l2+l3+HVAC ON ON ON ON
六、原冷冻机组冷冻水循环系统、水蓄冷系统及AHU新风系统的
运行策略
系统的运行策略:是指供冷系统以生产运行计划及空调和工艺冷冻水冷量负荷无规律变化的特点为基础,按电费结构等条件对供冷系统以蓄冷、放冷、制冷机组和AHU新风系统共同供冷作出最优的运行统筹和安排。
原制冷系统机组组合比较:就选择的制冷机组制冷量而言,有以下几种组合:
制冷机组的各种运行组合
组合编号组合名
称
制冷机组A制冷机组B制冷机组C
1A ON
2B ON
3C ON
4AB ON ON
5AC ON ON
6BC ON ON
7ABC ON ON ON
全部蓄、放冷策略:蓄冷时间与用电高峰期时间完全错开,在夜间非用电高峰期,制冷机组C进行蓄冷;同时开启其它制冷机组供应空调和工艺冷冻水冷量负荷;当蓄冷水池水温全部达到5℃~7℃时,制冷机组C停机;在白天将夜间蓄好的冷量转移到空调和工艺冷冻水系统,适用于白天供冷时间较短的场所或峰谷电差价很大的时间段里,在此期间其它机组不在制冷运行。
全部蓄、放冷系统与制冷机组的组合
组合编号组合名
称
制冷机组A制冷机组B制冷机组C蓄冷状态D放冷状态E
1ACD ON ON ON 2BCD ON ON ON
3ABC
D
ON ON ON ON
4E ON
全蓄冷和部分放冷策略:同样是在蓄冷时间与用电高峰期时间完全错开,在夜间非用电高峰期,制冷机组C进行蓄冷;同时开启其它制冷机组供应空调和工艺冷冻水冷量负荷;当蓄冷水池水温全部达到5℃~7℃时,制冷机组C停机;在白天空调和工艺冷冻水供冷期间一部分供冷负荷由夜间蓄好的冷量承担,另一部分则由制冷设备承担。
部分蓄冷比全部蓄冷制冷机利用率高,是一种更有效的负荷管理模式。
全蓄冷和部分放冷系统与制冷机组的组合
组合编号组合名
称
制冷机组A制冷机组B制冷机组C蓄冷状态D放冷状态E
1ACD ON ON ON 2BCD ON ON ON
3ABC
D
ON ON ON ON
4AE ON ON
5BE ON ON
6ABE ON ON ON
AHU新风系统是在冬季或过渡季,当室外的温度和湿度满足工艺生产要求时,将室外的冷空气(新风)作为冷源引入室内,对AHU风机供冷区域进行供冷,充分利用天然冷源,减少制冷设备及其附属设备的用电。
在AHU新风系统开启的情况下我们可以与原制冷系统、蓄冷系统及新风系统得出新的组合。
冬季开启AHU新风系统与原制冷系统、蓄冷系统的组合
组合编号组合名
称
制冷机组A制冷机组B制冷机组C蓄冷状态D放冷状态E
AHU新风系
统F
1ACD
F
ON ON ON ON
2BCD
F
ON ON ON ON
3ABC
DF
ON ON ON ON ON
4EF ON ON 5AEF ON ON ON 6BEF ON ON ON 7AF ON ON 8BF ON ON 9EF ON ON
10ABE
F
ON ON ON ON
七、中央控制系统方案
因现有的制冷系统为满足在最恶劣的条件下都能够满足生产需要,往往都是按照整个系统的最大冷负荷再乘以一定的安全系数设计的,也就是说只有在极端需求条件下才需要这么大的制冷循环水量;而生产线冷负荷终端的需求量一天二十四小时都在实时地发生变化和波动。
所以,在大多数情况下,制冷机组的运行能力都超过实际的冷负荷需量,形成了严重的供需失衡状态。
将现在的人工控制方式改为:在各冷负荷终端的冷冻水主管道送/回水口加装温度、流量传感器(必要时增加相应的控制阀门),安装新的中央控制中心,将温度、流量传感器温差和流量信号传到中央控制中心,由控制系统计算出当前各终端冷负荷需量的总和,并根据计算出的当前终端冷负荷需量的总和,及综合蓄冷系统、AHU新风系统做出最优化的控制模式,使制冷供应系统与冷负荷终端系统基本需量平衡。
最终实现供需平衡,系统运行方式的科学化。