第三章光电子技术-2(声光调制和声光偏转)
- 格式:ppt
- 大小:2.83 MB
- 文档页数:51
声光偏转器和声光调制器的基本原理下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!声光偏转器和声光调制器的基本原理声光偏转器和声光调制器是光电子学领域中常用的两种器件,它们在光信号处理和通信系统中起着重要作用。
声光偏转器物理原理-----主要方程式将具有一个射频信号的压电传感器粘固在合适的晶体上,那么就会产生一个声波。
类似“相位光栅”,声波以介质中的声速穿过晶体,声波波长取决于射频信号频率。
任意入射光束通过该光栅时都会发生衍射,通常都会产生很多条衍射光束。
相互作用条件参数品质因数Q,决定相互作用机制。
Q如下式给出:2兀入丄nA2式中,;•为激光束的波长,n是晶体的折射率,L是光束穿过声波的距离,二是声波波长Q<<1 : Raman-Nath衍射机制。
光束大致垂直入射声波束,会出现一些衍射条纹,其强度可由Bessel函数得出。
RamanQ>>1 : Bragg衍射机制。
以特定角「•入射,只有一条衍射条纹一其他条纹通过干涉相互抵消1 st order0 order在中间情况下,单独的分析处理是不可能的,要通过电脑完成一系列分析。
(In the in termediate situati on, an an alytical treatme nt isn't possible and a numerical analysis would need to be performed by computer ).大多数声光设备运行在Bragg机制下,常见的例外就是声光模式的锁模和Q-开关(Most acousto-optic devices operate in the Bragg regime, the com mon exception being acousto-optic mode lockers and Q-switches.)波矢解释声光效应可以用波矢来描述。
由动量守恒可得:'111 --入射光波矢'■'-衍射光波矢.二节;-声波波矢这里F是声波的频率,声速为v, n i和n d是入射光和衍射光下的折射率(它们并不是一定相同的能量守恒推得:F d = F i +/- F所以衍射光的光频率近似等于声波的频率。
声波是一种纵向机械应力波(弹性波).若把这种应力波作用到声光介质中时会引起介质密度呈疏密周期性变化,使介质的折射率也发生相应的周期性变化,这样声光介质在超声场的作用下,就变成了一个等效的相位光栅,如果激光作用在该光栅上,就会产生衍射。
衍射光的强度、频率和方向将随超声场而变化。
激光具有极好的时间相干性和空间相干性,它与无线电波相似,易于调制,且光波的频率极高,能传递信息的容量很大;加之激光束发散角小,光能高度集中,既能传输较远距离,又易于保密,因而为光信息传递提供了一种理想的光源。
激光调制我们把欲传输的信息加载于激光副射的过程称为激光调制。
光调制分为内调制和外调制两类。
外调制是指加载调制信号在激光形成以后进行的,即调制器置于激光谐振腔外,在调制器上加调制信号电压,使调制器的某些物理特性发生相的变化,当激光通过它时即得到调制,所以外调制不是改变激光器参数,而是改变已经输出的激光的参数(强度,频率等)。
声光调制声波是一种纵向机械应力波(弹性波)。
若把这种应力波作用到声光介质中时会引起介质密度呈疏密周期性变化,使介质的折射率也发生相应的周期性变化。
这样声光介质在超声场的作用下,就变成了一个等效的相位光栅,如果激光作用在该光栅上,就会产生衍射。
衍射光的强度、频率和方向将随超声场而变化.所谓“声光调制器”就是利用这一原理而实现光束调制或偏转的。
声光调制的原理1、超声波在声光介质中的作用声波在介质中传播分为行波和驻波两种形式。
行波所形成的声光栅其栅面是在空间移动的。
介质折射率的增大和减小是交替变化的,并且以超声波的速度V向前s推进。
在声光介质中,两列相向而行的超声波(其波长,相位和振幅均相同)产生叠加,在空间将形成超声驻波。
声驻波形成的声光栅在空间是固定的,其相位变化与时间成正弦关系,合成声波方程为:a(z,t)=a1(z,t)+a2(z,t)=2Acos2πz/λs·sin2πt/Ts介质中折射率的变化如图1所示,声波在一个周期T内,介质将两次出现疏密层,且在波节处密度保持不变,因而折射率每隔半个周期(T/2)在波腹处变化一次,即由极大值变为极小值,或由极小值变为极大值,在两次变化的某一瞬间介质各部分折射率相同,相当于一个不受超声场作用的均匀介质。
《声光调制的原理及应用》声光调制技术是一种利用声音信号控制光的传输和发射的技术。
它利用声音信号的变化来控制光信号的传输,从而实现声音与光的转换和互相影响。
声光调制技术在通信、光学传感、光学计算和生物医学等领域有着广泛的应用。
本文将介绍声光调制的基本原理和其在不同领域的应用。
一、声光调制的原理声光调制原理是基于光的折射现象和声音的振动原理。
当声音信号通过声音传感器转换成电信号后,电信号会控制声光调制器中的光学元件,使得光线的传输、频率、强度等参数发生变化。
声光调制技术主要应用于声光交叉开关、动态光栅、光学调制器等设备中。
声光调制器主要包括声光作用单元和声音调制单元。
声音调制单元负责将声音信号转换成电信号,而声光作用单元则将电信号转换成光信号。
其中,声光晶体是声光作用单元的主要组成部分,它能够根据电信号的变化来调节光的传输,实现声音与光的转换。
声光调制器能够实现声光信号的传输、调制和解调,是光学通信和信息处理领域的重要设备。
二、声光调制的应用1.光学通信声光调制技术在光纤通信和光学网络中有着广泛的应用。
通过声光调制器,可以将电信号转换成光信号,并实现光信号的传输和解调。
声光调制技术提高了光纤通信的带宽和信号传输速度,使得光纤通信系统具有更高的传输效率和稳定性。
2.光学传感声光调制技术在光学传感领域中有着重要的应用。
声光传感器能够实现对声音信号的检测和转换,用于声学信号处理和声音识别。
声光传感器在工业、医疗和环境监测等领域中得到广泛应用,为相关领域的研究和应用提供了重要的技术支持。
3.光学计算声光调制技术在光学计算和信息处理领域中有着重要的应用。
声光调制器能够实现对光信号的调制和解调,用于光学计算和信息传输。
声光调制技术能够提高光学计算系统的速度和效率,为光学计算和信息处理提供了新的技术手段。
4.生物医学声光调制技术在生物医学领域中也有着重要的应用。
声光调制技术能够实现对声音信号的处理和转换,用于医学影像处理和信号采集。
声光调制的工作原理与应用1. 声光调制的基本原理声光调制是一种利用声音信号来调制光信号的技术,它基于固体中的声子与光子之间的相互作用。
声光调制器通常由声光晶体和驱动电路组成。
1.1 声光晶体声光晶体是声光调制的关键元件,它能够将声波转换为光波或将光波转换为声波。
常用的声光晶体有硅、锗和砷化镓等。
1.2 驱动电路驱动电路用于产生驱动信号,控制声光晶体的工作状态。
驱动电路通常由放大器、振荡器和滤波器等组成。
2. 声光调制的工作原理声光调制器的工作过程可以简述为:1.输入的声波信号经过放大器放大,得到驱动信号;2.驱动信号进一步经过滤波器,去除高频噪声;3.驱动信号通过连接到声光晶体的电极,使声光晶体发生电光效应,将电信号转换为光信号;4.光信号经过光学系统进行调制,最后输出。
3. 声光调制的应用声光调制技术在许多领域都有广泛的应用,以下列举了一些常见的应用场景:3.1 光通信声光调制器可以用于光通信中的信号调制。
通过将声音信号转换为光信号,可以实现高速、高带宽的光通信传输。
3.2 激光雷达激光雷达是一种通过发射激光束并接收其返回的信号来测量目标距离、速度和方位角的技术。
声光调制器可以用于控制激光的频率和波长,从而实现更精确的测量。
3.3 光学成像声光调制技术可以用于光学成像中的信号处理。
通过调制光信号的相位和强度,可以实现图像的增强和改善。
3.4 光谱分析在光谱分析中,声光调制器可以用于实现光信号的频谱分析。
通过调制光信号的频率,可以得到待测样品的光谱信息。
3.5 光学信号处理声光调制技术还可以用于光学信号处理,如光学调制、光学开关和光学存储等。
4. 总结声光调制技术是一种利用声音信号来调制光信号的技术,它利用声光晶体将声波转换为光波或将光波转换为声波。
它在光通信、雷达、成像等领域都有广泛的应用。
随着技术的发展,声光调制技术将会有更广阔的发展前景。
电光调制实验一 实验原理电光调制实验仪作为高等院校新一代的物理实验仪器,在基础物理实验和相关专业的实验中用以研究电场和光场相互作用的物理过程,也适用于光通讯与光信息处理的实验研究。
电光调制器的调制信号频率可达 Hz 量级,因而在激光通讯、激光显示等领域中有广泛的应用。
(一)电光调制原理某些晶体在外加电场的作用下,其折射率随外加电场的改变而发生变化的现象称为电光效应,利用这一效应可以对透过介质的光束进行幅度,相位或频率的调制,构成电光调制器。
电光效应分为两种类型:(1)一级电光(泡克尔斯—Pockels )效应,介质折射率变化正比于电场强度。
(2)二级电光(克尔—Kerr )效应,介质折射率变化与电场强度的平方成正比。
本实验仪使用铌酸锂(LiNbO 3)晶体作电光介质,组成横向调制(外加电场与光传播方向垂直)的一级电光效应。
图1 横向电光效应示意图如图1所示,入射光方向平行于晶体光轴(Z 轴方向),在平行于X 轴的外加电场(E )作用下,晶体的主轴X 轴和Y 轴绕Z 轴旋转45°,形成新的主轴X ’轴—Y ’轴(Z 轴不变),它们的感生折射率差为Δn ,并正比于所施加的电场强度E :rE n n 30=∆式中r 为与晶体结构及温度有关的参量,称为电光系数。
n 0为晶体对寻常光的折射率。
当一束线偏振光从长度为l 、厚度为d 的晶体中出射时,由于晶体折射率10910~101的差异而使光波经晶体后出射光的两振动分量会产生附加的相位差δ,它是外加电场E 的函数: U d l r n rE n nl ⎪⎭⎫ ⎝⎛==∆=3030222λπλπλπδ (1) 式中λ为入射光波的波长;同时为测量方便起见,电场强度用晶体两极面间的电压来表示,即U=Ed 。
当相差πδ=时,所加电压l d r n U U 302λπ== (2) πU 称为半波电压,它是一个可用以表征电光调制时电压对相差影响大小的重要物理量。
实验三晶体的声光调制实验一、实验目的(1) 了解声光效应的原理。
(2) 了解喇曼一纳斯衍射和布喇格衍射的实验条件和特点。
(3) 测量声光偏转和声光调制曲线。
(4) 完成声光通信实验光路的安装及调试。
二、实验原理当超声波在介质中传播时,将引起介质的弹性应变作时伺和空间上的周期性的变化,并且导致介质的折射率也发生相应变化。
当光束通过有超声波的介质后就会产生衍射现象,这就是声光效应。
有超声波传播的介质如同一个相位光栅。
声光效应有正常声光效应和反常声光效应之分。
在各向同性介质中,声一光相互作用不导致入射光偏振状态的变化,产生正常声光效应。
在各项异性介质中,声一光相互作用可能导致入射光偏振状态的变化,产生反常声光效应。
反常声光效应是制造高性能声光偏转器和可调滤波器的基础。
正常声光效应可用喇曼一纳斯的光栅假设作出解释,而反常声光效应不能用光栅假设作出说明。
在非线性光学中,利用参量相互作用理论,可建立起声一光相互作用的统一理论,并且运用动量匹配和失配等概念对正常和反常声光效应都可作出解释。
本实验只涉及到各向同性介质中的正常声光效应。
设声光介质中的超声行波是沿少方向传播的平面纵波,有超声波存在的介质起一平面相位光栅的作用。
当声光作用的距离满足L>2λs/λ,而且光束相对于超声波波面以某一角度入射时,在理想情况下除了0级之外,只出现1级或一1级衍射。
这种衍射与晶体对尤光的布喇格衍射很类似,故称为布喇格衍射。
能产生这种衍射的光束入射角称为布喇格角。
此时有超声波存在的介质起体积光栅的作用。
通过改变超声波的频率和功率,可分别实现对激光束方向的控制和强度的调制,这是声光偏转器和声光调制器的基础。
从(10)式可知,超声光栅衍射会产生频移,因此利用声光效应还可以制成频移器件。
超声频移器在计量方面有重要应用,如用于激光多普勒测速仪。
以上讨论的是超声行波对光波的衍射。
实际上,超声驻波对光波的衍射也产生喇曼一纳斯衍射和布喇格衍射,而且各衍射光的方位角和超声频率的关系与超声行波的相同。
声光调制原理声光调制(Acousto-Optic Modulation,AOM)是一种通过声波控制光的传播和特性的技术。
声光调制原理是利用声波在光学介质中的传播特性,通过声波的折射、散射和吸收等效应来调制光的相位、振幅和频率,从而实现对光信号的调制和处理。
声光调制技术在光通信、光信息处理、光谱分析、光学成像等领域有着重要的应用价值。
声光调制原理的基本过程是,首先,通过压电换能器等装置产生声波,并将声波耦合到光学介质中;其次,声波在光学介质中传播时,会引起介质中的折射率、光学路径长度等参数的变化;最后,这些参数的变化将导致光波的相位、振幅和频率发生相应的调制。
具体来说,声光调制可以分为折射型声光调制和衍射型声光调制两种基本类型。
在折射型声光调制中,声波的传播会导致介质折射率的周期性变化,从而使通过介质的光波发生相位调制。
而在衍射型声光调制中,声波的传播会导致光波的衍射效应,通过衍射光栅的产生来实现光波的频率调制。
无论是折射型声光调制还是衍射型声光调制,其基本原理都是通过声波对光学介质的影响,实现对光信号的调制和处理。
声光调制技术具有许多优点,例如调制速度快、频率响应宽、非接触式调制等,因此在许多领域得到了广泛的应用。
在光通信系统中,声光调制器可以用于光纤通信中的信号调制和解调,提高通信系统的传输速率和稳定性;在光学成像领域,声光调制技术可以用于实现超声波光学成像,提高成像分辨率和深度;在光学信息处理中,声光调制器可以用于实现光学信号的调制、滤波和变换,实现光学信息的处理和传输等。
总之,声光调制原理是一种重要的光学调制技术,通过声波对光学介质的影响,实现对光信号的调制和处理。
声光调制技术在光通信、光信息处理、光学成像等领域有着广泛的应用前景,对于推动光学技术的发展和应用具有重要的意义。
随着光电子技术的不断进步和发展,相信声光调制技术将会在更多的领域得到应用,并发挥出更大的作用。
电光调制与声光调制实验目的:1 了解调制种类,理解各种调制原理。
2 熟练掌握电光调制和声光调制间的区别。
2 能进行简单的电光调制和声光调制实验设计,为后续的激光语音传输实验打下理论基础。
将传输的信息加载于激光辐射的过程称为激光调制。
光调制指的是使光信号的一个或几个特征参量按被传送信息的特征变化,以实现信息检测传送目的的方法。
光调制可分为强度调制、相位调制、偏振调制、频率和波长调制。
下面将分别介绍各种调制的原理和方法。
1光强度调制光强度调制是以光的强度作为调制对象,利用外界因素使待测的直流或缓慢变化的光信号转换成以某一较快频率变化的光信号,这样,就可采用交流选频放大器放大,然后把待测的量连续测量出来。
2光相位调制利用外界因素改变光波的相位,通过检测相位变化来测量物理量的原理称为光相位调制。
光波的相位由光传播的物理长度、传播介质的折射率及其分布等参数决定,也就是说改变上述参量即可产生光波相位的变化,实现相位调制。
3光偏振调制利用偏振光振动面旋转,实现光调制最简单的方法是用两块偏振器相对转动,按马吕斯定理,输出光强为2cosI Iα=,式中I为两偏振器主平面一致时所通过的光强;α为两偏振器主平面间的夹角。
4频率和波长调制利用外界因素改变光的频率或光的波长,通过检测光的频率或光的波长的变化来测量外界的物理量的原理,称为光的频率和波长调制。
实验内容:一、电光调制利用电光效应实现的调制叫电光调制。
图1是典型的电光强度调制器示意图,电光晶体(例如KDP晶体)放在一对正交偏振器之间,对晶体实行纵向运用,则加电场后的晶体感应主轴x1′、x2′方向,相对晶轴x1、x2方向旋转 45°,并与起偏器的偏振轴P1成45°夹角。
图1电光强度调制器示意图通过计算得到检偏器输出的光强I 与通过起偏器输入的光强0I 之比为20sin 2I I ϕ=当光路中未插入1/4 波片时,上式的ϕ即是电光晶体的电光延迟。
实验一电光调制1.一、实验目的:2.了解电光调制的工作原理及相关特性;3.掌握电光晶体性能参数的测量方法;二、实验原理简介:某些光学介质受到外电场作用时, 它的折射率将随着外电场变化, 介电系数和折射率都与方向有关, 在光学性质上变为各向异性, 这就是电光效应。
电光效应有两种, 一种是折射率的变化量与外电场强度的一次方成比例, 称为泡克耳斯(Pockels)效应;另一种是折射率的变化量与外电场强度的二次方成比例, 称为克尔(Kerr)效应。
利用克尔效应制成的调制器, 称为克尔盒, 其中的光学介质为具有电光效应的液体有机化合物。
利用泡克耳斯效应制成的调制器, 称为泡克耳斯盒, 其中的光学介质为非中心对称的压电晶体。
泡克耳斯盒又有纵向调制器和横向调制器两种, 图1是几种电光调制器的基本结构形式。
图1: 几种电光调制器的基本结构形式a) 克尔盒 b) 纵调的泡克耳斯盒 c) 横调的泡克耳斯盒当不给克尔盒加电压时, 盒中的介质是透明的, 各向同性的非偏振光经过P后变为振动方向平行P光轴的平面偏振光。
通过克尔盒时不改变振动方向。
到达Q时, 因光的振动方向垂直于Q光轴而被阻挡(P、Q分别为起偏器和检偏器, 安装时, 它们的光轴彼此垂直。
), 所以Q没有光输出;给克尔盒加以电压时, 盒中的介质则因有外电场的作用而具有单轴晶体的光学性质, 光轴的方向平行于电场。
这时, 通过它的平面偏振光则改变其振动方向。
所以, 经过起偏器P产生的平面偏振光, 通过克尔盒后, 振动方向就不再与Q光轴垂直, 而是在Q光轴方向上有光振动的分量, 所以, 此时Q就有光输出了。
Q的光输出强弱, 与盒中的介质性质、几何尺寸、外加电压大小等因素有关。
对于结构已确定的克尔盒来说, 如果外加电压是周期性变化的, 则Q的光输出必然也是周期性变化的。
由此即实现了对光的调制。
泡克耳斯盒里所装的是具有泡克耳斯效应的电光晶体, 它的自然状态就有单轴晶体的光学性质, 安装时, 使晶体的光轴平行于入射光线。
一、实验目的1. 理解电光调制和声光调制的原理及基本过程。
2. 掌握电光调制器和声光调制器的实验操作方法。
3. 分析实验数据,验证电光调制和声光调制的基本特性。
二、实验原理1. 电光调制原理电光调制是利用电光效应,即某些晶体在外加电场的作用下,其折射率将发生变化,从而改变光波的传输特性。
电光调制器主要由调制晶体、电极、光源和探测器组成。
当电场施加在调制晶体上时,光波的强度、相位或偏振状态会发生变化,从而实现对光信号的调制。
2. 声光调制原理声光调制是利用声光效应,即光波在介质中传播时,被超声波场衍射或散射的现象。
声光调制器主要由声光介质、电声换能器、吸声(或反射)装置及驱动电源等组成。
当超声波在介质中传播时,会引起介质的弹性应变,从而形成折射率光栅,使光波发生衍射现象。
通过控制超声波的强度、频率和相位,可以实现对光信号的调制。
三、实验仪器与装置1. 电光调制实验实验仪器:电光调制器、光源、探测器、示波器、信号发生器、直流电源等。
实验装置:将光源发出的光束通过调制晶体,然后经探测器接收,通过示波器观察调制后的光信号。
2. 声光调制实验实验仪器:声光调制器、光源、探测器、示波器、信号发生器、超声波发生器等。
实验装置:将光源发出的光束通过声光介质,然后经探测器接收,通过示波器观察调制后的光信号。
四、实验步骤1. 电光调制实验(1)将光源发出的光束通过调制晶体,调节直流电源,使电场施加在调制晶体上。
(2)观察示波器上的光信号,记录调制后的光信号波形。
(3)改变调制信号频率和幅度,观察调制效果。
2. 声光调制实验(1)将光源发出的光束通过声光介质,调节超声波发生器,产生超声波。
(2)观察示波器上的光信号,记录调制后的光信号波形。
(3)改变超声波频率和强度,观察调制效果。
五、实验数据与分析1. 电光调制实验(1)记录调制后的光信号波形,分析调制频率、幅度与调制效果的关系。
(2)分析电光调制器的调制带宽、调制深度等特性。
光电⼦技术基础课后答案《光电⼦技术》参考答案第三章1.⼀纵向运⽤的 KD*P 电光调制器,长为 2cm ,折射率 n =2.5,⼯作频率为 1000kHz 。
试求此时光在晶体中的渡越时间及引起的相位延迟。
解:渡越时间为:L nL2.5 2 10c 2 m 1.671010sdc / n 310 m /s8在本题中光在晶体中的渡越引起的相位延迟量为:210 6Hz 1.6710101.051031m d对相位的影响在千分之⼀级别。
3.为了降低电光调制器的半波电压,采⽤ 4块 z 切割的 KD* P 晶体连接(光路串联,电路并联)成纵向串联式结构。
试问:(1)为了使 4块晶体的电光效应逐块叠加,各晶体 x 和 y 轴取向应如何?(2)若0.628m ,n 01.51,6323.6 10m /V ,计算其半波电压,并与单块晶体调制器⽐较之.。
12 答:⑴⽤与 x 轴或 y 轴成 45夹⾓(为 45°-z 切割)晶体,横向电光调制,沿 z 轴⽅向加电场,通光⽅向垂直于 z 轴,形成(光路串联,电路并联)的纵向串联式结构。
为消除双折射效应,采⽤“组合调制器”的结构予以补偿,将两块尺⼨、性能完全相同的晶体的光轴互成 90串联排列,即⼀块晶体的 y'和 z 轴分别与另⼀块晶体的 z 和 y'平⾏,形成⼀组调制器。
4块 z 切割的 KD P 晶体连接成*⼆组纵向串联式调制器。
(P96) (2)于是,通过四块晶体之后的总相位差为2 L Ld2n 3 or 63V 4 n 3 o r V 63 d相应的半波电压是1 d 1 r 63 L 4 1.51 0.628 10 6 m d 1V dLV0.77310 4 4 n o 33 23.6 10 12m /V L 4 0.19310 4 V dL 该半波电压是单块横向晶体调制器半波电压的四分之⼀倍,是单块纵向晶体调制器半波电压的 1/(2 L/d)倍。