反比例函数与一次函数交点问题(课堂PPT)
- 格式:ppt
- 大小:830.50 KB
- 文档页数:33
反比例函数与一次函数的交点问题一、正比例函数和反比例函数的交点问题若正比例函数y =k 1x(k 1≠0),反比例函数)0(22=/=k x ky ,则当k 1k 2<0时,两函数图象无交点;当k 1k 2>0时,两函数图象有两个交点,坐标分别为).,(),,(21122112k k k kk k k k --由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.二、一次函数和反比例函数的交点问题1.函数y=和y=在第一象限内的图象如图,点P 是y=的图象上一动点,PC ⊥x 轴于点C ,交y=的图象于点B .给出如下结论:①△ODB 与△OCA 的面积相等;②PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化;④CA=AP .其中所有正确结论的序号是( )A .①②③B .②③④C .①③④D .①②④ 解:∵A 、B 是反比函数y=上的点,∴S △OBD =S △OAC =,故①正确;当P 的横纵坐标相等时PA=PB ,故②错误; ∵P 是y=的图象上一动点,∴S 矩形PDOC =4,∴S 四边形PAOB =S 矩形PDOC ﹣S △ODB ﹣﹣S △OAC =4﹣﹣=3,故③正确;连接OP ,===4,∴AC=PC ,PA=PC ,∴=3,∴AC=AP ;故④正确;综上所述,正确的结论有①③④.故选C .2.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k=()A. B. C. D.12解:∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a,b),∵BD=3AD,∴D(,b),∵点D,E在反比例函数的图象上,∴=k,∴E(a,),∵S△ODE=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=ab﹣﹣k﹣•(b﹣)=9,∴k=,故选C.3.反比例函数y=(k≠0)的图象经过点(﹣2,3),则它还经过点()A.(6,﹣1) B.(﹣1,﹣6)C.(3,2)D.(﹣2,3.1)解:∵反比例函数y=(k≠0)的图象经过点(﹣2,3),∴k=﹣2×3=﹣6,四个选项中只有A:6×(﹣1)=﹣6.故选A.4.若M(,y1)、N(,y2)、P(,y3)三点都在函数(k>0)的图象上,则y1、y2、y3的大小关系是()A.y2>y3>y1 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y1解:∵M(,y1)、N(,y2)、P(,y3)三点都在函数(k>0)的图象上,∴M(,y1)、N(,y2)、P(,y3)三点都满足函数关系式(k>0),∴y1=﹣2k,y2=﹣4k,y3=2k;∵k>0,∴﹣4k<﹣2k<2k,即y3>y1>y2.故选C.5.已知点A(﹣1,5)在反比例函数的图象上,则该函数的解析式为()A. B. C. D.y=5x解:将P(﹣1,5)代入解析式y=得,k=(﹣1)×5=﹣5,解析式为:y=﹣.故选C.6.已知反比例函数的图象过点M(﹣1,2),则此反比例函数的表达式为()A.y= B.y=﹣ C.y= D.y=﹣解:设反比例函数的解析式为(k≠0).∵该函数的图象过点M(﹣1,2),∴2=,得k=﹣2.∴反比例函数解析式为y=﹣.故选B.7.已知一次函数y1=kx+b(k<0)与反比例函数y2=(m≠0)的图象相交于A、B两点,其横坐标分别是﹣1和3,当y1>y2,实数x的取值范围是()A.x<﹣1或0<x<3 B.﹣1<x<0或0<x<3C.﹣1<x<0或x>3 D.0<x<3解:依照题意画出函数图象,如图所示.观察函数图象,可知:当x<﹣1或0<x<3时,一次函数图象在反比例函数图象上方,∴当y1>y2,实数x的取值范围为x<﹣1或0<x<3.故选A.8.已知点A(﹣2,1),B(1,4),若反比例函数y=与线段AB有公共点时,k的取值范围是()A.﹣≤k<0或0<k≤4 B.k≤﹣2或k≥4C.﹣2≤k<0或k≥4 D.﹣2≤k<0或0<k≤4解:①当k>0时,如下图:将x=1代入反比例函数的解析式得y=k,∵y随x的增大而减小,∴当k≤4时,反比例函数y=与线段AB有公共点.∴当0<k≤4时,反比例函数y=与线段AB有公共点.②当k<0时,如下图所示:设直线AB的解析式为y=kx+b.将点A和点B的坐标代入得:,解得:k=1,b=3.所以直线AB所在直线为y=x+3.将y=x+3与y=联立,得:x+3=,整理得:x2+3x﹣k=0.∴32+4k≥0,解得:k≥﹣.综上所述,当﹣≤k<0或0<k≤4时,反比例函数y=与线段AB有公共点.故选:A.9.在平面直角坐标系中直线y=x+2与反比例函数 y=﹣的图象有唯一公共点,若直线y=x+m与反比例函数y=﹣的图象有2个公共点,则m的取值范围是()A.m>2 B.﹣2<m<2 C.m<﹣2 D.m>2或m<﹣2解:根据反比例函数的对称性可知:直线y=x﹣2与反比例函数y=﹣的图象有唯一公共点,∴当直线y=x+m在直线y=x+2的上方或直线y=x+m在直线y=x﹣2的下方时,直线y=x+m与反比例函数y=﹣的图象有2个公共点,∴m>2或m<﹣2.故选D.10.如图,直线y=kx与双曲线y=﹣交于A(x1,y1),B(x2,y2)两点,则2x1y2﹣8x2y1的值为()A.﹣6 B.﹣12 C.6 D.12解:将y=kx代入到y=﹣中得:kx=﹣,即kx2=﹣2,解得:x1=﹣,x2=,∴y1=kx1=,y2=kx2=﹣,∴2x1y2﹣8x2y1=2×(﹣)×(﹣)﹣8××=﹣12.故选B.11.如图,双曲线y=﹣(x<0)经过▱ABCO的对角线交点D,已知边OC在y轴上,且AC⊥OC于点C,则▱OABC的面积是()A. B. C.3 D.6解:∵点D为▱ABCD的对角线交点,双曲线y=﹣(x<0)经过点D,AC⊥y轴,∴S平行四边形ABCO=4S△COD=4××|﹣|=3.故选C.12.如图,在直角坐标系中,点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AB的垂直平分线与y轴交于点C,与函数y=(x>0)的图象交于点D,连结AC,CB,BD,DA,则四边形ACBD 的面积等于()A.2 B.2 C.4 D.4解:设A(a,),可求出D(2a,),∵AB⊥CD,∴S四边形ACBD=AB•CD=×2a×=4,故选C.13.设点A(x1,y1)和点B(x2,y2)是反比例函数y=图象上的两点,当x1<x2<0时,y1>y2,则一次函数y=﹣2x+k的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限D.第四象限解:∵当x1<x2<0时,y1>y2,∴反比例函数y=图象上,y随x的增大而减小,∴图象在一、三象限,如图1,∴k>0,∴一次函数y=﹣2x+k的图象经过二、四象限,且与y轴交于正半轴,∴一次函数y=﹣2x+k的图象经过一、二、四象限,如图2,故选C.14.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0) B.(2,0)C.(,0)D.(3,0)解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选(C)15.如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=(k ≠0)的图象过点C,则该反比例函数的表达式为()A.y= B.y= C.y= D.y=解:如图,过点C作CE⊥y轴于E,在正方形ABCD中,AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠OAB+∠ABO=90°,∴∠OAB=∠CBE,∵点A的坐标为(﹣4,0),∴OA=4,∵AB=5,∴OB==3,在△ABO和△BCE中,,∴△ABO≌△BCE(AAS),∴OA=BE=4,CE=OB=3,∴OE=BE﹣OB=4﹣3=1,∴点C的坐标为(3,1),∵反比例函数y=(k≠0)的图象过点C,∴k=xy=3×1=3,∴反比例函数的表达式为y=.故选A.16.如图,矩形OABC的两边OA、OC在坐标轴上,且OC=2OA,M、N分别为OA、OC的中点,BM与AN 交于点E,若四边形EMON的面积为2,则经过点B的双曲线的解析式为()A.y=﹣ B.y=﹣ C.y=﹣ D.y=﹣解:过M作MG∥ON,交AN于G,过E作EF⊥AB于F,设EF=h,OM=a,由题意可知:AM=OM=a,ON=NC=2a,AB=OC=4a,BC=AO=2a△AON中,MG∥ON,AM=OM,∴MG=ON=a,∵MG∥AB,∴==,∴BE=4EM,∵EF⊥AB,∴EF∥AM,∴==.∴FE=AM,即h=a,∵S△ABM=4a×a÷2=2a2,S△AON=2a×2a÷2=2a2,∴S△ABM=S△AON,∴S△AEB=S四边形EMON=2,S△AEB=AB×EF÷2=4a×h÷2=2,ah=1,又有h=a,a=(长度为正数)∴OA=,OC=2,因此B的坐标为(﹣2,),经过B的双曲线的解析式就是y=﹣.17.如图,直线y=x﹣6分别交x轴,y轴于A,B,M是反比例函数y=(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=4,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6解:过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,令x=0代入y=x﹣6,∴y=﹣6,∴B(0,﹣6),∴OB=6,令y=0代入y=x﹣6,∴x=2,∴(2,0),∴OA=2,∴勾股定理可知:AB=4,∴sin∠OAB==,cos∠OAB==设M(x,y),∴CF=﹣y,ED=x,∴sin∠OAB=,∴AC=﹣y,∵cos∠OAB=cos∠EDB=,∴BD=2x,∵AC•BD=4,∴﹣y×2x=4,∴xy=﹣3,∵M在反比例函数的图象上,∴k=xy=﹣3,故选A。
一次函数与反比例函数图象相交的一个结论及应用当一次函数与反比例函数的图象相交时(如图1),学生通过各种方法的探究与演练,可熟练地计算AOB S ∆.接下来,我们继续观察图象,不难发现,只要一次函数与反比例函数的图象有交点,无论这条直线怎么变化,AOC ∆和BOD ∆的面积大小看似相当,分不出大小.那么,AOC S ∆和BOD S ∆是否相等呢?一、探求结论我们要证明AOC BOD S S ∆∆=,只需证明AC BD =即可.如图2,过点A 作AE y ⊥轴于点E ,AH x ⊥轴于点H .过点B 作BG y ⊥轴于点G ,交AH 于点I ,BF x ⊥轴于点F ,连结,,AG BH GH .由反比例系数的几何意义,可知AHOEBGOF S S =矩形矩形, ∴AIGE BIHF S S =矩形矩形,∴AIG BIH S S ∆∆=,∴AHG BGH S S ∆∆=.又AHG ∆和BGH ∆同底GH ,∴//GH AB .∵//,//BH DH AH CG∴四边形ACGH 和四边形BGHD 均为平行四边形,∴AC GH BD ==.通过以上探究,我们得到以下结论:设直线l 与抛物线c 相交于,A B 两点,与x 轴和y 轴分别交于点D 和C (如图2),则AC BD =.二、应用举例例1 (2019年长沙中考题)如图3,函数k y x=( k 为常数,0k >)的图象与过原点O 的直线相交于,A B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM分别交x 轴,y 轴于,C D 两点,连结BM 分别交x 轴,y 轴于点,E F .现有以下四个结论:①ODM ∆与OCA ∆的面积相等;②若BM AM ⊥于点M ,则30MBA ∠=︒;③若M 点的横坐标为1,OAM ∆为等边三角形,则2k =+④若25MF MB =,则2MD MA =. 其中正确的结论的序号是 .(只填序号)本题考查反比例函数与一次函数的交点问题,三角形的面积以及平行线分线段成比例定理等知识.其中,序号①在本题中相对较难判断,但利用本文所得结论,问题就迎刃而解了.例 2 如图4,反比例函数k y x=( 0k >)与矩形OABC 相交于D ,D G 两点,则AD CG BD BG=. 证明 连结DG 交x 轴,y 轴于,E F 两点.∵//,//AB OE OA BC ,∴FADGBD GCE ∆∆∆, ∴AD FD BD GD =,CG GE BG GD=,又∵FD GE=,∴AD CG BD BG=.可见,利用本文得到的结论,我们可有效地解决反比例函数与一元函数或矩形相交的有关问题.。
一次函数之间的交点;如函数y=kx+b ,y=ax+c 图像有一个交点说明这两个函数存在相同的x ,y 的值,则这个相同的x ,y 的值即为函数y=kx+b ,y=ax+c 图像的交点坐标。
因为这个相同的x ,y 的值即为函数y=kx+b ,y=ax+c 图像的交点坐标所以可通过解方程来解决即:kx+b=ax+c解得x 的值,再代入可求得y 的值即为交点坐标。
当然也可以通过在直角坐标系中画出一次函数的图像直接从图像上看到,不过这种方法要求作图精确。
一般情况下,作图法只用作帮我们寻找解题的思路。
真正要接出精确的答案还是要通过代数运算。
一次函数与反比例函数的交点;函数y=ax+b,y=xk 图像有一个交点 说明这两个函数存在相同的x,y 的值,则这个相同的x,y 的值即为函数y=ax+b, y=x k 的图像的交点坐标。
即ax+b=xk ,此式可化解为ax 2+bx-k=0 如果次一元二次方程的△>0则表示一次函数和反比例函数有两个交点;△ <0则表示一次函数和反比例函数没有交点;△ =0则表示一次函数和反比例函数有一个交点。
具体情况可有下图表示:例1:已知一次函数y=kx+k 的图象与反比例函数y=x2的图象在第一象限交于B (4,n ) ,求n ,k 的值。
变式练习1;若反比例函数的图象经过点(1,3)(1) 求该反比例函数的解析式; (2)求一次函数y=2x+1与该反比例函数的图象的交点坐标。
例2已知一次函数y=﹣x+4与反比例函数x k ,当k 满足什么条件时,这两个函数在同一直角坐标系中的图象有两个公共点?变式练习:一次函数y=-x+3与反比例函数y=x1 有两个公共交点A 和B 。
求: (1) 点A 和点B 的坐标 (2) △ABO 的面积例题3一次函数y=kx+b 与反比例函数y=x m 在同一个坐标系内只有唯一的一个交点A (2,3)。
求这两个函数的表达式。
变式练习:一次函数y=-2x+3与反比例函数y=xm 在同一个坐标系内只有唯一的一个交点A 。
反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.(2)判断正比例函数y=k1x和反比例函数y=k2x在同一直角坐标系中的交点个数可总结为:①当k1与k2同号时,正比例函数正比例函数y=k1x和反比例函数y=k2x在同一直角坐标系中有2个交点;②当k1与k2异号时,正比例函数正比例函数y=k1x和反比例函数y=k2x在同一直角坐标系中有0个交点.反比例函数图象的对称性:反比例函数图象既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线Y=-X;②一、三象限的角平分线Y=X;对称中心是:坐标原点.反比例函数的性质(1)反比例函数y=xk(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.注意:反比例函数的图象与坐标轴没有交点.比例系数k的几何意义在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|2,且保持不变.反比例函数y=xk(k为常数,k≠0)的图象是双曲线,①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.用待定系数法求反比例函数的解析式要注意:(1)设出含有待定系数的反比例函数解析式y=xk(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.(2)判断正比例函数y=k1x和反比例函数y=k2x在同一直角坐标系中的交点个数可总结为:①当k1与k2同号时,正比例函数正比例函数y=k1x和反比例函数y=k2x在同一直角坐标系中有2个交点;②当k1与k2异号时,正比例函数正比例函数y=k1x和反比例函数y=k2x在同一直角坐标系中有0个交点.(1)利用反比例函数解决实际问题①能把实际的问题转化为数学问题,建立反比例函数的数学模型.②注意在自变量和函数值的取值上的实际意义.③问题中出现的不等关系转化成相等的关系来解,然后在作答中说明.(2)跨学科的反比例函数应用题要熟练掌握物理或化学学科中的一些具有反比例函数关系的公式.同时体会数学中的转化思想.(3)反比例函数中的图表信息题正确的认识图象,找到关键的点,运用好数形结合的思想.(1)应用类综合题能够从实际的问题中抽象出反比例函数这一数学模型,是解决实际问题的关键一步,培养了学生的建模能力和从实际问题向数学问题转化的能力.在解决这些问题的时候我们还用到了反比例函数的图象和性质、待定系数法和其他学科中的知识.(2)数形结合类综合题利用图象解决问题,从图上获取有用的信息,是解题的关键所在.已知点在图象上,那么点一定满足这个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上.还能利用图象直接比较函数值或是自变量的大小.将数形结合在一起,是分析解决问题的一种好方法.友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。
一次函数与反比例函数交点规律一次函数与反比例函数交点规律:在同一平面直角坐标系中,一次函数与反比例函数的图象交点情况存在一定规律。
当一次函数的表达式为 y = k₁x + b₁(k₁≠0),反比例函数的表达式为 y = k₂/x(k₂≠0)时,它们的交点个数取决于方程 k₁x + b₁ = k₂/x 所对应的一元二次方程的判别式Δ 的值。
一次函数和反比例函数就像是两个性格迥异的小伙伴。
一次函数像是个勇往直前的长跑运动员,沿着一条笔直的路线一直跑下去,速度均匀,从不回头。
而反比例函数呢,则像是个调皮的蹦床运动员,跳得高高低低,时近时远。
想象一下,这两个小伙伴要在同一个舞台上相遇。
有时他们能碰到一起,有时却怎么也碰不到。
这是为什么呢?就拿方程 k₁x + b₁ = k₂/x 来说,把它变形为一元二次方程 k₁x² +b₁x - k₂ = 0,判别式Δ = b₁² + 4k₁k₂就决定了他们的相遇情况。
如果Δ > 0,那这两个小伙伴就会有两个相遇点,就好像在比赛中两次并肩跑过;要是Δ = 0,他们就只有一个相遇点,如同在跑道上有那么一瞬间的交集;而当Δ < 0 时,他们就完全碰不到面啦,各跑各的,谁也不理谁。
比如说,一次函数 y = 2x + 1 和反比例函数 y = 4/x,把它们联立得到 2x + 1 = 4/x ,变形为 2x² + x - 4 = 0 ,计算判别式Δ = 1² - 4×2×(-4) = 33 > 0 ,所以它们有两个交点。
在实际生活中,这种规律也有很多应用呢。
比如工程师在设计机械传动系统时,就需要考虑一次函数和反比例函数的交点规律,来确保各个部件的运动协调一致。
又比如经济学家在分析市场供求关系时,也会用到类似的数学模型。
总之,一次函数与反比例函数的交点规律就像是一把神奇的钥匙,能帮助我们打开很多现实问题的大门。