电离平衡和水解平衡的比较
- 格式:doc
- 大小:67.51 KB
- 文档页数:2
高二化学公开课教案课题:溶液中离子浓度大小的比较【教学目标】1、知识目标:掌握盐溶液中各组分之间的守恒关系与大小比较2、能力目标:能用电离平衡和水解平衡的观点分析问题3、情感目标:体会微观世界与宏观世界的差异【重点难点】混合溶液中离子浓度的分析、比较【教学方法】归纳讨论,边讲边练,多媒体授课【教学过程】一、电离平衡理论和水解平衡理论1.电离理论:弱电解质的电离是微弱的,发生电离的微粒的浓度大于电离生成的微粒的浓度,如H2CO3溶液中:c(H2CO3)>c(HCO3-)》c(CO32-)(多元弱酸第一步电离程度远远大于第二步)2.水解理论:发生水解的微粒的浓度大于水解生成的微粒的浓度,如Na2CO3溶液中:c(CO32-)>c(HCO3-)》c(H2CO3) (多元弱酸酸根离子的水解以第一步为主)二、电解质溶液中三种守恒关系1.电荷守恒:电解质溶液中,不论存在多少种离子,电解质溶液总是呈中性,即阳离子所带正电荷总数等于阴离子所带负电荷总数。
如Na2CO3溶液中:c(Na+)+c(H+)=c(HCO3-)+2c(CO32-)+c(OH-)练习:Na2HPO4溶液中的电荷守恒关系式:。
2.物料守恒:在电解质溶液中,由于某些离子能够水解同时也能够电离,使离子种类增多,但原子不论以何种形式存在,个数总是不变的,即原子守恒。
如Na2CO3溶液中:c(Na+)=2{c(CO32-)+c(HCO3-)+c(H2CO3)}练习:Na2HPO4溶液中物料守恒的关系式:。
3.质子守恒:在任何水溶液中,水电离出的H+和OH-的量总是相等。
Na2CO3溶液中,c(OH-)=c(H+) +c(HCO3-) +2c(H2CO3),也可以用代入法求,将物料守恒中的钠离子浓度代入电荷守恒中即可求得。
练习:Na2HPO4溶液中质子守恒的关系式:。
题型一:单一溶液中离子浓度的大小比较【例1】在0.1 mol/L的NH3·H2O溶液中,下列关系正确的是A.c(NH3·H2O)>c(OH-)>c(NH4+)>c(H+)B.c(NH4+)>c(NH3·H2O)>c(OH-)>c(H+)C.c(NH3·H2O)>c(NH4+)=c(OH-)>c(H+)D.c(NH3·H2O)>c(NH4+)>c(H+)>c(OH-)【例2】在0.2mol/L氯化铵溶液中,下列关系式正确的是A.c(Cl-)>c(NH4+)>c(H+)>c(OH-)B.c(NH4+)>c(Cl-)>c(H+)>c(OH-)C.c(Cl-)=c(NH4+)>c(H+)=c(OH-)D.c(NH4+)=c(Cl-)>c(H+)>c(OH-)题型二:混合溶液中离子浓度的大小比较1.两种溶液混合但溶质间不反应2.两种溶液混合但溶质间反应①两种物质恰好完全反应②两种物质反应,其中一种有剩余【讨论1】比较下列各溶液混合后微粒浓度的大小:1、等浓度等体积氨水溶液和盐酸溶液混合2、pH=2的盐酸溶液和pH=12的氨水溶液等体积混合3、向氨水溶液中滴加盐酸溶液使溶液呈中性4、等浓度等体积氨水溶液和氯化铵溶液混合【讨论2】向氨水中滴加盐酸直至过量各离子浓度大小的关系有哪些情况?逆向考虑:与氨水和氯化铵性质相反的同类型离子浓度比较又有哪一类?【例3】向25mL0.1mol/LNaOH溶液中逐滴加入0.2mol/L醋酸溶液,曲线如下图第 1 页共4 页所示。
有关电离与水解概念间的一些问题由于化学反应的复杂性,在一个化学反应体系中常常会有多个化学平衡同时存在。
因而在分析这类化学问题时,一定要顾及到所有的平衡,并确认出哪些平衡处于矛盾的主要方面。
遗漏或忽略了某个实际上在起主导作用的平衡、纠缠于一个侧面,肯定会使我们的判断产生严重的错误[1]。
还有一个需要注意的问题是,只罗列出所有的平衡还不能解决具体的化学问题,还必须明确一些平衡的本质及他们的相互关系。
不然也会造成一些“可笑”的错误。
下面讨论几个这样的实例,以引起大家重视。
一、电离和水解平衡的关系电离和水解是化学教学中很常见的两类平衡,也是相互关系十分密切的平衡。
按电离理论,电离和水解是形式间有很大区别的两类反应:电离是弱酸或弱碱这类物质在极性分子—水分子作用下,解离为水合离子的一个十分简单的过程。
如HAc的电离。
而水解则是盐中的弱酸根(或阳离子)与水反应,给出OH-离子(或H+离子)的过程。
如对NaAc有、或。
不难看出,它们涉及的物质类别不同,反应形式也有很大区别,似乎是截然不同的两类反应。
为比较这两个反应,还是用电离理论来分析一下才好。
用HAc的电离与Ac-的水解为代表,来剖析一个电离过程与其相关离子的水解过程(平衡)间的关系。
HAc的电离过程为(称为过程1),即使写为,也只是表示H+是以水合离子的形式存在而已。
Ac-的水解过程、则是由反应(请注意这就是HAc的电离、即过程1、的逆过程)、与水的电离反应,两者相加、并消去H+的结果。
这样看来,讨论所谓Ac-的水解、除包含了水溶液中总是存在的水的电离之外,实际就是承认HAc的电离平衡在逆向进行。
HAc的电离与Ac-水解讨论的都是同一个平衡、HAc的电离平衡,只不过两者的观察方向不同罢了。
由于化学平衡的特殊性,在讨论化学平衡的移动时,有两个特点应引起我们足够的重视:一是平衡移动的结果与平衡的写法无关。
即与写的是正反应、还是逆反应无关;另一点则是如果用勒夏特里原理已判断出了平衡移动的方向及结果,就不得把这一结果作为平衡移动的条件再去循环使用。
水解与电离电离是物质(电解质)本身在水溶液或熔融状态下生成自由移动阴阳离子的过程。
水解则是针对含有弱酸根或弱碱离子的盐类而言,其与水发生的复分解反应,是酸碱中和的逆反应。
能水解的物质一般都是弱电解质,电离程度越弱,其相应弱酸阴离子或弱碱阳离子的水解程度越大。
(一)区分性从进行两过程的物质类别来看,水解的物质是盐类,而电离平衡针对的是弱电解质,如弱酸、弱碱和水等。
从实质上来看,盐类水解本质是盐电离出来的弱酸阴离子或弱碱阳离子与水电离出来的 H+或 OH-结合生成弱酸或弱碱等弱电解质,从而促进水电离的过程。
其特征为:盐类水解反应是中和反应的逆过程,由于中和反应进行较彻底,是放热反应,故盐类水解反应一般进行的不彻底,程度小且吸热。
电离是指电解质溶于水或受热熔化时,离解出自由移动离子的过程。
其中弱酸、弱碱、水等弱电解质在水溶液中只能部分电离,而大部分仍以分子的形式存在,即弱电解质的电离是一个可逆过程,存在电离平衡。
研究盐类水解时,最后得出规律:谁弱谁水解,无弱不水解,越弱越水解,都弱都水解。
弱电解质电离程度越弱,则对应的弱酸阴离子或弱碱阳离子的水解程度越大。
电离电解质在水溶液或熔融状态下生成自由移动阴阳离子的过程。
将电子从基态激发到脱离原子,叫做电离,这时所需的能量叫电离电势能。
例如氢原子中基态的能量为 -13.6eV(电子伏特),使电子电离的电离势能就是 13.6eV(即 2.18 ×10-18焦耳)。
简单点说,就是电解质在水溶液中或熔融状态下产生自由移动的离子的过程.水解物质与水发生的复分解反应。
(例图:碳酸根离子分步水解)由弱酸根或弱碱离子组成的盐类的水解有两种情况:①弱酸根与水中的H+结合成弱酸,溶液呈碱性,如乙酸钠的水溶液:CH3COO-+ H2O ←═→ CH3COOH + OH-②弱碱离子与水中的OH-结合,溶液呈酸性,如氯化铵水溶液:NH4+ + H2O ←═→ NH3· H2O + H+生成弱酸(或碱)的酸(或碱)性愈弱,则弱酸根(或弱碱离子)的水解倾向愈强。
电离平衡常数和水解平衡常数关系
若是一元弱碱强酸盐,如氯化铵:可得Kh=Kw/ Kb。
若是弱酸弱碱盐,如醋酸铵:可得Kh= Kw/(Ka×Kb)。
1、Ka、Kb分别表示一元弱酸、一元弱碱的电离常数,弱酸、弱碱均属于弱电解质。
在一定条件下,弱电解质电离达到平衡时,溶液中电离出来的各种离子浓度乘积与溶液中未电离的电解质分子浓度的比值是一个常数,叫做该弱电解质的电离平衡常数。
弱电解质的电离平衡常数只与温度有关,而与该弱电解质的浓度无关。
一般Ka (或Kb)值越大,表示酸(或碱)的电离程度就越大,相应酸(或碱)的酸性(或碱性)就越强。
可利用Ka、Kb的值计算酸(或碱)溶液中各微粒浓度。
2、Kh是盐的水解平衡常数,水解反应也是一种离子平衡。
在一定温度下,能水解的盐(强碱弱酸盐、强酸弱碱盐或弱酸弱碱盐)在水溶液中达到水解平衡时。
生成的弱酸(或弱碱)浓度与氢氧根离子(或氢离子)浓度之积与溶液中未水解的弱酸根阴离子(或弱碱的阳离子)浓度之比是一个常数,该常数就叫水解平衡常数。
同其它平衡常数一样,Kh只与水解盐的性质、温度有关。
Kh也可以衡量反应进行程度的。
Kh越大,表示水解程度越大。
可利用Kh的值计算溶液中各微粒浓度。
3、Kw是水的离子积,是指在一定温度下水中c(H+)和c(OH-)的乘积。
电解质溶液最新考纲展示 1.了解电解质的概念;了解强电解质和弱电解质的概念。
2.了解电解质在水溶液中的电离,以及电解质溶液的导电性。
3.了解弱电解质在水溶液中的电离平衡。
4.了解水的电离、水的离子积常数。
5.了解溶液pH的定义;了解测定溶液pH的方法,能进行pH的简单计算。
6.了解盐类水解的原理、影响盐类水解程度的主要因素、盐类水解的应用。
7.了解难溶电解质的沉淀溶解平衡,了解溶度积的含义及其表达式,能进行相关的计算。
(5)NaHCO3溶液的电荷守恒式:____________________________________________________;NaHCO3溶液的物料守恒式:______________________________________________________。
3.溶液的酸碱性和pH:(1)25℃,0.01mol·L-1的盐酸中,c(OH-)=________mol·L-1,pH=____________,由水电离出的c(H+)=________。
(2)100℃时,pH=6的水中c(H+)=________mol·L-1,该水显________性。
(3)100℃时(K w=10-12),0.01mol·L-1的NaOH溶液的pH为________________,由水电离出的c(OH-)=________。
(4)25℃时,pH=8的CH3COONa溶液中c(OH-)=__________________,由水电离的c(OH-)=________________。
4.正误判断,正确的打“√”,错误的打“×”(1)任何温度下,水溶液中c(H+)和c(OH-)的相对大小都可判断溶液的酸、碱性()(2)弱电解质的导电能力一定比强电解质的导电能力弱()(3)某盐溶液呈酸性,一定是由水解引起的()(4)水解方程式都必须写“”()OA.溶液的体积10V甲≤V乙B.水电离出的OH-浓度:10c(OH-)甲≤c(OH-)乙C.若分别用等浓度的NaOH溶液完全中和,所得溶液的pH:甲≤乙D.若分别与5mLpH=11的NaOH溶液反应,所得溶液的pH:甲≥乙3.证明NaHSO3溶液中HSO的电离程度大于水解程度,可采用的实验方法是________(填序号)。
水解方程式和电离方程式的区别水解方程式和电离方程式的区别水解方程式和电离方程式的区别一般情况下,水解与电离都是解离过程,但两者又有着本质的区别。
一、原理不同原理不同。
水解反应是水分子( H+)在溶液中分解生成氢离子( H+)、氢氧根离子( OH-)和水的反应;而电离是水的分子( H +)或者H离子( H+)在溶液中分解生成氢离子( H+)、氢氧根离子( OH-)和水的反应。
二、条件不同方程式内容不同。
水解的条件是水分子( H+)在溶液中完全解离成氢离子( H+)和氢氧根离子( OH-);而电离的条件是水分子( H+)或者H离子( H+)在溶液中部分解离成氢离子( H+)、氢氧根离子( OH-)和水;水电离的方程式为: OH-+H+==H++OH-。
结果形成不同。
水解时,水解反应中水的化合价降低,离子键断裂,化合物分解成离子化合物;电离时,电离反应中水的化合价升高,离子键断裂,水被分解成氢离子( H+)和氢氧根离子( OH-)。
三、应用范围不同。
水解是在水溶液中发生的化学反应,可以发生在酸、碱、盐溶液中,应用于中和酸、碱、盐,也常用于食品的保存、营养素的提取、农药等的除去,也用于生物大分子的提取和精制等方面。
而电离只能在水溶液中进行,用于鉴定、提纯、去除水溶性杂质等,例如在检测钠离子、镁离子等金属离子时。
四、书写形式不同。
水解反应的化学方程式用分子式表示;而电离方程式中,在分子式的右上角写明被测离子,在分子式的左下角写明生成物。
水解方程式和电离方程式的联系从物质的水溶液中,以分子或离子的形式电离出某些元素的化学反应来考虑,这样的反应叫做电离反应。
水解反应和电离反应之间具有密切的联系,电离方程式与水解方程式互相联系。
操作方法不同。
水解反应中,分子式的上下同时有标明该反应生成物和反应物的化学式;电离方程式则只需要在分子式的左下角标明反应物和生成物。
水解方程式和电离方程式的转化将电离方程式和水解方程式代入化学式中,利用等效平衡原理,由水解反应电离方程式,可以推导出水解方程式,反之亦然。
电离平衡理论和水解平衡理论——解题方法总结[引入]电解质溶液中有关离子浓度的判断是近年高考的重要题型之一。
解此类型题的关键是掌握“两平衡、两原理”,即弱电解质的电离平衡、盐的水解平衡和电解质溶液中的电荷守恒、物料守恒原理。
首先,我们先来研究一下解决这类问题的理论基础。
一、电离平衡理论和水解平衡理论1.电离理论:⑴弱电解质的电离是微弱的,电离消耗的电解质及产生的微粒都是少量的,同时注意考虑水的电离的存在。
⑵多元弱酸的电离是分步的,主要以第一步电离为主。
2.水解理论:从盐类的水解的特征分析:水解程度是微弱的(一般不超过2‰)。
例如:NaHCO3溶液中,c(HCO3―)>>c(H2CO3)或c(OH― )理清溶液中的平衡关系并分清主次:⑴弱酸的阴离子和弱碱的阳离子因水解而损耗;如NaHCO3溶液中有:c(Na+) >c(HCO3-)。
⑵弱酸的阴离子和弱碱的阳离子的水解是微量的(双水解除外),因此水解生成的弱电解质及产生H+的(或OH-)也是微量,但由于水的电离平衡和盐类水解平衡的存在,所以水解后的酸性溶液中c(H+)(或碱性溶液中的c(OH-))总是大于水解产生的弱电解质的浓度。
⑶一般来说“谁弱谁水解,谁强显谁性”,如水解呈酸性的溶液中c(H+)>c(OH-),水解呈碱性的溶液中c(OH-)>c(H+)。
⑷多元弱酸的酸根离子的水解是分步进行的,主要以第一步水解为主。
守恒作为自然界的普遍规律,是人类征服改造自然的过程中对客观世界抽象概括的结果。
在物质变化的过程中守恒关系是最基本也是本质的关系之一,化学的学习若能建构守恒思想,善于抓住物质变化时某一特定量的固定不变,可对化学问题做到微观分析,宏观把握,达到简化解题步骤,既快又准地解决化学问题之效。
守恒在化学中的涉及面宽,应用范围极广,熟练地应用守恒思想无疑是解决处理化学问题的重要方法工具。
守恒思想是一种重要的化学思想,其实质就是抓住物质变化中的某一个特定恒量进行分析,不探究某些细枝末节,不考虑途径变化,只考虑反应体系中某些组分相互作用前后某种物理量或化学量的始态和终态。
电离与水解[考纲要求]1.了解电离、电解质、强电解质和弱电解质的概念。
2.了解并能表示弱电解质在水溶液中的电离平衡。
3.了解水的电离和水的离子积常数。
了解溶液pH的定义,能进行溶液pH的简单计算。
4.了解盐类水解的原理,能说明影响盐类水解的主要因素,认识盐类水解在生产、生活中的应用。
5.理解难溶电解质的沉淀溶解平衡,能运用溶度积常数(K sp)进行简单计算。
考点一溶液的酸碱性及pH1.一个基本不变相同温度下,不论是纯水还是稀溶液,水的离子积常数不变。
应用这一原则时需要注意两个条件:水溶液必须是稀溶液;温度必须相同。
2.两种测量方法溶液的pH值可以用pH试纸测定(精确到整数,且只能在1~14的范围内),也可以用pH计(精确到0.1)测定。
3.三个重要比较水溶液可分为酸性溶液、中性溶液和碱性溶液,下表是常温下这三种溶液的比较:溶液的酸碱性c(H+)与c(OH-)比较c(H+)大小pH酸性溶液c(H+)>c(OH-)c(H+)>1×10-7 mol·L-1<7中性溶液c(H+)=c(OH-)c(H+)=1×10-7 mol·L-1=7碱性溶液c(H+)<c(OH-)c(H+)<1×10-7 mol·L-1>74.pH(1)pH=7的溶液不一定呈中性。
只有在常温下pH=7的溶液才呈中性;当在100 ℃时,水的离子积常数为1×10-12,此时pH=6的溶液为中性溶液,pH>6时为碱性溶液,pH<6时为酸性溶液。
(2)使用pH试纸测溶液pH时,若先用蒸馏水润湿,测量结果不一定偏小。
若先用蒸馏水润湿,相当于将待测液稀释了,若待测液为碱性溶液,则所测结果偏小;若待测液为酸性溶液,则所测结果偏大;若待测液为中性溶液,则所测结果没有误差。
5.溶液中的c (H +)和水电离出来的c (H +)的区别(1)室温下水电离出的c (H +)=1×10-7 mol·L -1,若某溶液中水电离出的c (H +)<1×10-7 mol·L-1,则可判断该溶液呈酸性或碱性;若某溶液中水电离出的c (H +)>1×10-7 mol·L -1,则可判断出该溶液中存在能水解的盐,从而促进了水的电离。
电离平衡和水解平衡的比较
电离平衡水解平衡实例H2S水溶液(0.1mol/L)Na2S水溶液(0.1mol/L)研究对象弱电解质(弱酸、弱碱、水)强电解质(弱酸盐、弱碱盐)
实质弱酸H+ + 弱酸根离子
弱碱OH—+ 弱碱阳子
H2O + H2O H3O+ + OH—
离子化速率= 分子化速率
弱酸根阴离子+H2O 弱酸+ OH—
弱碱阳离子+H2O 弱碱+ H+
水解速率= 中和速率
程度酸或碱越弱,电离程度越小,多
元酸的一级电离远远大于二级电
离,大于三级电离……
“越弱越水解”,多元弱酸根一级水解
远远大于二级水解,大于三级水解……
一般中和程度远远大于水解程度
双水解程度较大,甚至很彻底。
能量变化吸热(极少数例外)吸热
表达式电离方程式:①用“”
②多元弱酸分步电离
H2S H+ + HS—
HS—H+ + S2—
水解反应离子方程式①用“”
②多元弱酸根分步水解③除了双水解
反应,产物不写分解产物,不标↑或↓
S2—+H2O HS—+OH—(主要)
HS—+H2O H2S+OH—(次要)
微粒浓度
大小比较
c(H2S)>c(H+)>c(HS—)>c(S2
—) >c(OH-)
c(Na+)>c(S2-)>c(OH-)>c(HS-)>c(H2S)>
c(H+)
电荷守恒式c(H+)= c(HS-)+2c(S2-)+ c(OH-) c(Na+)+ c(H+)= c(HS-)+2c(S2-)+ c(OH-) 物料守恒式c(H2S)+c(HS—)+c(S2—)=0.1mol/L
c(H2S)+c(HS—)+c(S2—)=0.1mol/L=
c(Na+)/2
影响因素
温度升温促进电离(极少数例外)升温促进水解
浓
度
稀释
促进电离,但浓度减小,酸性减
弱
促进水解,但浓度减小,碱性减弱通H2S
电离平衡向右移动,酸性增强,
但
电离程度减小,电离常数不变。
S2—+H2O HS—+ OH—
H2S + OH—HS—+ H2O 促使上述平
衡右移,合并为:H2S + S2—2HS—加Na2S
H2S H+ + HS—
S2—+ H+HS—促使上述平衡
右移,合并为:H2S + S2—2HS
—
水解平衡向右移动,碱性增强,但水解
程度减小。
☆结论:酸按酸,碱按碱,同强混合在中间,异强混合看过量。
(3)如两强酸或两强碱pH值相差两个单位以上[c(H+)、c(OH-)相差100倍以上],等体积混合后,相当于pH值小的强酸或pH大的强碱加水稀释一倍[忽略稀溶液中的c(H+)或c(OH-)],pH 值变化0.3个单位(1g2=0.3)。
即:
强酸混合时,pH混= pH小+ 0.3 强碱混合时,pH混= pH大—0.3。