机械工程测试技术与信号分析
- 格式:ppt
- 大小:19.78 MB
- 文档页数:225
二、计算题(每题10分,共60分)1.已知某一线性电位器的测量位移原理如图所示。
若电位器的总电阻R=2k Ω,电刷位移为X 时的相应电阻Rx=1k Ω,电位器的工作电压V i =12V,负载电阻为R L 。
(1)已测得输出电压Vo=5.8V,求R L 。
(2)试计算此时的测量误差。
【解】(1) 当V 01=5.8时,5.8=5.8=(2)空载时RL=设测量出5.8V输出电压时的测量误差 则测量误差为3.3%2、某装置的正常工作温度保持在35—40℃之间。
在35 ℃以下时停止使用,等待升温;在40 ℃以上时,也停止使用,进行强制冷却。
已知25%的时间在35 ℃以下,5%的时间在40 ℃以上。
求以下三种生产报告所具有的信息量:(1)“不能使用”;(2)“能使用”;(3)“因为装置在冷却中不能使用”。
【解】(1)“不能使用”的情况所占时间为25% + 5%,故信息量为:74.13.0log )(2=-=a x I bit(2)“能使用”的情况所占时间为70%,其信息量为:51.07.0log )(2=-=b x I bit(3)“因装置冷却不能使用”所占时间为5%,其信息量:32.405.0log )(2=-=c x I bit3、有两个温度计,一个响应快,能在5秒钟内测完,但精度较差,只有3℃;另一个响应慢,需要1分钟才能测完,但精度高,达到1℃。
温度测定范围都在20~52℃之间。
问哪一个温度计能提供更多的信息?【解】被测温度是一个均匀分布的是x ,处于(20~52)℃(或a ~b )之间。
测量结果的示值为x d ,其误差也是均布的,分布区间为d ,它决定于仪表测量精度。
每测量一次所获得的信息量为:I =H (x )-H (d )式中H (x )是测量前被测量x 的熵;H (d )是测量后测量误差d 的熵,故有:32log )(log )(22=-=a b x H ;d d H 2log )(=用第一种温度计测量时,每测一次,单位时间内获得的信息量为:684.0)3log 32(log 51)]()([51221=-=-=d H x H C (bit/S ) 用第二种温度计测量时,每测一次,单位时间内获得的信息量为:12/1)1log 32(log 601)]()([601222=-=-=d H x H C (bit/S )4.模数转换器的输入电压为-10V ~+10V 。
第二章 信号分析基础(一)填空题1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来传输的。
这些物理量就是 ,其中目前应用最广泛的是电信号。
2、 信号的时域描述,以 为独立变量;而信号的频域描述,以 为独立变量。
3、 周期信号的频谱具有三个特点: , , 。
4、 非周期信号包括 信号和 信号。
5、 描述随机信号的时域特征参数有 、 、 。
6、 对信号的双边谱而言,实频谱(幅频谱)总是 对称,虚频谱(相频谱)总是 对称。
7、信号x(t)的均值μx 表示信号的 分量,方差2x σ描述信号的 。
7、 当延时τ=0时,信号的自相关函数R x (0)= 均方值 ,且为R x (τ)的 最大 值。
9、 周期信号的自相关函数是 周期信号,但不具备原信号的 信息。
10、 为了识别信号类型,常用的信号分析方法有 概率密度函数 、和 自相关函数 。
11、为了获得测试信号的频谱,常用的信号分析方法有 傅立叶变换法 、 和 滤波器法12、 设某一信号的自相关函数为)cos(ωτA ,则该信号的均方值为2x ψ= ,均方根值为x rms = 。
(二)判断对错题(用√或×表示)1、 各态历经随机过程一定是平稳随机过程。
(√)p39-402、 信号的时域描述与频域描述包含相同的信息量。
( √ )3、 非周期信号的频谱一定是连续的。
( ×)(离散傅立叶变换)4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。
(×)5、 随机信号的频域描述为功率谱。
(√)6、 互相关函数是偶实函数。
( × )(三)单项选择题1、下列信号中功率信号是( B )。
A.指数衰减信号B.正弦信号、C.三角脉冲信号D.矩形脉冲信号2、周期信号x(t) = sin(t/3)的周期为(B )。
A. 2π/3B. 6πC. π/3D. 2π3、下列信号中周期函数信号是(C )。
A.指数衰减信号B.随机信号C.余弦信号、D.三角脉冲信号4、设信号的自相关函数为脉冲函数,则自功率谱密度函数必为(D )。
第二章 信号描述及其分析【2-1】 描述周期信号的频率结构可采用什么数学工具? 如何进行描述? 周期信号是否可以进行傅里叶变换? 为什么?参考答案:一般采用傅里叶级数展开式。
根据具体情况可选择采用傅里叶级数三角函数展开式和傅里叶级数复指数函数展开式两种形式。
不考虑周期信号的奇偶性,周期信号通过傅里叶级数三角函数展开可表示为:001()sin()(1,2,3,)n n n x t a A n n ωϕ∞==++=∑2021()T T a x t dt T-=⎰n A =(2022()cos T n T a x t n tdt T ω-=⎰ 202()sin T n T b x t n tdt Tω-=⎰ )tan n n n b a ϕ=式中,T 为信号周期, 0ω为信号角频率, 02T ωπ=。
n A ω-图为信号的幅频图, n ϕω-图为信号的相频图。
周期信号通过傅里叶级数复指数函数展开式可表示为:0()(0,1,2,)jn tnn x t C e n ω∞=-∞==±±∑0221()T jn t n T C x t e dt Tω--=⎰n C 是一个复数,可表示为:n j n nR nI n C C jC C e ϕ=+=n C = arctan n nI nR C ϕ=n C ω-图为信号的幅频图, n ϕω-图称为信号的相频图。
▲ 不可直接进行傅里叶变换,因为周期信号不具备绝对可积条件。
但可间接进行傅里叶变换。
参见书中第25页“正弦和余弦信号的频谱”。
【2-2】 求指数函数()(0,0)at x t Ae a t -=>≥的频谱。
参考答案:由非周期信号的傅里叶变换,()()j t X x t e dt ωω∞--∞=⎰,得22()()j tA a j X x t edt A a j a ωωωωω∞--===++⎰由此得到,幅频谱为:()X ω=相频谱为: ()arctan()a ϕωω=-【2-3】 求周期三角波(图2-5a )的傅里叶级数(复指数函数形式)参考答案:周期三角波为: (2)20()(2)02A A T tT t x t A A T tt T +-≤<⎧=⎨-≤≤⎩则0221()T jn t n T C x t e dt T ω--=⎰积分得 02222204(1cos )(1cos )2n A T AC n n n T n ωπωπ=-=- 即 22()1,3,5,00,2,4,n A n n C n π⎧=±±±=⎨=±±⎩又因为周期三角波为偶函数,则0n b =,所以arctan 0n nI nR C C ϕ==所以,周期三角波傅里叶级数复指数形式展开式为:00(21)222()(0,1,2)(21)jn tj k tnn n A x t C ee k k ωωπ∞∞+=-∞=-∞===±±+∑∑【2-4】 求图2-15所示有限长余弦信号()x t 的频谱。
机械工程测试技术基础知识点整合第一章:测试概述测试是一种获取被测对象有用信息的方法,是测量和试验技术的综合。
测试可以分为静态测量和动态测量两种类型。
本课程主要研究机械工程中动态参数的测量,测试系统的组成包括量纲及量值的传递,测量误差,测量精度和不确定度,以及测量结果的表达。
第二章:信号分析与处理信号可以根据其描述方式分为时域描述和频域描述。
时域描述是指幅值随时间的变化,而频域描述则是指频率组成及幅值、相位大小。
对于周期信号,可以使用XXX级数来求其频谱,其特点为离散性、谐波性和收敛性。
瞬变信号可以使用傅里叶变换求其频谱,其特点为连续性和收敛性。
随机信号也可以使用傅里叶变换求其频谱,其特点为连续性。
信号的特征参数包括均值、均方值、方差和概率密度函数等。
自相关函数和互相关函数可以用来描述两个信号之间的相关性。
相关系数和相干函数在时域和频域描述两个变量之间的相关关系。
自功率谱密度函数和互功率谱密度函数可以用来反映信号的频域结构。
数字信号处理是对信号进行数字化处理的一种方法。
时域采样定理规定了采样频率必须大于信号最高频率的两倍,即fs。
2fh。
而混叠是因为采样频率过低(即Ts过大)或信号频率过宽,导致信号在fs/2处折叠。
为了避免混叠,需要进行抗混叠滤波或提高采样频率。
量化误差是由于量化步长造成的,减小量化步长可以降低误差。
泄漏是由于加窗截断处理引起的,合理选择窗函数可以减小泄漏。
对于周期信号,可以进行整周期截断处理。
频域采样会出现栅栏效应,需要进行插值处理。
测量装置的基本特征包括静态特性和动态特性。
静态特性包括线性度、灵敏度、回程误差和分辨力等参数。
线性系统具有叠加性、比例性、微分性、积分性和频率保持性等特性。
频率响应函数描述了系统在简谐信号激励下,稳态输出对输入的幅值比、相位差随激励频率变化的特性。
求取频率响应函数的方法包括微分方程、拉普拉斯变换、傅里叶变换和实验法等。
系统不失真的条件包括时域不失真和频域不失真条件。
机械工程测试技术概述1. 测试技术基本原理测试技术是通过对各种物理量进行测量、转换和显示,以实现对机械系统或设备性能和状态的评估和监控。
测试技术的基本原理包括:(1) 测量原理:通过传感器将待测物理量转换为电信号或光信号,以便进行测量和分析。
(2) 转换原理:利用各种转换器将电信号或光信号转换为便于处理的信号形式,如电压、电流、频率等。
(3) 显示原理:通过各种显示设备将测量结果以图形、数字或图表的形式展示出来,以便进行观察和分析。
2. 传感器与测试系统传感器是测试技术中的核心部件,用于将待测物理量转换为电信号或光信号。
常见的传感器有压力传感器、温度传感器、位移传感器、速度传感器等。
测试系统是将传感器与其他辅助设备(如放大器、滤波器、模数转换器等)组合在一起,以实现对各种物理量的测量和记录。
3. 信号处理与分析在测试过程中,需要对测量得到的信号进行处理和分析,以提取有用的信息。
信号处理技术包括滤波、放大、采样、数字化等,而信号分析技术则包括时域分析、频域分析、波形分析等。
这些处理和分析技术有助于提高测量的准确性和可靠性。
4. 测试数据处理与显示测量得到的数据需要进行处理和显示,以便进行观察和分析。
数据处理技术包括数据清洗、数据变换、数据拟合等,而数据显示技术则包括图表显示、数字显示、曲线显示等。
这些技术和设备有助于提高测量的直观性和便利性。
5. 典型机械量测试机械工程中需要测量的典型机械量包括压力、温度、位移、速度、加速度等。
对于这些量的测量,需要使用相应的传感器和测试系统,并采用适当的信号处理和分析技术。
例如,对于压力测试,需要使用压力传感器和相应的测试系统,测量液体或气体在单位面积上所受垂直作用力的大小的物理量程力;对于温度测试,需要使用温度传感器和相应的测试系统,测量物体的冷热程度;对于位移测试,需要使用位移传感器和相应的测试系统,测量机械部件的移动距离;对于速度和加速度测试,需要使用相应的传感器和测试系统,测量机械部件的运动速度和加速度。
“机械工程测试技术”课程介绍1 课程在本专业中的定位与课程目标“机械工程测试技术”课程是面向“机械工程及自动化”大专业,即涵盖现有的机械工程各专业本科生的一门工程技术课。
它涉及机械工程领域中的非电量电测技术和试验技术等知识,是工业生产与科学研究必不可少的重要技术手段。
通过该课程的学习可以获得传感器测量原理、测量信号处理方法和计算机测量系统等方面的基础知识,并掌握温度、力、压力、噪声等常见物理量的测量和应用方法。
2 课程的重点、难点及解决办法机械工程测试技术是一门实践性较强的课程,教学内容包括测试信号分析理论和传感器原理两大部分。
因历史的原因和受当时教学和实验条件限制,过去侧重课本内容讲授,实践性环节偏少,学生普遍反映测试技术应用、发展部分空洞;传感器部分没有实物对象、枯燥无味;信号分析理论部分深奥、难懂。
导致学生对课程作用认识不足,严重影响教学效果。
在各章节绪论和展望部分,实行自己采编的多媒体教案为主,书本教材为辅的形式。
用计算机多媒体来丰富课程内容和表现形式,将课程组成员接触过的科研项目和工程案例融入教学内容中,现身说法,使从未接触过工程实际的学生能够建立工业测量与应用的整体概念。
对测试信号分析部分,改变重理论、轻实践的教学观点,强调对测试信号分析的本质理解和工程实际应用,淡化对公式推导过程等数学理论的要求。
课堂上结合工程案例,用演示实验对实际测试信号进行分析,让学生建立信号分析与实际应用间的联系。
课后,用仿真实验代替习题,让学生利用我们提供的虚拟仪器软件平台自己动手对测试信号进行分析。
对传感器部分,采用实物模型教学的方法。
为此,采用工业探头和敏感元件开发了20多种可直接插接在计算机A/D卡(或声卡Line in口)上的四线制无二次仪表传感器。
将传感器带到课堂上,在讲解传感器原理的同时,现场演示传感器是如何将被测物理量转化为电量和测试信号。
为在课后给学生营造一个实验学习环境,提出利用PC机上的测试资源( 鼠标:光电传感器,麦克风:电容传感器,摄象头: CCD 传感器,声卡: A/D 卡)建立PC个人测试实验室,使学生课后能够自己动手做测试实验。