双曲线的简单性质练习题及答案
- 格式:doc
- 大小:174.50 KB
- 文档页数:3
双曲线专题一、学习目标:1.理解双曲线的定义;2.熟悉双曲线的简单几何性质;3.能根据双曲线的定义和几何性质解决简单实际题目.二、知识点梳理定 义1、到两个定点1F 与2F 的距离之差的绝对值等于定长(小于21F F )的点的轨迹2、到定点F 与到定直线l 的距离之比等于常数()1>e ee (>1)的点的轨迹标准方程-22a x 22b y =1()0,0>>b a -22a y 22bx =1()0,0>>b a 图 形性质范围a x ≥或a x -≤,R y ∈R x ∈,a y ≥或a y -≤对称性 对称轴: 坐标轴 ;对称中心: 原点渐近线x aby ±= x ba y ±= 顶点 坐标 ()0,1a A -,()0,2a A ()b B -,01,()b B ,02 ()a A -,01,()a A ,02()0,1b B -,()0,2b B焦点 ()0,1c F -,()0,2c F()c F -,01,()c F ,02轴 实轴21A A 的长为a 2 虚轴21B B 的长为b 2离心率1>=ace ,其中22b a c += 准线准线方程是c a x 2±=准线方程是ca y 2±=三、课堂练习1.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值是( )A.12 B .1或-2 C .1或12D .12.已知F 是双曲线x 24-y 212=1的左焦点,点A (1,4),P 是双曲线右支上的动点,则|PF |+|P A |的最小值为________.3.已知F 1,F 2分别为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1||PF 2|=( )A .2B .4C .6D .84.已知双曲线的两个焦点F 1(-10,0),F 2(10,0),M 是此双曲线上的一点,且MF 1→·MF 2→=0,|MF 1→|·|MF 2→|=2,则该双曲线的方程是( )A.x 29-y 2=1 B .x 2-y29=1C.x 23-y 27=1D.x 27-y 23=15.若F 1,F 2是双曲线8x 2-y 2=8的两焦点,点P 在该双曲线上,且△PF 1F 2是等腰三角形,则△PF 1F 2的周长为________.6.已知双曲线x 26-y 23=1的焦点为F 1,F 2,点M 在双曲线上,且MF 1⊥x 轴,则F 1到直线F 2M 的距离为( )A.365B.566C.65D.567.已知△ABC 的两个顶点A ,B 分别为椭圆x 2+5y 2=5的左焦点和右焦点,且三个内角A ,B ,C 满足关系式sin B -sin A =12sin C .(1)求线段AB 的长度; (2)求顶点C 的轨迹方程.8.双曲线C 的中点在原点,右焦点为F ⎝ ⎛⎭⎪⎫233,0,渐近线方程为y =±3x .(1)求双曲线C 的方程;(2)设直线L :y =kx +1与双曲线交于A ,B 两点,问:当k 为何值时,以AB 为直径的圆过原点?。
3.2.2双双双双双双双双双双(2)一、单选题1. 已知斜率为1的直线l 与双曲线2214x y -=的右支交于A ,B 两点,若||8AB =,则直线l 的方程为 ( )A. 21y x =B. 21y x =C. 35y x = D. 35y x =2. 已知圆223(1)4x y -+=的一条切线y kx =与双曲线2222:1(0,0)x y C a b a b -=>>没有公共点,则双曲线C 的离心率的取值范围是( )A. 3)B. (1,2]C. 3,)+∞D. [2,)+∞3. 设12,F F 是双曲线22:-=145x y C 的两个焦点,O 为坐标原点,点P 在C 上且||3OP =,则12PF F 的面积为( )A. 3B.72C.532D. 54. 已知1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的两个焦点,12||23F F =,600(,)M x y 是双曲线C 上的一点,若120MF MF ⋅<,则0y 的取值范围是( )A. 33(B. 33(C. 2222(33-D. 2323( 5. 若直线2y x =与双曲线22221(0,0)x y a b a b-=>>有公共点,则双曲线的离心率的取值范围为( )A. 5)B. 5,)+∞C. 5]D. 5,)+∞6. 已知双曲线方程为2214y x -=,过(1,0)P 的直线L 与双曲线只有一个公共点,则L 的条数共有( )A. 4条B. 3条C. 2条D. 1条7. 已知双曲线C :2212x y -=,若直线l :(0)y kx m km =+≠与双曲线C 交于不同的两点M ,N ,且M ,N 都在以(0,1)A -为圆心的圆上,则m 的取值范围是( )A. 1(,0)(3,)3-⋃+∞B. (3,)+∞C. (,0)(3,)-∞⋃+∞D. 1(,3)3-二、多选题8. 已知双曲线C :22221(0,0)x y a b a b-=>>的左,右焦点分别为1F ,2F ,过2F 作垂直于渐近线的直线l 交两渐近线于A ,B 两点,若223||||F A F B =,则双曲线C 的离心率可能为( )A.141B.6 C. 3 D. 59. 已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,左、右顶点分别为A 、B ,O 为坐标原点.点P 为双曲线上任意一点(异于实轴端点),过点1F 作12F PF ∠的平分线的垂线,垂足为Q ,连接.OQ 则下列结论正确的有.( )A. 2//OQ PFB. ||OQ a =C. 22||||2PF PF b ⋅=D. 2max()ABQ Sa =三、填空题10. 若直线0x y m -+=与双曲线2212y x -=交于不同的两点A ,B ,且线段AB 的中点在圆225x y +=上,则m 的值为__________.11. 直线1y kx =+与双曲线2231x y -=相交于不同的两点,.A B 若点,A B 分别在双曲线的左、右两支上,则实数k 的取值范围为__________;若以线段AB 为直径的圆经过坐标原点,则实数k 的值为__________.12. 已知双曲线C :22145x y -=的右焦点为F ,过F 的直线l 与C 交于A 、B 两点,若||5AB =,则满足条件的l 的条数为__________.13. 已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,1F ,2F 分别是双曲线的左、右焦点,点(,0)M a -,(0,)N b ,点P 为线段MN 上的动点,当12PF PF ⋅取得最小值和最大值时,12PF F 的面积分别为1S ,2S ,则21S S =__________. 四、解答题14. 设A ,B 分别为双曲线22221(0,0)x y a b a b-=>>的左,右顶点,双曲线的实轴长为43 3.(1)求双曲线的方程; (2)已知直线32y x =-与双曲线的右支交于M 、N 两点,且在双曲线的右支上存在点D ,使OM ON tOD +=,求t 的值及点D 的坐标.15. 如图,平面上,P 、Q 两地间距离为4,O 为PO 中点,M 处为一基站,设其发射的电波为直线,测量得60MOQ ︒∠=,且O 、M 间距离为23N 正在运行,它在运行过程中始终保持到P 地的距离比到Q 地的距离大2(P 、O 、M 、N 及电波直线均共面),请建立适当的平面直角坐标系.(1)求出机器人N 运行的轨迹方程;(2)为了使机器人N 免受M 处发射的电波的影响(即机器人接触不到过点M 的直线),求出电波所在直线斜率k 的取值范围.16. 已知双曲线E :22221(0,0)x y a b a b -=>>的两条渐近线方程为3y x =,且点(2,3)P 为E 上一点.(1)求E 的标准方程;(2)设M 为E 在第一象限的任一点,过M 的直线与E 恰有一个公共点,且分别与E 的两条渐近线交于点A ,B ,设O 为坐标原点,证明:AOB 面积为定值.17. 已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,过点且斜率为1的直线l 交双曲线C 于A ,B 两点.且 3.OA OB ⋅=(1)求双曲线C 的标准方程.(2)设Q 为双曲线C 右支上的一个动点,F 为双曲线C 的右焦点,在x 轴的负半轴上是否存在定点.M 使得2QFM QMF ∠=∠?若存在,求出点M 的坐标;若不存在,请说明理由.答案和解析1.【答案】B解:设直线l 的方程为y x m =+,,由2214y x m x y =+⎧⎪⎨-=⎪⎩得2238440x mx m +++=, 则212443m x x +=,1283m x x +=-,又因为||8AB =,且A 、B 是直线l 与双曲线2214x y -=右支的交点, 所以,且803m->, 即,且0m <,解得221m =,且0m <, 所以21m =-,所以直线l 的方程为21.y x =- 故选.B2.【答案】B解:由题意,圆心到直线的距离231d k ==+,3k ∴= 圆223(1)4x y -+=的一条切线y kx =与双曲线2222:1(0,0)x y C a b a b -=>>没有公共点,与其中一条渐近线by x a=斜率比较即可, 3b a∴,2214b a+,∴双曲线C 的离心率的取值范围是(1,2].故答案选:.B11(,)A x y3.【答案】D解:由已知得2, 3.a c == 设(,)P x y ,由||3OP =,得229x y +=, 所以229x y =-,代入22145x y -=,解得5.3y =± 所以1212115||||6||5223F F PSF F y ==⨯⨯±=, 故选.D4.【答案】A解:由题意,3c =2a =1b =,∴双曲线方程为22 1.2x y -=120MF MF ⋅<,220030x y ∴+-<, 220022x y =+, 20310y ∴-<,03333y ∴-<<, 故选:.A5.【答案】B解:双曲线22221(0,0)x y a b a b -=>>的渐近线方程为by x a=±,由双曲线与直线2y x =有交点, 则有2ba>, 即有22221()145c a b b e a a a+===+>+=则双曲线的离心率的取值范围为(5,).+∞ 故选:.B6.【答案】B解:由题意可得:双曲线2214y x -=的渐近线方程为:2y x =±, 点(1,0)P 是双曲线的右顶点,故直线1x =与双曲线只有一个公共点;过点(1,0)P 平行于渐近线2y x =±时,直线L 与双曲线只有一个公共点,有2条, 所以,过(1,0)P 的直线L 与双曲线只有一个公共点,这样的直线共有3条. 故选.B7.【答案】A解:设11(,)M x y ,22(,)N x y , 由,则①,且122412mkx x k+=-,21222(1)12m x x k -+=-, 设MN 的中点为00(,)G x y ,则02212km x k =-,0212my k=-, M ,N 在以A 为圆心的圆上,,G 为MN 的中点,AG MN ∴⊥,21212m k k km+-∴⋅=-,2231k m ∴=+②,由①②得103m -<<或3m >, 故选.A8.【答案】BC解:由题意得直线 l 垂直于渐近线by x a=,则2OA BF ⊥, 由双曲线性质得2||AF b =,||OA a =,由223||||F A F B =,得2||2||2AB AF b ==或2||4||4.AB AF b == 当2||2||2AB AF b ==时,如图:在Rt BOA 中,2tan b BOA a∠=, 由双曲线渐近线性质得21AOF BOF ∠=∠,2tan b AOF a∠=, 因此有22tan tan(2)tan(2)BOA AOF AOF π∠=-∠=-∠2222222tan 21tan 1bAOF b a b AOF a a⨯∠=-=-=-∠-,化简得2b a =,故离心率2213b e a=+=;当||4AB b =时,如图:在2Rt AOF 中,2tan b AOF a∠=,在Rt AOB 中,4tan b AOB a ∠=,因为22AOB AOF ∠=∠,利用二倍角公式,得2241()bb a b a a⨯=-, 化简得21()2b a =,故离心率2261.2b e a =+=综上所述,离心率e 的值为3或6.2故选.BC9.【答案】ABD解:如图所示:A 选项,延长1F Q 交2PF 于点C ,因为PQ 为12F PF ∠的平分线,1PQ F Q ⊥, 故Q 为1F C 的中点,1||||F Q QC =,又因为12||||FO F O =,即O 为12F F 的中点, 故OQ 为12F F C 的中位线, 所以2||2||F C OQ =,2//OQ F C , 又因为P 、2F 、C 共线, 故2//OQ PF ,故A 正确;B 选项,由定义可知12||||2PF PF a -=, 因为1||||F P PC =,而12||||2F P PF a -=, 故22||||||2PC PF F C a -==,而2||2||F C OQ =, 故1||22OQ a a =⨯=,故B 正确; C 选项,若212||||2PF PF b ⋅=,则222222212121212||||(||||)2||||444()PF PF PF PF PF PF a b c F F +=-+=+==,则1290F PF ∠=︒,题中无说明,故不成立,故C 错误; D 选项,因为||2AB a =,||OQ a =, 当OQ x ⊥轴时,2max1()22ABQ Sa a a =⨯⨯=,故D 正确.故选:.ABD10.【答案】1±解:设A ,B 两点的坐标分别为11(,)A x y ,22(,)B x y ,线段AB 的中点为00(,).M x y 由得22220(0)x mx m ---=∆>,则212122,2x x m x x m +==--,1202x x x m +∴==,002.y x m m =+= 点00(,)M x y 在圆225x y +=上,22(2)5m m ∴+=, 1.m ∴=±故答案为 1.±11.【答案】1±解:(1)由直线1y kx =+与双曲线2231x y -=,得22(3)220k x kx ---=, 因为A , B 在双曲线的左右两支上,所以230k -≠,2203k -<- 解得33;k -<<(2)假设存在实数k ,使得以线段AB 为直径的圆经过坐标原点,设11(,)A x y ,22(,)B x y ,则0OA OB ⋅=,即12120x x y y +=,1212(1)(1)0x x kx kx ∴+++=,即21212(1)()10k x x k x x ++++=,22222(1)1033kk k k k -∴+⋅+⋅+=--, 整理得21k =,符合条件,1.k ∴=±故答案为; 1.±12.【答案】3解:24a =,25b =,29c =,则(3,0)F ,若A 、B 都在右支上,当AB 垂直于x 轴时,将3x =代入22145x y -=得52y =±,则||5AB =,满足, 若A 、B 分别在两支上,2a =,∴两顶点的距离为2245+=<,∴满足||5AB =的直线有2条,且关于x 轴对称,综上满足条件的l 的条数为3. 故答案为:3.13.【答案】4解:离心率为2ce a==,即2c a =,3b a =, (,0)M a -,(0,)N b ,可得MN 的方程为0bx ay ab -+=,设(,)P m n ,1(,0)F c -,2(,0)F c ,可得22212(,)(,)PF PF c m n c m n m n c ⋅=---⋅--=+-, 由22222()m n m n +=+表示原点O 与P 的距离的平方, 显然OP 垂直于MN 时,||OP 最小, 由OP :ay x b=-,即33y x =-330x y a -+=, 可得33(,)44P a a -,即211332242S c a a =⋅⋅=, 当P 与N 重合时,可得||OP 最大, 可得2212232S c b a =⋅⋅=, 即有222123 4.3S a S a ==故答案为:4.14.【答案】解:(1)双曲线的渐近方程为by x a=±,焦点为(,0)F c ±, ∴焦点到渐近线的距离为,又243a =,23a ∴=,双曲线的方程为221.123x y -=(2)设点112200(,),(,),(,)M x y N x y D x y ,由得: 2163840x x -+=,1212123163,()4123x x y y x x ∴+=+=+-=, OM ON tOD +=,0,01212()(,)t x y x x y y ∴=++,有,又点00(,)D x y 在双曲线上, 2216312()()1123t t ∴-=,解得216t =,点D 在双曲线的右支上,0t ∴>,4t ∴=,此时点(43,3).D15.【答案】解:(1)如图所示,以点O 为坐标原点,以PQ 所在的直线为x 轴建立直角坐标系,则(2,0),(2,0)P Q -,设点(,)N x y ,则||||2||4NP NQ PQ -=<=, 所以动点N 是以点,P Q 为焦点的双曲线的右支, 由题得22,2,1a c a ===, 所以2413b =-=,所以动点N 的轨迹方程为221(1).3y x x -= (2)由题得点M 的坐标为3,3),设直线的方程为3(3)y k x -=,即:(3)3y k x =-+,联立直线和221(1)3y x x -=, 消去y 得2222(3)(236)633120k x k k x k k -+-+--=当230k -=时,若3k =当3k =当230k -≠时,由0∆<得2222(236)4(3)(63312)0k k k k k -----<,所以(3)(3)0k k --<, 32 3.k << 32 3.k <所以电波所在直线斜率k 的取值范围16.【答案】解:(1)当3ba =E 的标准方程为222213x y a a -=,代入(2,3),解得2 1.a =故E 的标准方程为221.3y x -=(2)直线斜率显然存在,设直线方程为y kx t =+,与2213y x -=联立得:222(3)230.k x ktx t -+++=由题意,3k ≠222244(3)(3)0k t k t ∆=--+=,化简得:2230.t k -+=设1122(,),(,)A x y B x y ,将y kx t =+与3y x =联立,解得13x k =-;与3y x =-联立,解得23x k=+ 212122113||||sin |2||2|sin1203|.22|3|AOBt S OA OB AOB x x x x k ︒∆=⋅⋅∠=⋅⋅==- 由2230t k -+=,3AOB S ∆∴AOB 3.17.【答案】解:(1)设双曲线C 的焦距为2c ,由双曲线C 的离心率为2知2c a =,所以223b c a a -=,从而双曲线C 的方程可化为222213x y a a-=,由得22226630x x a ---=,设11(,)A x y ,22(,)B x y , 因为,所以126x x +=,212332x x a ⋅=--, 因为3OA OB ⋅=,所以12121212(6)(6)3x x y y x x x x +=+=, 于是21212326()62(3)66632x x x x a ++=⨯--=,解得1a =, 所以双曲线C 的标准方程为2213y x -=; (2)假设存在,点(,0)(0)M t t <满足题设条件.由(1)知双曲线C 的右焦点为,设为双曲线C 右支上一点,当02x =时,因为290QFM QMF ︒∠=∠=, 所以45QMF ︒∠=,于是,所以 1.t =-当02x ≠时,00tan 2QF y QFM k x ∠=-=--,00tan QM y QMF k x t∠==-, 因为2QFM QMF ∠=∠,所以0002000221()y y x ty x x t⨯--=---, 将220033y x =-代入并整理得22200002(42)4223x t x t x tx t -++-=--++,所以,解得 1.t =-综上,满足条件的点M 存在,其坐标为。
双曲线专题一、学习目标:1.理解双曲线的定义;2.熟悉双曲线的简单几何性质;3.能根据双曲线的定义和几何性质解决简单实际题目.二、知识点梳理定 义1、到两个定点1F 与2F 的距离之差的绝对值等于定长(小于21F F )的点的轨迹2、到定点F 与到定直线l 的距离之比等于常数()1>e ee (>1)的点的轨迹标准方程-22a x 22b y =1()0,0>>b a -22a y 22bx =1()0,0>>b a 图 形性质范围a x ≥或a x -≤,R y ∈R x ∈,a y ≥或a y -≤对称性 对称轴: 坐标轴 ;对称中心: 原点渐近线x a by ±=x b a y ±=顶点 坐标 ()0,1a A -,()0,2a A ()b B -,01,()b B ,02 ()a A -,01,()a A ,02()0,1b B -,()0,2b B焦点 ()0,1c F -,()0,2c F()c F -,01,()c F ,02轴 实轴21A A 的长为a 2 虚轴21B B 的长为b 2离心率1>=ace ,其中22b a c += 准线准线方程是c a x 2±=准线方程是ca y 2±=三、课堂练习1、双曲线方程为2221x y -=,则它的右焦点坐标为( )A 、2,02⎛⎫ ⎪ ⎪⎝⎭B 、5,02⎛⎫⎪ ⎪⎝⎭C 、6,02⎛⎫⎪ ⎪⎝⎭D 、()3,01.解析:C2.设椭圆C 1的离心率为,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A . ﹣=1B .﹣=1C .﹣=1D .﹣=12.解析A :在椭圆C 1中,由,得椭圆C 1的焦点为F 1(﹣5,0),F 2(5,0),曲线C 2是以F 1、F 2为焦点,实轴长为8的双曲线, 故C 2的标准方程为:﹣=1,故选A .3.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( ) A.14 B.35 C.34 D.453.解析C :依题意得a =b =2,∴c =2. ∵|PF 1|=2|PF 2|,设|PF 2|=m ,则|PF 1|=2m .又|PF 1|-|PF 2|=22=m . ∴|PF 1|=42,|PF 2|=2 2. 又|F 1F 2|=4,∴cos ∠F 1PF 2=422+222-422×42×22=34.故选C.4.已知双曲线的两个焦点为F 1(﹣,0)、F 2(,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|•|PF 2|=2,则该双曲线的方程是( ) A.﹣=1 B.﹣=1 C.﹣y 2=1D.x 2﹣=14.解析C :解:设双曲线的方程为﹣=1. 由题意得||PF 1|﹣|PF 2||=2a ,|PF 1|2+|PF 2|2=(2)2=20.又∵|PF 1|•|PF 2|=2, ∴4a 2=20﹣2×2=16 ∴a 2=4,b 2=5﹣4=1.所以双曲线的方程为﹣y 2=1.故选C .5.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1B.x 25-y 220=1C.x 280-y 220=1D.x 220-y 280=1 5.解析A :设焦距为2c ,则得c =5.点P (2,1)在双曲线的渐近线y =±ba x 上,得a =2b .结合c=5,得4b 2+b 2=25, 解得b 2=5,a 2=20,所以双曲线方程为x 220-y 25=1. 6.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2 B .2 2 C .4 D .86.解析C :设等轴双曲线方程为x 2-y 2=a 2,根据题意,得抛物线的准线方程为x =-4,代入双曲线的方程得16-y 2=a 2,因为|AB |=43,所以16-(23)2=a 2,即a 2=4,所以2a =4,所以选C. 7.平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为________.7.解析:双曲线的右焦点(4,0),点M (3,15)或(3,-15),则点M 到此双曲线的右焦点的距离为4.8.以知F 是双曲线221412x y -=的左焦点,(1,4),A P 是双曲线右支上的动点,则PF PA + 的最小值为 。
课时作业(十一)[学业水平层次]一、选择题1.等轴双曲线的一个焦点是F 1(-6,0),则它的标准方程是( ) -x 218=1 -y 218=1 -y 28=1-x 28=1【解析】 设等轴双曲线方程为x 2a 2-y 2a 2=1(a >0),∴a 2+a 2=62,∴a 2=18,故双曲线方程为x 218-y218=1.【答案】 B2.(2014·天水高二考试)已知双曲线方程为x 2-y24=1,过P (1,0)的直线l 与双曲线只有一个公共点,则共有l ( )A .4条B .3条C .2条D .1条【解析】 因为双曲线方程为x 2-y24=1,所以P (1,0)是双曲线的右顶点,所以过P (1,0)并且和x 轴垂直的直线是双曲线的一条切线,与双曲线只有一个公共点,另外还有两条就是过P (1,0)分别和两条渐近线平行的直线,所以符合要求的共有3条,故选B.【答案】 B3.(2014·大纲全国卷)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,焦点到渐近线的距离为3,则C 的焦距等于( )A .2B .2 2C .4D .42【解析】 由已知得e =c a =2,所以a =12c ,故b =c 2-a 2=32c ,从而双曲线的渐近线方程为y =±ba x =±3x ,由焦点到渐近线的距离为3,得32c =3,解得c =2,故2c =4,故选C.【答案】 C4.(2014·广东高考)若实数k 满足0<k <5,则曲线x 216-y 25-k =1与曲线x 216-k -y 25=1的( )A .实半轴长相等B .虚半轴长相等C .离心率相等D .焦距相等【解析】 若0<k <5,则5-k >0,16-k >0,故方程x 216-y 25-k =1表示焦点在x 轴上的双曲线,且实半轴的长为4,虚半轴的长为5-k ,焦距2c =221-k ,离心率e =21-k 4;同理方程x 216-k -y 25=1也表示焦点在x 轴上的双曲线,实半轴的长为16-k ,虚半轴的长为5,焦距2c =221-k ,离心率e =21-k16-k .可知两曲线的焦距相等,故选D.【答案】 D 二、填空题5.(2014·南京高二检测)在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为________. 【解析】 ∵c 2=m +m 2+4,∴e 2=c 2a 2=m +m 2+4m=5, ∴m 2-4m +4=0,∴m =2. 【答案】 26.(2013·辽宁高考)已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.【解析】 由双曲线方程知,b =4,a =3,c =5,则虚轴长为8,则|PQ |=16.由左焦点F (-5,0),且A (5,0)恰为右焦点,知线段PQ 过双曲线的右焦点,则P ,Q 都在双曲线的右支上.由双曲线的定义可知|PF |-|PA |=2a ,|QF |-|QA |=2a ,两式相加得,|PF |+|QF |-(|PA |+|QA |)=4a ,则|PF |+|QF |=4a +|PQ |=4×3+16=28,故△PQF 的周长为28+16=44.【答案】 447.(2014·浙江)设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B ,若点P (m,0)满足|PA |=|PB |,则该双曲线的离心率是________.【解析】由⎩⎨⎧x -3y +m =0,y =b a x ,得点A 的坐标为⎝ ⎛⎭⎪⎫am 3b -a ,bm 3b -a ,由⎩⎨⎧x -3y +m =0,y =-b a x ,得点B 的坐标为⎝⎛⎭⎪⎫-am 3b +a ,bm 3b +a , 则AB 的中点C 的坐标为⎝ ⎛⎭⎪⎫a 2m 9b 2-a 2,3b 2m 9b 2-a 2,∵k AB =13,∴k CP =3b 2m 9b 2-a 2a 2m 9b 2-a 2-m=-3,即3b 2a 2-9b 2-a 2=-3,化简得a 2=4b 2, 即a 2=4(c 2-a 2),∴4c 2=5a 2, ∴e 2=54,∴e =52.【答案】 52 三、解答题8.双曲线与椭圆x 216+y 264=1有相同的焦点,它的一条渐近线为y =x ,求双曲线的标准方程和离心率.【解】由椭圆x 216+y 264=1,知c 2=64-16=48,且焦点在y 轴上, ∵双曲线的一条渐近线为y =x , ∴设双曲线方程为y 2a 2-x 2a 2=1. 又c 2=2a 2=48,∴a 2=24. ∴所求双曲线的方程为y 224-x 224=1.由a 2=24,c 2=48,得e 2=c2a 2=2,又e >0,∴e = 2.9.(2014·玉溪高二检测)已知双曲线x 23-y 2b 2=1的右焦点为(2,0). (1)求双曲线的方程;(2)求双曲线的渐近线与直线x =-2围成的三角形的面积. 【解】 (1)∵双曲线的右焦点坐标为(2,0),且双曲线方程为x 23-y 2b 2=1,∴c 2=a 2+b 2=3+b 2=4,∴b 2=1,∴双曲线的方程为x 23-y 2=1. (2)∵a =3,b =1,∴双曲线的渐近线方程为y =±33x , 令x =-2,则y =±233,设直线x =-2与双曲线的渐近线的交点为A 、B ,则|AB |=433,记双曲线的渐近线与直线x =-2围成的三角形面积为S ,则S =12×433×2=43 3.[能力提升层次]1.(2014·山东省实验中学高二检测)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线均与C :x 2+y 2-6x +5=0相切,则该双曲线离心率等于( )【解析】 圆的标准方程为(x -3)2+y 2=4,所以圆心坐标为C (3,0),半径r =2,双曲线的渐近线为y =±b a x ,不妨取y =ba x ,即bx -ay =0,因为渐近线与圆相切,所以圆心到直线的距离d =|3b |a 2+b 2=2,即9b 2=4(a 2+b 2),所以5b 2=4a 2,b 2=45a 2=c 2-a 2,即95a 2=c 2,所以e 2=95,e =355,选A.【答案】 A2.(2014·北京市东城区)设F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点.若在双曲线右支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( )A .3x ±4y =0B .3x +5y =0C .5x ±4y =0D .4x ±3y =0【解析】 由题意可知|PF 2|=|F 1F 2|=2c ,所以△PF 1F 2为等腰三角形,所以由F 2向直线PF 1作的垂线也是中线,因为F 2到直线PF 1的距离等于双曲线的实轴长2a ,所以|PF 1|=24c 2-4a 2=4b ,又|PF 1|-|PF 2|=2a ,所以4b -2c =2a ,所以2b -a =c ,两边平方可得4b 2-4ab +a 2=c 2=a 2+b 2,所以3b 2=4ab ,所以4a =3b ,从而b a =43,所以该双曲线的渐近线方程为4x ±3y =0,故选D.【答案】 D3.过双曲线x 2-y 23=1的左焦点F 1,作倾斜角为π6的直线AB ,其中A 、B 分别为直线与双曲线的交点,则|AB |的长为________.【解析】 双曲线的左焦点为F 1(-2,0), 将直线AB 方程y =33(x +2)代入双曲线方程, 得8x 2-4x -13=0.显然Δ>0, 设A (x 1,y 1)、B (x 2,y 2), ∴x 1+x 2=12,x 1x 2=-138, ∴|AB |=1+k 2·x 1+x 22-4x 1x 2 =1+13×⎝ ⎛⎭⎪⎫122-4×⎝ ⎛⎭⎪⎫-138=3. 【答案】 34.(2014·安徽师大)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0).(1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A 和B ,且OA →·OB →>2,其中O 为原点,求k 的取值范围.【解】 (1)设双曲线C 的方程为x 2a 2-y 2b 2=1(a >0,b >0),由已知得a =3,c =2.又因为a 2+b 2=c 2,所以b 2=1, 故双曲线C 的方程为x 23-y 2=1. (2)将y =kx +2代入x 23-y 2=1中,得(1-3k 2)x 2-62kx -9=0, 由直线l 与双曲线交于不同的两点得⎩⎪⎨⎪⎧1-3k 2≠0,Δ=-62k 2+361-3k 2>0,即k 2≠13且k 2<1.①设A (x A ,y A ),B (x B ,y B ),则x A +x B =62k1-3k 2,x A x B =-91-3k 2,由OA →·OB →>2得x A x B +y A y B >2,而x A x B +y A y B =x A x B +(kx A +2)(kx B +2) =(k 2+1)x A x B +2k (x A +x B )+2=(k 2+1)·-91-3k 2+2k ·62k 1-3k 2+2=3k 2+73k 2-1,于是3k 2+73k 2-1>2,解此不等式得13<k 2<3.②由①②得13<k 2<1.故k 的取值范围是⎝ ⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫33,1.。
双曲线及其标准方程习题一、 单选题(每道小题 4分 共 56分 )1. 命题甲:动点P 到两定点A 、B 距离之差│|PA|-|PB|│=2a(a >0);命题乙; P 点轨迹是双曲线,则命题甲是命题乙的 [ ] A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件2.若双曲线的一个焦点是,,则等于 . . . .2kx ky =1(04)k [ ]A B C D 22---33258332583.点到点,与它关于原点的对称点的距离差的绝对值等于,则点的轨迹方程是 . .. .P (60)10P [ ]A y 11=1B y 25=1C y 6=1D y 25=12222-----x x x x 2222256125114.k 5+y 6k=1[ ]A B C D 2<是方程表示双曲线的 .既非充分又非必要条件 .充要条件.必要而非充分条件 .充分而非必要条件x k 25--5. 如果方程x 2sin α-y 2cos α=1表示焦点在y 轴上的双曲线,那么角α的终边在 [ ] A .第四象限 B .第三象限 C .第二象限 D .第一象限 6.下列曲线中的一个焦点在直线上的是 . .. .4x 5y +25=0[ ]A y 16=1B +y 16=1C x 16=1D +x 16=12222---x x y y 22229259257. 若a ·b <0,则ax 2-ay 2=b 所表示的曲线是 [ ] A .双曲线且焦点在x 轴上 B .双曲线且焦点在y 轴上 C .双曲线且焦点可能在x 轴上,也可能在y 轴上 D .椭圆 8.以椭圆的焦点为焦点,且过,点的双曲线方程为. .. .x x y y y 2222296109251150+y 25=1P(35)[ ]A y 10=1B x 6=1C x 3=1D x 2=122222----9.到椭圆的两焦点距离之差的绝对值等于椭圆短轴的点的轨迹方程是 . .. .x x x x x 2222225251697+y 9=1[ ]A y 9=1B y 9=1C y 7=1D y 9=122222----10.直线与坐标轴交两点,以坐标轴为对称轴,以其中一点为焦点且另一点为虚轴端点的双曲线的方程是 . .. .或2x 5y +20=0[ ]A y 16=1B y 84=1C y 84=1D y 84=1y 84=122222------x x x x x 2222284161001610011.以坐标轴为对称轴,过,点且与双曲线有相等焦距的双曲线方程是 .或 .或.或 .或A(34)y 20=1[ ]A y 20=1x 20=1B y 15=1x 15=1C y 20=1x 15=1D y 5=1x 10=1222222222x x y x y x y x y 22222222255510105102015---------12.与双曲线共焦点且过点,的双曲线方程是 . .. .x x x x x 2222215520916------y 10=1(34)[ ]A y 20=1B y 5=1C y 16=1D y 9=12222213. 已知ab <0,方程y=-2x +b 和bx 2+ay 2=ab 表示的曲线只可能是图中的 [ ]14.已知△一边的两个端点是、,另两边斜率的积是,那么顶点的轨迹方程是 . .. .ABC A(7,0)B(70)C [ ]A x +y =49B +x 49=1C =1D 5y 147=12222---,x 355147514749492222y y x二、 填空题(每道小题 4分 共 8分 )1.已知双曲线的焦距是,则的值等于 .x k 21+-y 5=18k 22.设双曲线,与恰是直线在轴与轴上的截距,那么双曲线的焦距等于 .x a 22--y b=1(a >0,b >0)a b 3x +5y 15=0x y 22双曲线的标准方程及其简单的几何性质1.平面内到两定点E 、F 的距离之差的绝对值等于|EF |的点的轨迹是( ) A .双曲线 B .一条直线 C .一条线段 D .两条射线 2.已知方程x 21+k -y 21-k =1表示双曲线,则k 的取值范围是( )A .-1<k <1B .k >0C .k ≥0D .k >1或k <-13.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都相外切,则动圆圆心的轨迹为( ) A .双曲线的一支 B .圆 C .抛物线 D .双曲线4.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是( )A.x 23-y 2=1 B .y 2-x 23=1 C.x 23-y 24=1D.y 23-x 24=1 5.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2, |PF 1|·|PF 2|=2,则该双曲线的方程是( ) A.x 22-y 23=1 B.x 23-y 22=1 C.x 24-y 2=1 D .x 2-y 24=17.已知点F 1(-4,0)和F 2(4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( ) A.x 29-y 27=1 B.x 29-y 27=1(y >0) C.x 29-y 27=1或x 27-y 29=1 D.x 29-y 27=1(x >0) 8.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( ) A .16B .18C .21D .269.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,双曲线的方程是( )A.x 212-y 24=1B.x 24-y 212=1 C .-x 212+y 24=1 D .-x 24+y 212=1 10.焦点为(0,±6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( )A.x 212-y 224=1 B.y 212-x 224=1 C.y 224-x 212=1 D.x 224-y 212=111.若0<k <a ,则双曲线x 2a 2-k 2-y 2b 2+k 2=1与x 2a 2-y 2b 2=1有( )A .相同的实轴B .相同的虚轴C .相同的焦点D .相同的渐近线12.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( )A .y =±54xB .y =±45xC .y =±43xD .y =±34x13.双曲线x 2b 2-y 2a 2=1的两条渐近线互相垂直,那么该双曲线的离心率为( )A .2B. 3C. 2D.3214.双曲线x 29-y 216=1的一个焦点到一条渐近线的距离等于( )A. 3 B .3 C .4 D .2二、填空题15.双曲线的焦点在x 轴上,且经过点M (3,2)、N (-2,-1),则双曲线标准方程是________. 16.过双曲线x 23-y 24=1的焦点且与x 轴垂直的弦的长度为________.17.如果椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1的焦点相同,那么a =________.18.双曲线x 24+y 2b =1的离心率e ∈(1,2),则b 的取值范围是________.19.椭圆x 24+y 2a 2=1与双曲线x 2a2-y 2=1焦点相同,则a =________.20.双曲线以椭圆x 29+y 225=1的焦点为焦点,它的离心率是椭圆离心率的2倍,求该双曲线的方程为________.双曲线及其标准方程习题答案一、单选题1. B2. C3. A4. D5. B6. C7. B8. B9. C 10. A 11. C 12. A 13. B 14. D 二、填空题1. 10 2.234双曲线的标准方程及其简单的几何性质(答案)1、[答案] D2、[答案] A [解析] 由题意得(1+k )(1-k )>0,∴(k -1)(k +1)<0,∴-1<k <1.3、[答案] A [解析] 设动圆半径为r ,圆心为O , x 2+y 2=1的圆心为O 1,圆x 2+y 2-8x +12=0的圆心为O 2,由题意得|OO 1|=r +1,|OO 2|=r +2, ∴|OO 2|-|OO 1|=r +2-r -1=1<|O 1O 2|=4, 由双曲线的定义知,动圆圆心O 的轨迹是双曲线的一支.4、[答案] B [解析] 由题意知双曲线的焦点在y 轴上,且a =1,c =2, ∴b 2=3,双曲线方程为y 2-x 23=1. 5、[答案] C [解析] ab <0⇒曲线ax 2+by 2=1是双曲线,曲线ax 2+by 2=1是双曲线⇒ab <0. 6、[答案] C [解析] ∵c =5,|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2, ∴(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|=4c 2,∴4a 2=4c 2-4=16,∴a 2=4,b 2=1. 7、[答案] D [解析] 由双曲线的定义知,点P 的轨迹是以F 1、F 2为焦点, 实轴长为6的双曲线的右支,其方程为:x 29-y 27=1(x >0)8、[答案] D [解析] |AF 2|-|AF 1|=2a =8,|BF 2|-|BF 1|=2a =8, ∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16,∴|AF 2|+|BF 2|=16+5=21, ∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26.9、[答案] C [解析] ∵椭圆x 29+y 225=1的焦点为(0,±4),离心率e =45,∴双曲线的焦点为(0,±4),离心率为145-45=105=2, ∴双曲线方程为:y 24-x 212=1.10、[答案] B [解析] 与双曲线x 22-y 2=1有共同渐近线的双曲线方程可设为x 22-y 2=λ(λ≠0),又因为双曲线的焦点在y 轴上, ∴方程可写为y 2-λ-x 2-2λ=1.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12. ∴双曲线方程为y 212-x 224=1.11、[答案] C [解析] ∵0<k <a ,∴a 2-k 2>0.∴c 2=(a 2-k 2)+(b 2+k 2)=a 2+b 2.12、[答案] D [解析] ∵c a =53,∴c 2a 2=a 2+b 2a 2=259,∴b 2a 2=169,∴b a =43,∴a b =34.又∵双曲线的焦点在y 轴上,∴双曲线的渐近线方程为y =±a b x ,∴所求双曲线的渐近线方程为y =±34x .13、[答案] C [解析] 双曲线的两条渐近线互相垂直,则渐近线方程为:y =±x ,∴b a =1,∴b 2a 2=c 2-a 2a 2=1,∴c 2=2a 2,e =ca= 2. 14、[答案] C[解析] ∵焦点坐标为(±5,0),渐近线方程为y =±43x ,∴一个焦点(5,0)到渐近线y =43x 的距离为4.15、[答案] x 273-y 275=1 [解析] 设双曲线方程为:x 2a 2-y 2b 2=1(a >0,b >0)又点M (3,2)、N (-2,-1)在双曲线上,∴⎩⎨⎧ 9a 2-4b 2=14a 2-1b 2=1,∴⎩⎨⎧a 2=73b 2=75.16、[答案]833[解析] ∵a 2=3,b 2=4,∴c 2=7,∴c =7, 该弦所在直线方程为x =7,由⎩⎪⎨⎪⎧x =7x 23-y 24=1得y 2=163,∴|y |=433,弦长为833.17、[答案] 1 [解析] 由题意得a >0,且4-a 2=a +2,∴a =1.18、[答案] -12<b <0 [解析] ∵b <0,∴离心率e =4-b2∈(1,2),∴-12<b <0. 19、[答案]62 [解析] 由题意得4-a 2=a 2+1,∴2a 2=3,a =62. 焦点为(0,±4),离心率e =c a =45,∴双曲线的离心率e 1=2e =85,∴c 1a 1=4a 1=85,∴a 1=52,∴b 21=c 21-a 21=16-254=394,∴双曲线的方程为y 2254-x 2394=1.20、[答案]y2254-x2394=1 [解析]椭圆x29+y225=1中,a=5,b=3,c2=16,。
目录双曲线的简单性质 (1)【学习目标】 (1)【要点梳理】 (1)【典型例题】 (5)【巩固练习】 (13)双曲线的简单性质编稿:武小煊审稿:柏兴增【学习目标】1.知识与技能理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念.2.过程与方法锻炼学生观察分析抽象概括的逻辑思维能力和运用数形结合思想解决实际问题的能力.3.情感态度与价值观通过数与形的辨证统一,对学生进行辩证唯物主义教育,通过对双曲线对称美的感受,激发学生对美好事物的追求.【要点梳理】【高清课堂:双曲线的性质356749 知识要点二】要点一:双曲线的简单几何性质双曲线22221x ya b-=(a>0,b>0)的简单几何性质范围221x a≥,即22x a ≥ ∴x a ≥,或x a ≤-.双曲线上所有的点都在两条平行直线x = -a 和x = a 的两侧,是无限延伸的.因此双曲线上点的横坐标满足∴x a ≥,或x a ≤-.对称性对于双曲线标准方程22221x y a b -=(a >0,b >0),把x 换成-x ,或把y 换成-y ,或把x 、y 同时换成-x 、-y ,方程都不变,所以双曲线22221x y a b -=(a >0,b >0)是以x 轴、y 轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心.顶点①双曲线与它的对称轴的交点称为双曲线的顶点.②双曲线22221x y a b -=(a >0,b >0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A 1(-a ,0),A 2(a ,0),顶点是双曲线两支上的点中距离最近的点.③两个顶点间的线段A 1A 2叫作双曲线的实轴;设B 1(0,- b ),B 2(0,b )为y 轴上的两个点,则线段B 1B 2叫做双曲线的虚轴.实轴和虚轴的长度分别为|A 1A 2|=2a ,|B 1B 2|=2b .a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长.①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆. ②双曲线的焦点总在实轴上.③实轴和虚轴等长的双曲线称为等轴双曲线. 离心率①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e 表示,记作22c ce a a==. ②因为c >a >0,所以双曲线的离心率1ce a=>. 由c 2= a 2+b 2,可得22222()11b c a c e a a a -==-=-,所以b a 决定双曲线的开口大小,b a越大,e 也越大,双曲线开口就越开阔.所以离心率可以用来表示双曲线开口的大小程度.③等轴双曲线a b=,所以离心率2e=.渐近线经过点A2、A1作y轴的平行线x=±a,经过点B1、B2作x轴的平行线y=±b,四条直线围成一个矩形(如图),矩形的两条对角线所在直线的方程是by xa=±.我们把直线by xa=±叫做双曲线的渐近线;双曲线与它的渐近线无限接近,但永不相交.22||b bMN x a xa a=--2222bx a xaabx x a=--=→+-【高清课堂:双曲线的性质356749知识要点一、3】要点二:双曲线两个标准方程几何性质的比较标准方程22221x ya b-=(0,0)a b>>22221y xa b-=(0,0)a b>>图形性质焦点1(,0)F c-,2(,0)F c1(0,)F c-,2(0,)F c要点诠释:双曲线的焦点总在实轴上,因此已知标准方程,判断焦点位置的方法是:看x 2、y 2的系数,如果x 2项的系数是正的,那么焦点在x 轴上;如果y 2项的系数是正的,那么焦点在y 轴上.对于双曲线,a 不一定大于b ,因此不能像椭圆那样通过比较分母的大小来判定焦点在哪一条坐标轴上. 要点三:双曲线的渐近线(1)已知双曲线方程求渐近线方程:若双曲线方程为22221x y a b -=,则其渐近线方程为22220x y a b -=⇒0x y a b ±=⇒b y x a =±已知双曲线方程,将双曲线方程中的“常数”换成“0”,然后因式分解即得渐近线方程. (2)已知渐近线方程求双曲线方程:若双曲线渐近线方程为0mx ny ±=,则可设双曲线方程为2222m x n y λ-=,根据已知条件,求出λ即可.(3)与双曲线22221x y a b-=有公共渐近线的双曲线与双曲线22221x y a b -=有公共渐近线的双曲线方程可设为2222(0)x y a bλλ-=≠(0λ>,焦点在x 轴上,0λ<,焦点在y 轴上)(4)等轴双曲线的渐近线等轴双曲线的两条渐近线互相垂直,为y x =±,因此等轴双曲线可设为22(0)x y λλ-=≠. 要点四:双曲线中a ,b ,c 的几何意义及有关线段的几何特征双曲线标准方程中,a 、b 、c 三个量的大小与坐标系无关,是由双曲线本身的形状大小所确定的,分别表示双曲线的实半轴长、虚半轴长和半焦距长,均为正数,且三个量的大小关系为:c >b >0,c >a >0,且c 2=a 2+b 2.双曲线22221x y a b-=(0,0)a b >>,如图:(1)实轴长12||2A A a =,虚轴长2b ,焦距12||2F F c =;(2)离心率:21211222121122||||||||11||||||||PF PF A F A F c b e e PM PM A K A K a a======+>; (3)顶点到焦点的距离:11A F =22A F c a =-,12A F =21A F a c =+;(4)12PF F ∆中结合定义122PF PF a -=与余弦定理,将有关线段1PF 、2PF 、12F F 和角结合起来; (5)与焦点三角形12PF F ∆有关的计算问题时,常考虑到用双曲线的定义及余弦定理(或勾股定理)、三角形面积公式121211sin 2PF F S PF PF F PF ∆=⋅∠相结合的方法进行计算与解题,将有关线段1PF 、2PF 、12F F ,有关角12F PF ∠结合起来,建立12PF PF -、12PF PF ⋅之间的关系.要点五:直线与双曲线的位置关系 直线与双曲线的位置关系将直线的方程y kx m =+与双曲线的方程22221x y a b-=(0,0)a b >>联立成方程组,消元转化为关于x或y 的一元二次方程,其判别式为Δ.222222222()20b a k x a mkx a m a b ----=.若2220,b a k -=即bk a =±,直线与双曲线渐近线平行,直线与双曲线相交于一点(实质上是直线与渐近线平行时的两种情况,相交但不相切).若2220,b a k -≠即b k a≠±, ①Δ>0⇔直线和双曲线相交⇔直线和双曲线相交,有两个交点; ②Δ=0⇔直线和双曲线相切⇔直线和双曲线相切,有一个公共点; ③Δ<0⇔直线和双曲线相离⇔直线和双曲线相离,无公共点. 直线与双曲线的相交弦设直线y kx m =+交双曲线22221x y a b-=(0,0)a b >>于点111222(,),(,)P x y P x y 两点,则弦长12||PP12|x x -同理可得1212|||(0)PP y y k =-≠ 这里12||,x x -12||,y y -的求法通常使用韦达定理,需作以下变形:12||x x -=;12||y y -双曲线的中点弦问题遇到中点弦问题常用“韦达定理”或“点差法”求解.在双曲线22221x y a b-=(0,0)a b >>中,以00(,)P x y 为中点的弦所在直线的斜率2020b x k a y =-;涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来相互转化,同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.【典型例题】类型一:双曲线的简单几何性质【高清课堂:双曲线的性质 356749例1】例1.求双曲线22169144x y -=的实轴长和虚轴长、顶点坐标、焦点坐标、渐近线方程与离心率.【思路点拨】本题的关键是将双曲线化为标准方程22221x y a b -=(0,0)a b >>.【解析】双曲线的方程可化为:221916y x -=,由此可知实半轴长3a =,虚半轴长4b =,∴5c ==∴实轴长26a =,虚轴长28b =,顶点坐标(0,3),(0,3)-,焦点坐标(0,5),(0,5)-,离心率53e =,渐近线方程34y x =±.【总结升华】在几何性质的讨论中要注意a 和2a ,b 和2b 的区别,另外也要注意焦点所在轴的不同,几何量也有不同的表示.举一反三:【变式1】双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于( )A .14-B .-4C .4D .14【答案】A【变式2】已知双曲线8kx 2-ky 2=2的一个焦点为3(0,)2-,则k 的值等于( )A .-2B .1C .-1D .32-【答案】C类型二:双曲线的渐近线例2.已知双曲线方程,求渐近线方程.(1)221916x y -=;(2)221916x y -=-.【解析】(1)双曲线221916x y -=-的渐近线方程为:220916x y -=,即43y x =±.(2)双曲线221916x y -=的渐近线方程为:220916x y -=,即43y x =±.【总结升华】不同形式双曲线的渐进线方程为:(1)双曲线22221(0,0)x y a b a b -=>>的渐近线方程为by x a =±;(2)双曲线22221y x a b -=的渐近线方程为b x y a =±,即ay x b=±;(3)若双曲线的方程为2222x y m n λ-=(00m n λ>>、,,焦点在x 轴上,0λ<,焦点在y 轴上),则其渐近线方程为22220x y m n -=⇒0x y m n ±=⇒ny x m=±.举一反三:【变式1】求下列双曲线方程的渐近线方程:(1)2211636x y -=;(2)2228x y -=; (3)22272y x -=.【答案】(1)32y x =±;(2)y x =;(3)y = 【变式2】中心在坐标原点,离心率为53的圆锥曲线的焦点在y 轴上,则它的渐近线方程为( )A .54y x =±B .45y x =±C .43y x =±D .34y x =±【答案】D例3. 根据下列条件,求双曲线方程.(1) 与双曲线221916x y -=有共同的渐近线,且过点(3,-;(2)一渐近线方程为320x y +=,且双曲线过点M .【思路点拨】求双曲线的方程,应先定型,再定量.本题中“定型”是顺利解题的关键:(1)与双曲线有221916x y -=有公共渐进线的双曲线方程可设为()220916x y λλ-=≠;(2)320023x y x y +=⇔±=,以023x y±=为渐进线的双曲线方程可设为2249x y λ-=()0λ≠.【解析】 (1)解法一:当焦点在x 轴上时,设双曲线的方程为22221x y a b -=由题意,得2243(3)1b a a ⎧=⎪⎪⎨-⎪=⎪⎩,解得294a =,24b = 所以双曲线的方程为224194x y -=.当焦点在y 轴上时,设双曲线的方程为22221y x a b-=由题意,得2243(3)1a b b ⎧=⎪⎪--=,解得24a =-,294b =-(舍去) 综上所得,双曲线的方程为224194x y -=解法二:设所求双曲线方程为22916x y λ-=(0λ≠),将点(3,-代入得14λ=,所以双曲线方程为2219164x y -=即224194x y -=(2)依题意知双曲线两渐近线的方程是023x y±=.故设双曲线方程为2249x y λ-=,∵点M 在双曲线上, ∴284λ=,解得4λ=,∴所求双曲线方程为2211636x y -=.【总结升华】求双曲线的方程,关键是求a 、b ,在解题过程中应熟悉各元素(a 、b 、c 、e 及准线)之间的关系,并注意方程思想的应用.若已知双曲线的渐近线方程0ax by ±=,可设双曲线方程为2222a x b y λ-=(0λ≠).举一反三:【变式1】中心在原点,一个焦点在(0,3),一条渐近线为23y x =的双曲线方程是( ) A .225513654x y -= B .225513654x y -+= C .22131318136x y -= D .22131318136x y -+=【答案】D【变式2】过点(2,-2)且与双曲线2212x y -=有公共渐近线的双曲线是 ( )A . 22124y x -=B . 22142x y -=C . 22142y x -=D . 22124x y -=【答案】A【变式3】设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为A .4B .3C .2D .1 【答案】C【变式4】双曲线22221x y a b -=与2222(0)x y a b λλ-=≠有相同的( )A .实轴B .焦点C .渐近线D .以上都不对 【答案】C类型三:求双曲线的离心率或离心率的取值范围例4. 已知12,F F 是双曲线22221(0)x y a b a b -=>>的左、右焦点,过1F 且垂直于x 轴的直线与双曲线的左支交于A 、B 两点,若2ABF ∆是正三角形,求双曲线的离心率.【解析】∵12||2F F c =,2ABF ∆是正三角形,∴12||2tan30AF c ==,224||2tan30cos30c AF c ===,∴21||||2AF AF a -===,∴3ce a== 【总结升华】双曲线的离心率是双曲线几何性质的一个重要参数,求双曲线离心率的关键是由条件寻求a 、c 满足的关系式,从而求出c e a=举一反三:【高清课堂:双曲线的性质 356749例2】 【变式1】(1) 已知双曲线22221(0,0)x y a b a b-=>>的离心率23e =,过点A (0,-b )和B (a ,0)的直线与原点间的距3,求双曲线的方程. (2) 求过点(-1,3),且和双曲线22149x y -=有共同渐近线的双曲线方程.【答案】(1)2213x y -=; (2)2241273y x -=【变式2】 等轴双曲线的离心率为_________2【变式3】已知a 、b 、c 分别为双曲线的实半轴长、虚半轴长、半焦距,且方程ax 2+bx +c =0无实根,则双曲线离心率的取值范围是( )A .1<e 5-2B .1< e <2C .1< e <3D .1< e <25【答案】D类型五:双曲线的焦点三角形例5.已知双曲线实轴长6,过左焦点1F 的弦交左半支于A 、B 两点,且||8AB =,设右焦点2F ,求2ABF ∆的周长.【思路点拨】将2ABF ∆的周长分拆成2211|||||||AF BF AF BF ,,,的和,利用双曲线的定义及条件||8AB =可求得周长.【解析】由双曲线的定义有: 21||||6AF AF -=,21||||6BF BF -=,∴2211(||||)(||||)12AF BF AF BF +-+=. 即22(||||)||12AF BF AB +-= ∴22||||12||20AF BF AB +=+=.故2ABF ∆的周长22||||||28L AF BF AB =++=.【总结升华】双曲线的焦点三角形中涉及了双曲线的特征几何量,在双曲线的焦点三角形中,经常运用正弦定理、余弦定理、双曲线定义来解题,解题过程中,常对定义式两边平方探求关系.举一反三:【变式1】已知双曲线的方程22221x y a b -=,点A 、B 在双曲线的右支上,且线段AB 经过双曲线的右焦点F 2,|AB |=m ,F 1为另一焦点,则△ABF 1的周长为( )A .2a +2mB .4a +2mC .a +mD .2a +4m【答案】B【变式2】已知12F F 、是双曲线221916x y -=的两个焦点,P 在双曲线上且满足12||||32PF PF ⋅=,则12F PF ∠=______【答案】90类型六:直线和双曲线的位置关系例6. 已知双曲线x 2-y 2=4,直线l :y =k (x -1),讨论直线与双曲线公共点个数.【思路点拨】直线与曲线恰有一个交点,即由直线方程与曲线方程联立的方程组只有一组解.【解析】联立方程组⎩⎨⎧=--=4)1(22y x x k y 消去y ,并依x 项整理得:(1-k 2)·x 2+2k 2x -k 2-4=0 ①(1)当1-k 2=0即k =±1时,方程①可化为2x =5,x =25,方程组只有一组解,故直线与双曲线只有一个公共点(实质上是直线与渐近线平行时的两种情况,相交但不相切).(2)当1-k 2≠0时,即k ≠±1,此时有Δ=4·(4-3k 2)若4-3k 2>0(k 2≠1),则k ∈⎪⎪⎭⎫ ⎝⎛⋃-⋃⎪⎪⎭⎫ ⎝⎛--332,1)1,1(1,332,方程组有两解,故直线与双曲线有两交点. (3)若4-3k 2=0(k 2≠1),则k =±332,方程组有解,故直线与双曲线有一个公共点(相切的情况). (4)若4-3k 2<0且k 2≠1则k ∈⎪⎪⎭⎫ ⎝⎛+∞⋃⎪⎪⎭⎫ ⎝⎛-∞-,332432,,方程组无解,故直线与双曲线无交点. 综上所述,当k =±1或k =±332时,直线与双曲线有一个公共点; 当k ∈⎪⎪⎭⎫ ⎝⎛⋃-⋃⎪⎪⎭⎫ ⎝⎛--332,1)1,1(1,332时,直线与双曲线有两个公共点; 当k ∈⎪⎪⎭⎫ ⎝⎛+∞⋃⎪⎪⎭⎫ ⎝⎛-∞-,332332,时,直线与双曲线无公共点. 【总结升华】本题通过方程组解的个数来判断直线与双曲线交点的个数,具体操作时,运用了重要的数学方法——分类讨论,而且是“双向讨论”,既要讨论首项系数1——k 2是否为0,又要讨论Δ的三种情况,为理清讨论的思路,可画“树枝图”如图:举一反三:【变式1】过原点的直线l 与双曲线3422y x -=-1交于两点,则直线l 的斜率取值范围是 ( ) A .⎥⎥⎦⎤ ⎝⎛-23,23 B .⎪⎪⎭⎫ ⎝⎛+∞⋃⎪⎪⎭⎫ ⎝⎛-∞-,2323, C .⎥⎥⎦⎤⎢⎢⎣⎡-23,33 D .⎪⎪⎭⎫⎢⎢⎣⎡+∞⋃⎥⎥⎦⎤ ⎝⎛-∞-,2323, 【答案】B【变式2】直线y =x +3与曲线-x 1x ·|x |+91y 2=1的交点个数是 ( ) A .0 B .1 C .2 D .3【答案】D例7.(1)求直线1y x =+被双曲线2214y x -=截得的弦长; (2)求过定点(0,1)的直线被双曲线2214y x -=截得的弦中点轨迹方程. 【思路点拨】(1)题为直线与双曲线的弦长问题,可以考虑弦长公式,结合韦达定理进行求解.(2)题涉及到直线被双曲线截得弦的中点问题,可采用点差法或中点坐标公式,运算会更为简便.【解析】由22141y x y x ⎧-=⎪⎨⎪=+⎩得224(1)40x x -+-=得23250x x --=(*) 设方程(*)的解为12,x x ,则有121225,33x x x x +==- 得, 212121242082|2()422933d x x x x x x =-=+-=+=. (2)方法一:若该直线的斜率不存在时与双曲线无交点,则设直线的方程为1y kx =+,它被双曲线截得的弦为AB 对应的中点为(,)P x y ,由22114y kx y x =+⎧⎪⎨-=⎪⎩得22(4)250k x kx ---=(*) 设方程(*)的解为12,x x ,则22420(4)0k k ∆=+->∴21680,||k k << 且12122225,44k x x x x k k +==---, ∴121212221114(),()()124224k x x x y y y x x k k =+==+=++=--, 22444k x k y k ⎧=⎪⎪-⎨⎪=⎪-⎩得2240(4x y y y -+=<-或0)y >.方法二:设弦的两个端点坐标为1122(,),(,)A x y B x y ,弦中点为(,)P x y ,则221122224444x y x y ⎧-=⎪⎨-=⎪⎩得:121212124()()()()x x x x y y y y +-=+-, ∴121212124()y y x x x x y y +-=+-, 即41y x x y =-, 即2240x y y -+=(图象的一部分)【总结升华】(1)弦长公式1212||||AB x x y y =-=-; (2)注意上例中有关中点弦问题的两种处理方法.举一反三: 【变式】垂直于直线230x y +-=的直线l 被双曲线221205x y -=l 的方程 【答案】210y x =±【巩固练习】一、选择题1.焦点为(0,±6)且与双曲线2212x y -=有相同渐近线的双曲线方程是( )A.2211224x y -= B.2211224y x -= C.2212412y x -= D.2212412x y -= 2.双曲线2222ay b x -=1的两条渐近线互相垂直,那么该双曲线的离心率是( ) A. 2 B.3 C.2 D.23 3.双曲线与椭圆2211664x y +=有相同的焦点,它的一条渐近线方程为y x =-,则双曲线的离心率为( ) A.2296x y -= B. 22160y x -= C. 2280x y -= D. 2224y x -= 4.过双曲线2222by a x -=1的右焦点F 2作垂直于实轴的弦PQ ,F 1是左焦点,若∠PF 1Q=90︒,则双曲线的离心率是( ) A.2 B.1+2C.2+2D.35. 已知双曲线22221x y a b-=(a >0,b >0)的焦点到渐近线的距离是其顶点到渐近线距离的3倍,则双曲线的渐近线方程为( )A .y =xB .y =±xC .y =±4x D .y =±3x 6.与双曲线16922y x -=1有共同的渐近线,且经过点(-3,23)的双曲线的一个焦点到一条渐近线的距离是( ).A.8B.4C.2D.1二、填空题7.已知双曲线C :22221x y a b-=(a >0,b >0)的实轴长为2,离心率为2,则双曲线C 的焦点坐标是________. 8.椭圆22214x y a+=与双曲线2221x y a -=焦点相同,则a =________.9.双曲线以椭圆221925x y +=的焦点为焦点,它的离心率是椭圆离心率的2倍,求该双曲线的方程为________. 10.过点P (3,0)的直线l 与双曲线4x 2-9y 2=36只有一个公共点,则这样的直线l 共有________条.三、解答题11.设双曲线2222by a x -=1(0<a<b )的半焦距为c ,直线l 过(a,0),(0,b)两点.已知原点到直线l 的距离为43c ,求双曲线的离心率.12. 设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B ;求双曲线C 的离心率e 的取值范围:13.已知双曲线22221x y a b-=(a >0,b >0)过点(14,5)A ,且点A 到双曲线的两条渐近线的距离的积为43,求此双曲线方程. 14.已知双曲线2214x y -=的两个焦点分别为12F F 、,点P 在双曲线上且满足1290F PF ∠=,求12F PF ∆的面积.15.如下图,已知F 1,F 2是双曲线22221x y a b-=(a >0,b >0)的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,求双曲线的离心率.【答案与解析】1.【答案】: B【解析】: 与双曲线2212x y -=有共同渐近线的双曲线方程可设为222x y λ-=(λ≠0), 又因为双曲线的焦点在y 轴上,∴方程可写为2212x λλλ-=--. 又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12. ∴双曲线方程为2211224y x -=. 2.【答案】C 【解析】双曲线的渐近线方程为a y x b=± ∵渐近线互相垂直,且关于坐标轴对称,∴1a b =,得a=b. 双曲线离心率222c a b e a +===. 3.【答案】 D【解析】 设双曲线方程为22(0)y x λλ-=≠∵焦点(0,43),±∴0,λ>又22(43)λ=,24λ=4. 【答案】B 【解析】因为|PF 2|=|F 2F 1|, P 点满足2222b y a c -=1,∴22b y c a a=-, ∴222b c c a a=-,即 2ac=b 2=c 2-a 2, ∴12e e =-,故e=1+2. 5. 【答案】 B【解析】如图,分别过双曲线的右顶点A ,右焦点F 作它的渐近线的垂线,B 、C 分别为垂足,则△OBA ∽△OCF , ∴13OA AB OF FC ==, ∴13a c =,∴22b a = 故渐近线方程为:22y x =±.6. 【答案】C【解析】设所求方程为22916x y k -=,代入(-3,23)得14k =, 52c =, ∵双曲线221916x y -=的渐近线为43y x =±, ∴焦点5(,0)2到渐近线43y x =±的距离d=2. 7. 【答案】(±2,0)【解析】由题意得:a =1,e =c a =2,所以c =2,又由标准方程可得焦点在x 轴上,所以焦点坐标为(±2,0).8.【答案】2【解析】; 由题意得4-a 2=a 2+1,∴2a 2=3,a=29.【答案】 221253944y x -= 【解析】 椭圆221925x y +=中,a =5,b =3,c 2=16, 焦点为(0,±4),离心率45c e a ==, ∴双曲线的离心率e 1=2e =85, ∴111485c a a ==,∴a 1=52, ∴22211125164b c a =-=-=394, ∴双曲线的方程为221253944y x -=. 10. 【答案】3【解析】已知双曲线方程为22194y x -=,故P (3,0)为双曲线的右顶点,所以过P 点且与双曲线只有一个公共点的直线共有三条(一条切线和两条与渐近线平行的直线).11.【解析】 由已知,l 的方程为ay+bx-ab=0,原点到l4c =,又c 2=a 2+b 2,∴24ab =,两边平方,得16a 2(c 2-a 2)=3c 4. 两边同除以a 4并整理得3e 4-16e 2+16=0,∴e 2=4或243e =. ∵ 0<a<b, 1b a>,221b a >,得22222212a b b e a a +==+>, ∴e 2=4,故e=2.12.【解析】由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y a x 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0.242210.0 1.48(1)0.a a a a a a ⎧-≠⎪<≠⎨+->⎪⎩所以解得双曲线的离心率01,2(2,).2e a a e e e =<<≠∴>≠+∞即离心率的取值范围为13.【解析】双曲线22221x y a b-=的两渐近线的方程为bx ±ay =0. 点A 到两渐近线的距离分别为1d =2d =已知d 1d 2=43,故2222|145|43b a a b -=+ (ⅰ) 又A 在双曲线上,则14b 2-5a 2=a 2b 2(ⅱ)(ⅱ)代入(ⅰ),得3a 2b 2=4a 2+4b 2(ⅲ)联立(ⅱ)、(ⅲ)解得b 2=2,a 2=4.故所求双曲线方程为22142x y -=. 14. 【解析】解法一: 由双曲线的方程知a=2, b=1, ∴5c =. 因此12||225F F c ==.由于双曲线是对称图形,如图所示, 设P 点坐标为(x,142-x ), 由已知F 1P ⊥F 2P ,∴111F P F P k k ⋅=-, 即221144155x x x x --⋅=-+-, 得2245x =,∴1221211||12512425F PF x S F F ∆=⋅⋅-=⨯⨯= 解法二:∵(|PF 1|-|PF 2|)2=4a 2=16,又由勾股定理得|PF 1|2+|PF 1|2=(2c)2=20, ∴|PF 1||PF 2|=21[|PF 1|2+|PF 2|2-(|PF 1|-|PF 2|)2]=21(20-16)=2, ∴121F PF S ∆=.15.【解析】设MF 1的中点为P ,在Rt △PMF 2中,|PF 2|=|MF 2|·sin60°=2c ·32=3c .又由双曲线的定义得|PF 2|-|PF 1|=2a ,所以312a c -=,3131c e a ===+-.。
双曲线的性质1、已知双曲线关于两坐标轴对称,且与圆1022=+y x 相交于点()1,3-P ,若此圆过点P 的切线与双曲线的渐近线平行,求此双曲线方程。
2、已知21F F 、是双曲线()0,012222>>=-b a b y a x 的两个焦点,PQ 是经过1F 且垂直于x轴的双曲线的弦,若︒=∠902Q PF ,求双曲线的离心率。
3、双曲线()0,112222>>=-b a b y a x 的焦距为c 2,直线l 过点()0,a 和()b ,0,且点()0,1到直线l 的距离与点()0,1-到直线l 的距离之和c S 54≥,求双曲线的离心率e 的取值范围。
4、如图,21F F 、分别是双曲线()0,012222>>=-b a b ya x的两个焦点,A 和B 是以O 为圆心,以1OF 为半径的圆与 该双曲线左支的两个交点,且AB F 2∆是正三角形,求e 。
5、在双曲线12222=-b ya x中,设0>>a b 。
直线l 过点()0,a A 和()b B ,0,原点到直线l 的距离为c 43(c 为半焦距),求双曲线的离心率。
6、已知双曲线()0,012222>>=-b a b y a x 的离心率25=e ,点()1,0A 与双曲线上的点的最小距离是3052,求双曲线方程。
7、如图,已知双曲线C 的方程为()0,012222>>=-b a by ax ;离心率25=e ;顶点到渐近线的距离为552。
(1)、求双曲线C 的方程;(2)、如图,P 是双曲线C 上一点,B A 、两点在双曲线C 的两条渐近线上,且分别位于第一、二象限,若⎥⎦⎤⎢⎣⎡∈=2,31,λλPB AP ,求AOB S ∆的取值范围。
8、双曲线C 与椭圆14822=+y x 有相同的焦点,直线x y 3=为双曲线C 的一条渐近线。
(1)、求双曲线C 的方程;(2)、如图,过()4,0P 的直线l 交双曲线C 于B A 、两点, 交x 轴于Q 点(Q 点与双曲线C 的顶点不重合),当,21QB OA PQ λλ==且3821-=+λλ时,求Q 点坐标。
2.3.2 双曲线的简单几何性质自测自评1.双曲线x 24-y 29=1的渐近线方程是( )A .y =±23xB .y =±49xC .y =±32xD .y =±94x2.双曲线x 22-y 214=1的离心率为( ) A .2 B .2 2 C .3 D .43.中心在原点,实轴长为10,虚轴长为6的双曲线的标准方程是( ) A.x 225-y 29=1 B.x 225-y 29=1或y 225-x 29=1 C.x 2100-y 236=1 D.x 2100-y 236=1或y 2100-x 236=1 自测自评1.解析:a 2=4,b 2=9,焦点在x 轴上,∴渐近线方程为y =±b a x =±32x .答案:C2.解析:∵a 2=2,∴a = 2.又b 2=14,∴c 2=a 2+b 2=16.∴c =4.∴e =ca=2 2. 答案:B3.解析:考虑焦点在x 轴或y 轴两种情况,选B. 答案:B忽略标准方程与渐近线的对应关系致错. 基础巩固1.双曲线2x 2-y 2=8的实轴长是 ( ) A .2 B .2 2 C .4 D .4 21.解析:双曲线方程可变形为x 24-y 28=1,所以a 2=4,a =2,2a =4.故选C.答案:C2.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A.x 24-y 24=1B.y 24-x 24=1C.y 24-x 28=1 D.x 28-y 24=1 2.解析:2a +2b =22c ,即a +b =2c ,又a =2,且a 2+b 2=c 2,∴a =2,b =2. 答案:B3.已知双曲线x 2a 2-y 25=1的右焦点为(3,0),则该双曲线的离心率等于( )A.31414 B.324 C.32 D.433.解析:根据离心率的定义求解.由双曲线中a ,b ,c 的关系c 2=a 2+b 2,得32=a 2+5,∴a 2=4,∴e =c a =32.答案:C4.椭圆x 24+y 2a =1与双曲线x 2a -y 22=1有相同的焦点,则a 的值是________.4.解析:∵a >0,∴焦点在x 轴上,∴4-a =a +2,∴a =1. 答案:1 能力提升5.(2014·天津卷)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x+10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x 25-y 220=1B.x 220-y 25=1 C.3x 225-3y 2100=1 D.3x 2100-3y225=1 5.解析:由题意知,双曲线的渐近线为y =±b a x ,∴b a=2.∵双曲线的左焦点(-c ,0)在直线l 上,∴0=-2c +10,∴c =5.又∵a 2+b 2=c 2,∴a 2=5,b 2=20,∴双曲线的方程为x 25-y 220=1.答案:A6.(2014·重庆卷)设F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P ,使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则该双曲线的离心率为( )A.43B.53C.94D .3 6.解析:不妨设P 为双曲线右支上一点,根据双曲线的定义有|PF 1|-|PF 2|=2a ,联立|PF 1|+|PF 2|=3b ,平方相减得|PF 1|·|PF 2|=9b 2-4a 24,则由题设条件,得9b 2-4a 24=94ab ,整理得b a =43(负值舍去),∴e =ca=1+(ba)2=1+(43)2=53.答案:B7.在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为________.7.解析:由题意得m >0,所以a =m ,b =m 2+4,c =m 2+m +4,由e =c a =5得m 2+m +4m=5,解得m =2.答案:28.双曲线C 1与椭圆C 2:x 29+y 225=1共焦点,且C 1与C 2的离心率之和为145,则双曲线C 1的标准方程为______________.8.解析:椭圆的焦点是(0,4),(0,-4),所以c =4,e =45,所以双曲线的离心率等于145-45=2,所以4a=2,所以a =2,所以b 2=42-22=12.所以双曲线的标准方程为y 24-x 212=1.答案:y 24-x 212=19.设F 1,F 2是双曲线x 29-y 216=1的两个焦点,点P 在双曲线上,且∠F 1PF 2=60°,求△F 1PF 2的面积.9.解析:双曲线x 29-y 216=1中a =3,c =5,不妨设|PF 1|>|PF 2|,则|PF 1|-|PF 2|=2a =6, |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°, 而|F 1F 2|=2c =10,得|PF 1|2+|PF 2|2-|PF 1|·|PF 2|= (|PF 1|-|PF 2|)2+|PF 1|·|PF 2|=100, 即|PF 1|·|PF 2|=64,S =12|PF 1|·|PF 2|sin 60°=16 3.10.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点P (4,-10).(1)求双曲线的方程;(2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0; (3)求△F 1MF 2的面积.10.解析:(1)因为e =2,所以可设双曲线方程为x 2-y 2=λ(λ≠0).因为双曲线过点P (4,-10),所以16-10=λ,即λ=6. 所以双曲线方程为x 2-y 2=6. (2)由(1)可知,双曲线中a =b =6,所以c =23,所以F 1(-23,0),F 2(23,0), 所以kMF 1=m 3+23,kMF 2=m3-23,所以kMF 1·kMF 2=m 29-12=-m 23,因为点M (3,m )在双曲线上, 所以9-m 2=6,得m 2=3.故kMF 1·kMF 2=-1,所以MF 1⊥MF 2,所以MF 1→·MF 2→=0. (3)△F 1MF 2的底边|F 1F 2|=43,底边F 1F 2上的高h =|m |=3, 所以S △F 1MF 2=6.。
3.2.2 双曲线的简单几何性质【考点1:双曲线的方程、图形及性质】【考点2:离心率的值及取值范围】【考点3:根据顶点坐标、实轴、虚轴求双曲线的标准方程】【考点4:求共焦点的双曲线方程】【考点5:双曲线的渐近线】【考点6:等轴双曲线】【考点7:双曲线的实际应用】知识点1双曲线的标准方程和几何性质x≥a或x≤-a,y∈R y≤-a或y≥a,x∈R知识点2 双曲线中的几个常用结论(1)双曲线的焦点到其渐近线的距离为b.(2)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .(3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b 2a ,异支的弦中最短的为实轴,其长为2a .(4)设P ,A ,B 是双曲线上的三个不同的点,其中A ,B 关于原点对称,直线P A ,PB 斜率存在且不为0,则直线P A 与PB 的斜率之积为b 2a2.(5)P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则,其中θ为∠F 1PF 2.(6)等轴双曲线①定义:中心在原点,以坐标轴为对称轴,实半轴长与虚半轴长相等的双曲线叫做等轴双曲线.②性质:a =b ;e =2;渐近线互相垂直;等轴双曲线上任意一点到中心的距离是它到两焦点距离的等比中项. (7)共轭双曲线①定义:若一条双曲线的实轴和虚轴分别是另一条双曲线的虚轴和实轴,那么这两条双曲线互为共轭双曲线.②性质:它们有共同的渐近线;它们的四个焦点共圆;它们的离心率的倒数的平方和等于1.【考点1: 双曲线的方程、图形及性质】【典例1】双曲线9x 2−4y 2=36的一个焦点坐标为( ) A .(√13,0)B .(0,√13)C .(√5,0)D .(0,√5)【变式11】已知双曲线C:x 25−y 2b 2=1的焦距为6,则双曲线C 的焦点到渐近线的距离为( )A .√3B .2C .4D .√31【变式12】若双曲线x 2m 2+1−y 2=1的实轴长为4,则正数m =( ) A .√3 B .2C .94D .72【考点2:离心率的值及取值范围】【典例2】已知双曲线x2−y2=4,则其离心率是()A.2B.√2C.√3D.√5【变式21】已知双曲线的两个焦点分别为(0,4),(0,−4),点(−6,4)在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.√2【变式22】已知双曲线x 2a2−y2b2=1(a>0,b>0)的一条渐近线的倾斜角为π3,则此双曲线的离心率e为()A.2B.2√33C.2或2√33D.√3或2【变式23】若双曲线x 2a2−y2=1(a>0)的离心率为√2,则a=()A.2B.√2C.1D.√22【考点3:根据顶点坐标、实轴、虚轴求双曲线的标准方程】【典例3】已知双曲线C经过点(0,1),离心率为√2,则C的标准方程为()A.x2−y2=1B.x2−y23=1C.y2−x2=1D.y2−x23=1【变式31】双曲线C的中心在原点,焦点在x轴上,离心率e=2,且点P(√6,3)在双曲线C上,则双曲线C的标准方程为()A.x24−y212=1B.x22−y26=1C.x23−y29=1D.x2−y23=1【变式32】已知双曲线x 2a2−y2b2=1的虚轴长为4,离心率为√2,则该双曲线的方程为()A.x2−y24=1B.x24−y2=1C.x24−y24=1D.x22−y22=1【变式33】以椭圆x 28+y24=1的长轴端点为焦点、以椭圆焦点为顶点的双曲线方程为()A.x24−y24=1B.x28−y24=1C.x24−y2=1D.x28−y2=1【考点4:双曲线的渐近线】【典例4】已知双曲线C:y 2a2−x2b2=1(a>0,b>0)的离心率为√6,则双曲线C的渐近线方程为()A.y=±√5x B.y=±√6x C.y=±√55x D.y=±√66x【变式41】双曲线x 23m −y26m=1的渐近线方程为()A.y=±√2x B.y=±√22xC.y=±2x D.y=±12x【变式42】双曲线y 24m −x22m=1的渐近线方程为()A.y=±√22x B.y=±√2x C.y=±2x D.y=±12x【变式43】已知双曲线C1:x2+y2m=1(m≠0)与C2:x2−y2=2共焦点,则C1的渐近线方程为().A.x±y=0B.√2x±y=0C.x±√3y=0D.√3x±y=0【变式44】双曲线x 24−y25=1的渐近线方程为.【考点5:等轴双曲线】【典例5】已知等轴双曲线C的对称轴为坐标轴,且经过点A(4√2,2),则双曲线C的标准方程为()A.x236−y236=1B.y236−x236=1C.x228−y228=1D.y228−x228=1【变式51】等轴双曲线的渐近线方程为()A.y=±√2x B.y=±√3x C.y=±x D.y=±√5x【变式52】若双曲线C:x 2m +y2m2−2=1为等轴双曲线,其焦点在y轴上,则实数m=()A.1B.−1C.2D.−2【变式53】中心在原点,实轴在x轴上,一个焦点在直线x−4y+2√2=0上的等轴双曲线方程是()A.x2−y2=8B.x2−y2=4C.y2−x2=8D.y2−x2=4【考点6:共焦点的双曲线】【典例6】多选题过点(3,2)且与椭圆x 28+y23=1有相同焦点的圆锥曲线方程为()A.x225+y220=1B.x215+y210=1C.x23−y22=1D.x22−y23=1【变式61】过点(2,3)且与椭圆5x2+9y2=45有相同焦点的双曲线的标准方程为()A.x2−y23=1B.x29−y2=1C.x22−y29=1D.x29−y25=1【变式62】与双曲线x 216−y24=1有公共焦点,且过点(3√2,2)的双曲线方程为.【考点7:双曲线的实际应用】【典例7】3D打印是快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术,如图所示的塔筒为3D 打印的双曲线型塔筒,该塔筒是由离心率为√10的双曲线的一部分围绕其旋转轴逐层旋转打印得到的,已知该塔筒(数据均以外壁即塔筒外侧表面计算)的上底直径为6√2cm,下底直径为9√2cm,喉部(中间最细处)的直径为8cm,则该塔筒的高为()A.272cm B.18cm C.27√22cm D.18√2cm【变式71】单叶双曲面是最受设计师青睐的结构之一,它可以用直的钢梁建造,既能减少风的阻力,又能用最少的材料来维持结构的完整.如图1,俗称小蛮腰的广州塔位于中国广州市,它的外形就是单叶双曲面,可看成是双曲线的一部分绕其虚轴旋转所形成的曲面.某市计划建造类似于广州塔的地标建筑,此地标建筑的平面图形是双曲线,如图2,最细处的直径为100m,楼底的直径为50√22m,楼顶直径为50√6m,最细处距楼底300m,则该地标建筑的高为()A.350m B.375m C.400m D.450m【变式72】祖暅是我国南北朝时期伟大的科学家,他于5世纪末提出了“幂势既同,则积不容异”的体积计算原理,即“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等”.某同学在暑期社会实践中,了解到火电厂的冷却塔常用的外形可以看作是双曲线的一部分绕其虚轴旋转所形成的曲面(如图).现有某火电厂的冷却塔设计图纸,其外形的双曲线方程为x2−y24=1(−2≤y≤1),内部虚线为该双曲线的渐近线,则该同学利用“祖暅原理”算得此冷却塔的体积为.【变式73】青花瓷,中华陶瓷烧制工艺的珍品,是中国瓷器的主流品种之一.如图是一个落地青花瓷,其外形称为单叶双曲面,且它的外形左右对称,可以看成是双曲线的一部分绕其虚轴旋转所形成的曲面.若该花瓶横截面圆的最小直径为16cm,上瓶口圆的直径为20cm,上瓶口圆与最小圆圆心间的距离为12cm,则该双曲线的离心率为.一、单选题1.已知等轴双曲线C的对称轴为坐标轴,且经过点A(4√2,2),则双曲线C的标准方程为()A.x236−y236=1B.y236−x236=1C.x228−y228=1D.y228−x228=12.等轴双曲线的渐近线方程为()A.y=±√2x B.y=±√3x C.y=±x D.y=±√5x3.若双曲线C:x2m +y2m2−2=1为等轴双曲线,其焦点在y轴上,则实数m=()A.1B.−1C.2D.−24.中心在原点,实轴在x轴上,一个焦点在直线x−4y+2√2=0上的等轴双曲线方程是()A.x2−y2=8B.x2−y2=4C.y2−x2=8D.y2−x2=45.设双曲线E的中心为O,一个焦点为F,过F作E的两条渐近线的垂线,垂足分别为A、B.若|BF|=√2|OA|,则E的离心率等于()A.√62B.√2C.√3D.36.若双曲线x25+y2m=1的离心率为2,则m的值为()A.−5B.−10C.−15D.−207.已知双曲线C:y2a2−x2b2=1(a>0,b>0)的实半轴长为√3,其上焦点到双曲线的一条渐近线的距离为3,则双曲线C的渐近线方程为()A.y=±√3x B.y=±√33x C.y=±√32x D.y=±2√33x8.双曲线E:x29−y236=1的渐近线方程为()A.y=±14x B.y=±12x C.y=±2x D.y=±4x9.已知双曲线C:x24−y23=1,以右顶点A为圆心,r为半径的圆上一点M(M不在x轴上)处的切线与C交于S、T两点,且M为ST中点,则r的取值范围为()A.r>2√217B.0<r<4√57C.r>67D.r>110.已知双曲线C:x2a2−y2b2=1(a>0,b>0),点B的坐标为(0,b),若C上存在点P使得|PB|<b成立,则C的离心率取值范围是()A.[√2+12,+∞)B.[√5+32,+∞)C.(√2,+∞)D.(√5+12,+∞)11.双曲线y23−x26=1的焦点坐标为()A.(±√3,0)B.(0,±√3)C.(±3,0)D.(0,±3)12.已知点A为双曲线x24−y2=1的左顶点,点B和点C在双曲线的左支上,若△ABC是等腰直角三角形,则△ABC的面积是()A.4B.89C.169D.329二、填空题13.双曲线x29−y27=1的右焦点坐标为.14.如果双曲线关于原点对称,它的焦点在y轴上,实轴的长为8,焦距为10.则双曲线的标准方程为.15.已知双曲线的左右焦点分别为F1,F2,过F1的直线与左支交于A,B两点,若|AB|=5,且双曲线的实轴长为8,则△ABF2的周长为.三、解答题16.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的焦距为10,F为双曲线的右焦点,且点F到渐近线的距离为4.(1)求双曲线C的方程;(2)若点A(12,0),点P为双曲线C左支上一点,求|PA|+|PF|的最小值.17.已知双曲线C与椭圆x24+y2=1有公共焦点,其渐近线方程为y=±√22x.(1)求双曲线C的标准方程;(2)若直线y=x+m与双曲线C交于A,B两点,且|AB|=4√2,求实数m的值.。
双曲线经典练习题总结(带答案)1.选择题1.以椭圆x^2/169 + y^2/64 = 1的顶点为顶点,离心率为2的双曲线方程为C,当顶点为(±4,0)时,a=4,c=8,b=√(a^2+c^2)=4√5,双曲线方程为x^2/16 - y^2/20 = 1;当顶点为(0,±3)时,a=3,c=6,b=√(a^2+c^2)=3√5,双曲线方程为y^2/9 - x^2/5 = 1,所以答案为C。
2.双曲线2x^2 - y^2 = 8化为标准形式为x^2/4 - y^2/8 = 1,所以实轴长为2a = 4,答案为C。
3.若a>1,则双曲线2x^2/a^2 - y^2 = 1的离心率的取值范围是C。
由双曲线方程得离心率e = √(a^2+1)/a,所以c^2 =a^2+b^2 = a^2(a^2+1)/(a^2-1),代入离心率公式得√(a^2+1)/a = 2,解得a = 2,所以答案为C。
4.已知双曲线C:2x^2/a^2 - 2y^2/b^2 = 1(a>0,b>0)的离心率为2,则点(4,0)到C的渐近线的距离为D。
由双曲线方程得离心率e = √(a^2+b^2)/a = 2,所以b^2 = 3a^2,又因为点(4,0)到渐近线的距离为c/a,所以c^2 = a^2+b^2 = 4a^2,代入双曲线方程得4x^2/a^2 - 2y^2/3a^2 = 1,化简得y^2 = 6x^2/5,所以渐近线方程为y = ±√(6/5)x,代入点(4,0)得距离为2√5,所以答案为D。
5.双曲线C:x^2/4 - y^2/16 = 1的右焦点坐标为F(6,0),一条渐近线的方程为y = x,设点P在第一象限,由于|PO| = |PF|,则点P的横坐标为4,纵坐标为3,所以△PFO的底边长为6,高为3,面积为9,所以答案为A。
6.若双曲线C:2x^2/a^2 - 2y^2/b^2 = 1(a>0,b>0)的一条渐近线被圆(x-2)^2 + y^2 = 4所截得的弦长为2,则b^2 = a^2-4,圆心为(2,0),半径为2,设截弦的两个交点为P和Q,则PQ = 2,所以PQ的中点M在圆上,即M为(5/2,±√(3)/2),所以PM = √(a^2-25/4)±√(3)/2,由于PM = PQ/2 = 1,所以(a^2-25/4)+(3/4) = 1,解得a = √(29)/2,所以答案为B。
2024学年高二数学重难点和易错点专项(双曲线的简单几何性质)练习重难点1已知方程求焦距、实轴、虚轴1.已知12,F F 是双曲线2221(0)3y x a a-=>的两个焦点,若双曲线的左、右顶点和原点把线段12F F 四等分,则该双曲线的焦距为( ) A .1 B .2C .3D .42.双曲线221x y m-=的实轴长是虚轴长的3倍,则m 的值为( )A .9B .-9C .19D .19-3.已知双曲线C :()222210,0x y a b a b-=>>的左顶点为A ,右焦点为F ,焦距为6,点M 在双曲线C 上,且MF AF ⊥,2MF AF =,则双曲线C 的实轴长为( )A .2B .4C .6D .84.如图,这是一个落地青花瓷,其外形被称为单叶双曲面,可以看成是双曲线C :22221x y a b -=的一部分绕其虚轴所在直线旋转所形成的曲面.若该花瓶横截面圆的最小直径为8cm ,瓶高等于双曲线C 的虚轴长,则该花瓶的瓶口直径为( )A.cm B .24cm C .32cmD .cm5.若实数m 满足05m <<,则曲线221155x y m -=-与曲线221155x y m -=-的( )A .离心率相等B .焦距相等C .实轴长相等D .虚轴长相等6.等轴双曲线2221(0)x y a a -=>的焦距为 .7.已知椭圆22122:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F ,M 是1C 上任意一点,12MF F △的面积的1C 的焦距为2,则双曲线22222:1y x C a b -=的实轴长为 .重难点2已知方程求双曲线的渐近线8.双曲线()22102y x a a a-=≠的渐近线方程为( )A .2y x =±B .12y x =±C .y =D .2y x =±9.已知双曲线22221(0,0)x y a b a b-=>>的离心率为e ,若点(与点(),2e 都在双曲线上,则该双曲线的渐近线方程为( )A .y x =±B .y =C .y =D .2y x =±10.双曲线22139x y -=的两条渐近线的夹角为( )A .30︒B .45︒C .60︒D .120︒11.在平面直角坐标系xOy 中,双曲线2221x y -=的渐近线方程为( )A .2y x =± B .y =C .y x =±D .4y x =±12.已知双曲线()2222:10,0x y C a b a b-=>>的一个焦点是F ,点F 到C 的渐近线的距离为d ,则d ( )A .与a 有关B .与a 无关C .与b 有关D .与b 无关13.双曲线2221(0)36x y a a -=>的渐近线方程为2y x =±,则=a .14.已知双曲线()22:10y C x n n-=>的一条渐近线为0nx =,则C 的离心率为 .重难点3由双曲线的几何性质求标准方程15.已知双曲线2222:1y x C a b-=的一条渐近线斜率为2-,实轴长为4,则C 的标准方程为( )A .2214x y -=B .221416y x -=C .2214y x -=D .221164y x -=16倍,且一个顶点的坐标为()2,0,则双曲线的标准方程为( )A .22144x y -=B .22144-=y xC .2214y x -=D .2214x y -=17.已知双曲线2222:1(0,0)x y C a b a b-=>>的焦点到渐近线的距离为4,实轴长为6,则C 的方程为( )A .22149x y -=B .22194x y -=C .221169x y -=D .221916x y -=18.求双曲线以椭圆22185x y +=的焦点为顶点,且以椭圆的顶点为焦点,则双曲线的方程是 ( )A .22135x y -=B .22153x y -=C .22135y x -=D .22153y x -=19.已知双曲线C :22221x y a b-=(0a >,0b >)的实轴长为4.若点()P m 是双曲线C位于第一象限内的一点,则m =( )A .2B .1CD20.双曲线()2210,0x y m n m n -=>>的渐近线方程为y x =,实轴长为2,则m n -为( )A .14-B .1C .12D .12-21.如果中心在原点,对称轴在坐标轴上的等轴双曲线的一个焦点为()10,6F -,那么此双曲线的标准方程为 .重难点4求共渐近线的双曲线方程22.若双曲线C 与双曲线2211612x y -=有相同的渐近线,且经过点(,则双曲线C 的标准方程是 .23.与双曲线221169x y -=渐近线相同,且一个焦点坐标是()0,5的双曲线的标准方程是 .24.若双曲线C 与2219x y -=有共同渐近线,且与椭圆2214020x y +=有相同的焦点,则该双曲线C 的方程为 .25.双曲线22:12y C x -=,写出一个与双曲线C 有共同的渐近线但离心率不同的双曲线方程 .26.求与双曲线22143y x -=有共同的渐近线,且经过点()3,2M -的双曲线的标准方程.27.已知双曲线E 与双曲线221169x y -=共渐近线,且过点()3A -,若双曲线M 以双曲线E 的实轴为虚轴,虚轴为实轴,试求双曲线M 的标准方程.28.已知双曲线()2222:10,0x y C a b a b-=>>的两个焦点分别为()1F ,)2F ,且过点)2P.(1)求双曲线C 的虚轴长;(2)求与双曲线C 有相同渐近线,且过点()3,6Q -的双曲线的标准方程.重难点5根据,,a b c 齐次式关系求渐近线方程29.过原点的直线l 与双曲线E :()222210,0x y a b a b-=>>交于A ,B 两点(点A 在第一象限),AC x ⊥交x轴于C 点,直线BC 交双曲线于点D ,且1AB AD k k ⋅=,则双曲线的渐近线方程为( )A .2y x =±B .12y x =±C .y =D .y x =30.双曲线2222:1(0,0)x y E a b a b-=>>,点A ,B 均在E 上,若四边形OACB 为平行四边形,且直线OC ,AB的斜率之积为3,则双曲线E 的渐近线的倾斜角为( )A .π3B .π3或2π3C .π6D .π6或5π631.已知双曲线2222:1(0,0)x y C a b a b-=>> )A .12y x =±B .2y x =±C .y =D .y =32.设12,F F 分别是双曲线22221x y a b-=()0,0a b >>的左、右焦点,若双曲线右支上存在一点P 满足212PF F F =,且124cos 5PF F ∠=,则双曲线的渐近线方程为( ) A .340x y ±= B .430x y ±= C .350x y ±= D .540x y ±=33.已知F 为双曲线C :22221x y a b-=(0a >,0b >)的右焦点,过点F 作x 轴的垂线与双曲线及它的渐近线在第一象限内依次交于点A 和点B .若A B A F =,则双曲线C 的渐近线方程为( )A 0y ±=B .0x =C 0y ±=D .0x =34.如图,已知1F ,2F 为双曲线()222210,0x y a b a b-=>>的焦点,过2F 作垂直于x 轴的直线交双曲线于点P ,且1230PF F ∠=︒,则双曲线的渐近线方程为 .35.过双曲线2222:1-=y W x a b 的右焦点F 作x 轴的垂线,与两条渐近线的交点分别为A ,B ,若OAB 为等边三角形,则W 的渐近线方程为 ,W 的离心率为 .重难点6求双曲线的离心率36.设12,F F 是双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点,过点1F 作双曲线的一条渐近线的垂线,垂足为M .若2MF ,则双曲线C 的离心率为( )AB C .3 D37.已知F 为双曲线C :()222210,0x y a b a b-=>>的右焦点,平行于x 轴的直线l 分别交C 的渐近线和右支于点A ,B ,且90OAF ∠=︒,OBF OFB ∠=∠,则C 的离心率为( )A .2B C .32D38.设1F 、2F 分别为双曲线22221(0,0)x y a b a b-=>>的左右焦点,O 为坐标原点,过左焦点1F 作直线1F P 与圆222x y a +=切于点E ,与双曲线右支交于点P ,且121||2OP F F =,则双曲线的离心率为( )AB .2C D39.已知双曲线2222>:1(00,)>x y C a b a b -=的左右焦点12F F ,,点2F 关于一条渐近线的对称点在另一条渐近线上,则双曲线C 的离心率是( )AB C .2D .340.若0m >,双曲线1C :2212x y m -=与双曲线2C :2218x y m-=的离心率分别为1e ,2e ,则( )A .12e e 的最小值为94B .12e e 的最小值为32C .12e e 的最大值为94D .12e e 的最大值为3241.已知双曲线2222:1(0,0)y x C a b a b-=>>,过其上焦点F 的直线与圆222x y a +=相切于点A ,并与双曲线C的一条渐近线交于点(,B A B 不重合).若25FB FA =,则双曲线C 的离心率为 .42.已知双曲线C :22221(0,0)x y a b a b-=>>的右焦点为F ,过F 分别作C 的两条渐近线的平行线与C 交于A ,B 两点,若||AB =,则C 的离心率为43.已知双曲线()2222:10,0x y C a b a b-=>>的右顶点为A ,左、右焦点分别为1F ,2F ,渐近线在第一象限的部分上存在一点P ,且1OP OF =,直线1PF ,则该双曲线的离心率为 .重难点7求双曲线离心率的取值范围44.过双曲线22221(0,0)x y a b a b-=>>的左焦点且垂直于x 轴的直线与双曲线交于,A B 两点,D 为虚轴上的一个端点,且ADB ∠为钝角,则此双曲线离心率的取值范围为( )A .(B .C .)2D .)+∞45.已知1F ,2F 是双曲线()222210,0x y a b a b-=>>的左、右焦点,若双曲线上存在点P 满足2212PF PF a ⋅=- ,则双曲线离心率的最小值为( )AB C .2 D46.已知双曲线22221E y x a b-=:(0a >,0b >)的离心率为e ,若直线2y x =±与E 无公共点,则e 的取值范围是 .47.已知双曲线2222:1(0,0),x y C a b F a b-=>>为双曲线的右焦点,过点F 作渐近线的垂线()0MN MN k <,垂足为M ,交另一条渐近线于N ,若()2NM MF λλ=≥,则双曲线C 的离心率的取值范围是( )A .)+∞ B .(C .D .3⎡⎫+∞⎪⎢⎣⎭48.双曲线2221y x b-=的左焦点为F ,()0,A b -,M 为双曲线右支上一点,若存在M ,使得5FM AM +=,则双曲线离心率的取值范围为( )A .(B .(C .)+∞D .)+∞49.如图为陕西博物馆收藏的国宝——唐ꞏ金筐宝钿团化纹金杯,杯身曲线内收,玲珑娇美,巧夺天工,是唐朝金银细作的典范之作.该杯的主体部分可以近似看作是双曲线C :()222210,0x y a b a b -=>>的部分的旋转体.若该双曲线右支上存在点P ,使得直线P A ,PB (点A ,B 为双曲线的左、右顶点)的斜率之和为83,则该双曲线离心率的取值范围为 .50.已知双曲线C :22221x y a b -=(0a >,0b >)的左、右焦点分别为1F ,2F ,若在C 上存在点P (不是顶点),使得21123PF F PF F ∠∠=,则C 的离心率的取值范围为 .重难点8根据离心率求参数51.已知有公共焦点的椭圆与双曲线的中心为原点,焦点在x 轴上,左右焦点分别为1F ,2F ,且它们在第一象限的交点为P ,12PF F △是以1PF 为底边的等腰三角形.若110PF =,双曲线的离心率的取值范围为(1,2),则该椭圆的焦距的取值范围是( )A .55,32⎛⎫ ⎪⎝⎭B .205,3⎛⎫ ⎪⎝⎭C .10,53⎛⎫ ⎪⎝⎭D .510,23⎛⎫ ⎪⎝⎭52.设双曲线2222:1y x C a b-=(0,0)a b >>的上、下焦点分别为12,F F P 是C 上一点,且12PF PF ⊥.若12PF F △的面积为4,则=a ( )A .8B .4C .2D .153.设k 为实数,已知双曲线2214x y k-=的离心率(2,3)e ∈,则k 的取值范围为54.已知1F ,2F 是双曲线C 的两个焦点,P 为C 上一点,且1260F PF ∠=︒,()121PF PF λλ=>,若C 的离2,则λ的值为 .55.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别是1F ,2F ,P 是双曲线右支上一点,2120PF F F ⋅= ,O为坐标原点,过点O 作1F P 的垂线,垂足为点H ,若双曲线的离心率e =存在实数m 满足1OH m OF =,则m = .56.已知双曲线22:113x y C m m-=+-m 的取值范围是( )A .()1,1-B .()1,3-C .(),1-∞D .()0,157.点P 是双曲线C :()222210,0x y a b a b-=>>右支上一点,1F ,2F 分别是双曲线C 的左,右焦点,M 为12PF F △的内心,若双曲线C 的离心率32e =,且121MPF MPF MF F S S S λ=+ 2,则λ=( ) A .12 B .34C .1D .23重难点9双曲线的实际应用58.某中心接到其正东、正西、正北方向三个观测点的报告;正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其它两观测点晚2s ,已知各观测点到该中心的距离是680m ,则该巨响发生在接报中心的( )处(假定当时声音传播的速度为340m/s ,相关各点均在同一平面上) A .西偏北45°方向,距离B .东偏南45°方向,距离C .西偏北45°方向,距离D .东偏南45°方向,距离59.如图,B 地在A 地的正东方向4km 处,C 地在B 地的北偏东30︒方向2km 处,河流的沿岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2km .现要在曲线PQ 上选一处M 建一座码头,向B 、C 两地转运货物.经测算,从M 到B 、C 两地修建公路的费用分别是a 万元/km 、2a 万元/km ,那么修建这两条公路的总费用最低是( )A .2)a 万元B .5a 万元C .1)a 万元D .3)a +万元60.如图是等轴双曲线形拱桥,现拱顶离水面5m ,水面宽30m AB =. 若水面下降5m ,则水面宽是 .(结果精确到0.1m )61.如图,一个光学装置由有公共焦点12,F F 的椭圆C 与双曲线C '构成,一光线从左焦点1F 发出,依次经过C '与C 的反射,又回到点1F .,历时m 秒;若将装置中的C '去掉,则该光线从点1F 发出,经过C 两次反射后又回到点1F 历时n 秒,若C '的离心率为C 的离心率的4倍,则mn= .62.如图1,北京冬奥会火种台以“承天载物”为设计理念,创意灵感来自中国传统青铜礼器一尊的曲线造型,基座沉稳,象征“地载万物”,顶部舒展开阔,寓意迎接纯洁的奥林匹克火种.如图2,一种尊的外形近似为某双曲线的一部分绕着虚轴旋转所成的曲面,尊高63cm ,上口直径为40cm ,底部直径为26cm ,最小直径为24cm ,则该双曲线的渐近线与实轴所成锐角的正切值为 .63.(多选)我国首先研制成功的“双曲线新闻灯”,如图,利用了双曲线的光学性质:1F ,2F 是双曲线的左、右焦点,从2F 发出的光线m 射在双曲线右支上一点P ,经点P 反射后,反射光线的反向延长线过1F ;当P 异于双曲线顶点时,双曲线在点P 处的切线平分12F PF ∠.若双曲线C 的方程为221916x y -=,则下列结论正确的是( )A .射线n 所在直线的斜率为k ,则44,33k ⎛⎫∈- ⎪⎝⎭B .当m n ⊥时,1232PF PF ⋅=C .当n 过点()7,5Q 时,光线由2F 到P 再到Q 所经过的路程为13D .若点T 坐标为()1,0,直线PT 与C 相切,则212PF =64.如图1所示,双曲线具有光学性质:从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线E:22221x ya b-=(0a>,0b>)的左、右焦点分别为1F,2F,从2F发出的光线经过图2中的A,B两点反射后,分别经过点C和D,且5tan12CAB∠=-,AB BD⊥,则双曲线E的离心率为.参考答案重难点1已知方程求焦距、实轴、虚轴1.已知12,F F 是双曲线2221(0)3y x a a-=>的两个焦点,若双曲线的左、右顶点和原点把线段12F F 四等分,则该双曲线的焦距为( )A .1B .2C .3D .4【答案】D【详细分析】根据题意列出方程组222243c a c a ⎧=⎨=+⎩进行求解即可. 【答案详解】因为12,F F 是双曲线2221(0)3y x a a-=>的两个焦点,若双曲线的左、右顶点和原点把线段12F F 四等分,所以24c a =,即2c a =,即224c a =, 又因为223c a =+,解得2214a c ⎧=⎨=⎩,所以c =2,所以该双曲线的焦距为2224c =⨯=.故选:D2.双曲线221x y m-=的实轴长是虚轴长的3倍,则m 的值为( )A .9B .-9C .19D .19-【答案】C【详细分析】根据双曲线的方程,求得1,a b ==,结合题意,列出方程,即可求解.【答案详解】由双曲线221x y m-=,可得0m >,且1,a b ==,因为双曲线的实轴长是虚轴长的3倍,可得3a b =,即1=19m =. 故选:C.3.已知双曲线C :()222210,0x y a b a b-=>>的左顶点为A ,右焦点为F ,焦距为6,点M 在双曲线C 上,且MF AF ⊥,2MF AF =,则双曲线C 的实轴长为( )A .2B .4C .6D .8【答案】A【详细分析】运用代入法,结合已知等式进行求解即可.【答案详解】把x c =代入22221x y a b -=中,得2b y a =±,即2bMF a=,因为AF a c =+,2MF AF =, 所以()22b a c a=+⇒22222c a ac a -=+,又3c =,所以2230a a +-=,解得1a =,3a =-舍去,则22a =. 故选:A4.如图,这是一个落地青花瓷,其外形被称为单叶双曲面,可以看成是双曲线C :22221x y a b -=的一部分绕其虚轴所在直线旋转所形成的曲面.若该花瓶横截面圆的最小直径为8cm ,瓶高等于双曲线C 的虚轴长,则该花瓶的瓶口直径为( )A .cmB .24cmC .32cmD .cm【答案】D【详细分析】求出4a =,设出(),M r b ,代入双曲线方程,求出r =. 【答案详解】因为该花瓶横截面圆的最小直径为8cm ,所以4a =.设M 是双曲线C 与瓶口截面的一个交点,该花瓶的瓶口半径为r ,则(),M r b ,所以222214r b b -=,解得r =2r =.故选:D5.若实数m 满足05m <<,则曲线221155x y m -=-与曲线221155x y m -=-的( )A .离心率相等B .焦距相等C .实轴长相等D .虚轴长相等【答案】B【详细分析】根据双曲线的性质逐一详细分析判断即可. 【答案详解】因为05m <<,所以50,150m m ->->,所以曲线221155x y m -=-与曲线221155x y m -=-都是焦点在x 轴上的双曲线,15520155m m m +-=-=-+,所以两曲线的焦点和焦距都相同,故B 正确; 因为20201515m m m--≠-,所以离心率不相等,故A 错误; 因为1515m ≠-,所以实轴长不相等,故C 错误; 因为55m -≠,所以虚轴长不相等,故D 错误. 故选:B.6.等轴双曲线2221(0)x y a a-=>的焦距为 .【答案】【详细分析】根据等轴双曲线定义得到221a b ==,进而求出c =.【答案详解】由题意得,221a b ==,故2222c a b =+=,故c =2c =.故答案为:7.已知椭圆22122:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F ,M 是1C 上任意一点,12MF F △的面积的1C 的焦距为2,则双曲线22222:1y x C a b-=的实轴长为 .【答案】4【详细分析】根据椭圆焦点三角形的性质即可列方程求解2,a b =⎧⎪⎨=⎪⎩,进而可求解.【答案详解】由于12MF F △的面积为122M c y cb ⨯⨯≤,由题意知22222,,c b c a b c ⎧⋅=⎪=⎨⎪=+⎩所以2,a b =⎧⎪⎨=⎪⎩故双曲线2C 的方程为22143y x -=,则2C 的实轴长为4.故答案为:4重难点2已知方程求双曲线的渐近线8.双曲线()22102y x a a a-=≠的渐近线方程为( )A .2y x =±B .12y x =±C.y =D.2y x =±【答案】C【详细分析】利用双曲线渐近线方程定义计算即可.【答案详解】由题意可得:双曲线()22102y x a a a -=≠渐近线斜率为k ==则其渐近线方程为:y =. 故选:C9.已知双曲线22221(0,0)x y a b a b-=>>的离心率为e,若点(与点(),2e 都在双曲线上,则该双曲线的渐近线方程为( ) A .y x =± B.y = C.y =D .2y x =±【答案】B【详细分析】根据给定条件,列出方程组,结合离心率的意义求出,a b 作答.【答案详解】由点,2)e 在双曲线22221x y a b -=上,得2222241461e a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩,则222420e a b --=,即2222214b e e a==--,整理得42560e e -+=,解得22e =或23e =, 当22e =时,22a b =,此时方程22461a b -=无解, 当23e =时,222b a =,而22461a b -=,解得1,a b ==,所以该双曲线的渐近线方程为y =. 故选:B10.双曲线22139x y -=的两条渐近线的夹角为( )A .30︒B .45︒C .60︒D .120︒【答案】C【详细分析】根据题意求得双曲线的渐近线方程,进而求得其夹角.【答案详解】由双曲线22139x y -=,可得3a b =,所以双曲线的渐近线的方程为by x a=±=,所以两渐近线y =的夹角为60︒. 故选:C.11.在平面直角坐标系xOy 中,双曲线2221x y -=的渐近线方程为( )A.2y x =± B.y = C .y x =±D.4y x =±【答案】B【详细分析】化简双曲线的方程为标准方程,求得,a b 的值,结合双曲线的几何性质,即可求解. 【答案详解】由双曲线2221x y -=,可得其标准方程为22112x y -=,所以,12a b ==,则双曲线的渐近线方程为by x a=±=. 故选:B.12.已知双曲线()2222:10,0x y C a b a b-=>>的一个焦点是F ,点F 到C 的渐近线的距离为d ,则d ( )A .与a 有关B .与a 无关C .与b 有关D .与b 无关【答案】BC【详细分析】根据双曲线标准方程可求得焦点坐标,再利用点到直线距离即可求出d b =,便可得出结论. 【答案详解】设双曲线C 的焦距为2c ,不妨取右焦点F 的坐标为(),0c ,如下图所示:双曲线C 的渐近线方程是by x a=±,即bx ay ±=0,所以===bcd b c, 所以d 与a 无关,与b 有关. 故选:BC.13.双曲线2221(0)36x y a a -=>的渐近线方程为2y x =±,则=a .【答案】3【详细分析】根据双曲线的渐近线方程即可求解.【答案详解】2221(0)36x y a a -=>的渐近线方程为6y x a =±,所以623a a =⇒=,故答案为:314.已知双曲线()22:10y C x n n-=>的一条渐近线为0nx =,则C 的离心率为.2n =⇒=,进而求出双曲线的离心率.【答案详解】双曲线的一条渐近线方程为0nx =,即y =,2n =⇒=,故双曲线22:12y C x -=,所以双曲线的离心率为1e ==重难点3由双曲线的几何性质求标准方程15.已知双曲线2222:1y x C a b-=的一条渐近线斜率为2-,实轴长为4,则C 的标准方程为( )A .2214x y -=B .221416y x -=C .2214y x -=D .221164y x -=【答案】C【详细分析】根据双曲线的基本量关系,结合渐近线方程求解即可.【答案详解】由题意双曲线2222:1y x C a b-=的焦点在y 轴上,则24a =,2a =,又2a b -=-,则1b =,故C 的标准方程为2214y x -=.故选:C16倍,且一个顶点的坐标为()2,0,则双曲线的标准方程为( )A .22144x y -=B .22144-=y xC .2214y x -=D .2214x y -=【答案】A【详细分析】根据条件列关于a ,b ,c 的方程组求解即可.【答案详解】设双曲线的标准方程为22221x y a b-=,由已知得222222a b a a b c ⎧+=⎪=⎨⎪+=⎩,解得22a b =⎧⎨=⎩, 所以双曲线的标准方程为22144x y -=故选:A.17.已知双曲线2222:1(0,0)x y C a b a b-=>>的焦点到渐近线的距离为4,实轴长为6,则C 的方程为( )A .22149x y -=B .22194x y -=C .221169x y -=D .221916x y -=【答案】D【详细分析】由距离公式得出4b =,进而由双曲线的性质得出方程. 【答案详解】右焦点2(,0)F c 到渐近线0bx ay -=4b ==,因为实轴长为26a =,所以3a =,即C 的方程为221916x y -=.故选:D18.求双曲线以椭圆22185x y +=的焦点为顶点,且以椭圆的顶点为焦点,则双曲线的方程是 ( )A .22135x y -=B .22153x y -=C .22135y x -=D .22153y x -=【答案】A【详细分析】根据椭圆22185x y +=方程,可得出其焦点坐标、顶点坐标,进而得到双曲线的焦点坐标、顶点坐标,即可得到双曲线的方程.【答案详解】在椭圆22185x y +=中,c =,椭圆的焦点坐标为,(,左右顶点坐标分别为,()-,则双曲线的顶点坐标为,(,焦点坐标为,()-,且双曲线的焦点在x 轴上,所以a =c =222835b c a =-=-=,所以双曲线的方程为:22135x y -=.故选:A.19.已知双曲线C :22221x y a b-=(0a >,0b >)的实轴长为4.若点()P m 是双曲线C位于第一象限内的一点,则m =( )A.2 B .1CD 【答案】B【详细分析】根据已知条件求得,a b ,从而求得双曲线的方程,代入P 点坐标,由此求得m 的值. 【答案详解】法一:双曲线的几何性质由题知22224,2,a c e abc a =⎧⎪⎪==⎨⎪⎪=-⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,所以双曲线C :2214x y -=.又点()P m 是双曲线C 位于第一象限内的一点, 所以2814m -=(0m >),解得1m =. 法二:由题知24a c e a =⎧⎪⎨===⎪⎩21a b =⎧⎨=⎩, 所以双曲线C :2214x y -=.又点()P m 是双曲线C 位于第一象限内的一点, 所以2814m -=(0m >),解得1m =.故选:B20.双曲线()2210,0x y m n m n -=>>的渐近线方程为2y x =±,实轴长为2,则m n -为( )A .14- B.1C .12 D.1【答案】A【详细分析】根据渐近线方程、实轴长求得,m n ,由此求得m n -.【答案详解】依题意222222a m ab n a m ⎧⎪⎪=⎪=⎨⎪⎪==⎪⎝⎭⎩,解得511,,44m n m n ==-=-. 故选:A21.如果中心在原点,对称轴在坐标轴上的等轴双曲线的一个焦点为()10,6F -,那么此双曲线的标准方程为 .【答案】2211818y x -=【详细分析】根据焦点坐标及题意,设方程为22221(0)y x a a a-=>,根据焦点坐标,可求得2a ,即可得答案.【答案详解】因为一个焦点是()10,6F -,所以6c =,且焦点在y 轴,所以设等轴双曲线方程为22221(0)y x a a a-=>,所以22236c a a =+=,解得218a =,所以双曲线标准方程为2211818y x -=,故答案为:2211818y x -=.重难点4求共渐近线的双曲线方程22.若双曲线C 与双曲线2211612x y -=有相同的渐近线,且经过点(,则双曲线C 的标准方程是 . 【答案】221912y x -=【详细分析】设双曲线C 的方程为221612x y λ-=,根据双曲线C 经过的点求得λ,从而求得双曲线C 的标准方程.【答案详解】由双曲线C 与双曲线2211612x y -=有相同的渐近线,可设双曲线C 的方程为221612x y λ-=,又C 过点(,所以34λ=-,22316124x y -=-,整理得双曲线C 的标准方程是221912y x -=.故答案为:221912y x -=23.与双曲线221169x y -=渐近线相同,且一个焦点坐标是()0,5的双曲线的标准方程是 .【答案】221916y x -=【详细分析】设所求双曲线的方程为22221y x a b -=,由题意有2225a b +=且34a b =,解出22,a b 即可.【答案详解】双曲线221169x y -=的渐近线方程为34y x =?,由焦点坐标是()0,5,可设所求双曲线的方程为22221y x a b-=(0,0)a b >>,得2225a b +=,双曲线渐近线的方程为a y x b =±,由题意有34a b =, 解得29a =,216b =,所以双曲线的方程为221916y x -=.故答案为:221916y x -=.24.若双曲线C 与2219x y -=有共同渐近线,且与椭圆2214020x y +=有相同的焦点,则该双曲线C 的方程为 . 【答案】221182x y -=【详细分析】根据双曲线与椭圆的标准方程,求得渐近线方程与焦点坐标,由双曲线标准方程,建立方程,可得答案.【答案详解】由方程2219x y -=,则其渐近线方程为13y x =±,由椭圆2214020x y +=,则其焦点为()±,由题意可知,双曲线C 的标准方程设为22221x y a b -=,则221320b a a b ⎧=⎪⎨⎪+=⎩,解得22182a b ⎧=⎨=⎩,则双曲线C 的标准方程为221182x y -=,故答案为:221182x y -=.25.双曲线22:12y C x -=,写出一个与双曲线C 有共同的渐近线但离心率不同的双曲线方程 .【答案】2212y x -=(答案不唯一)【详细分析】根据有共同渐近线的双曲线方程的性质进行求解即可.【答案详解】与双曲线C 有共同的渐近线的双曲线方程可设为222y x λ-=,当1λ=-时,得到双曲线方程为2212y x -=,显然该双曲线与双曲线C 有共同的渐近线但离心率不同,故答案为:2212y x -=26.求与双曲线22143y x -=有共同的渐近线,且经过点()3,2M -的双曲线的标准方程.【答案】22168x y -=【详细分析】利用待定系数法即可得到所求双曲线的标准方程.【答案详解】与双曲线22143y x -=有相同的渐近线的双曲线可设为22(0)43y x λλ-=≠又所求双曲线过点()3,2M -,则()222343λ--=,则2λ=- 则所求双曲线的方程为22243y x -=-,即22168x y -=.27.已知双曲线E 与双曲线221169x y -=共渐近线,且过点()3A -,若双曲线M 以双曲线E 的实轴为虚轴,虚轴为实轴,试求双曲线M 的标准方程.【答案】221944x y -= 【详细分析】设双曲线E 的方程为()220169-=≠x y t t ,代入点A 可得双曲线E 的标准方程,从而得到双曲线双曲线M 的标准方程.【答案详解】由题意,设双曲线E 的方程为()220169-=≠x y t t ,∵点()3A -在双曲线E上,∴(()223169--=t ,∴14t =-,∴双曲线E 的标准方程为221944y x -=, 又双曲线M 以双曲线E 的实轴为虚轴,虚轴为实轴,∴双曲线M 的标准方程为221944x y -=. 28.已知双曲线()2222:10,0x y C a b a b-=>>的两个焦点分别为()1F,)2F,且过点)2P.(1)求双曲线C 的虚轴长;(2)求与双曲线C 有相同渐近线,且过点()3,6Q -的双曲线的标准方程. 【答案】(1)(2)221189y x -= 【详细分析】(1)由双曲线的定义可知,12||||2PF PF a -=,又222+=a b c,求得b =即可.(2)设与双曲线C 有相同渐近线的双曲线的方程为22(0)2y x λλ-=≠,将点()3,6Q -的坐标代入上述方程得λ即可.【答案详解】(1)由题意,易知22PF =,12F F =212PF F F ⊥.在21Rt PF F △中,14PF ==由双曲线的定义可知,122PF PF a -=,22a =,即1a =. ∵双曲线C的两个焦点分别为()1F,)2F,∴c =又∵222+=a b c,∴b = 故双曲线C的虚轴长为(2)由(1)知双曲线C 的方程为2212y x -=.设与双曲线C 有相同渐近线的双曲线的方程为()2202y x λλ-=≠将点()3,6Q -的坐标代入上述方程,得9λ=-故所求双曲线的标准方程为221189y x -=重难点5根据,,a b c 齐次式关系求渐近线方程29.过原点的直线l 与双曲线E :()222210,0x y a b a b-=>>交于A ,B 两点(点A 在第一象限),AC x ⊥交x轴于C 点,直线BC 交双曲线于点D ,且1AB AD k k ⋅=,则双曲线的渐近线方程为( )A .2y x =±B .12y x =±C.y = D.2y x =±【答案】D【详细分析】由题可设,000011(,),(,),(,)A x y B x y D x y --,0(,0)C x ,分别表示出,,AB BC AD k k k ,逐步转化,即可求得本题答案.【答案详解】因为,A B 直线过原点,所以,A B 关于原点对称,设000011(,),(,),(,)A x y B x y D x y --, 因为AC 与x 轴垂直,所以0(,0)C x , 设123,,AB BC AD k k k k k k ===, 则00121001,22y y k k k x x ===, 而222222210101012232222222101010101(1)(1)y y y y y y x x b k k b b x x x x x x x x a a a⎡⎤+--⋅=⋅==---=⎢⎥+---⎣⎦所以,213232221b k k k k a⋅=⋅==,所以,222,a b a ==所以渐近线方程为y =. 故选:D30.双曲线2222:1(0,0)x y E a b a b -=>>,点A ,B 均在E 上,若四边形OACB 为平行四边形,且直线OC ,AB的斜率之积为3,则双曲线E 的渐近线的倾斜角为( )A .π3B .π3或2π3 C .π6D .π6或5π6【答案】B【详细分析】利用点差法,结合双曲线渐近线方程、平行四边形的性质、中点坐标公式进行求解即可.【答案详解】设()()1122,,,A x y B x y ,显然线段AB 的中点坐标为1212,22x x y y ++⎛⎫⎪⎝⎭,因为四边形OACB 为平行四边形,所以线段OC 的中点坐标和线段AB 的中点坐标相同,即为1212,22x x y y ++⎛⎫⎪⎝⎭,因此C 点坐标为()1212,x x y y ++, 因为直线OC ,AB 的斜率之积为3,所以221212122212121233y y y y y y x x x x x x +--⋅=⇒=+--, 因为点A ,B 均在E 上,所以2222112222221,1x y x y a b a b-=-=,两式相减得:22212222123y y b bx x a a-==⇒=- 所以两条渐近线方程的倾斜角为π3或2π3, 故选:B【点睛】关键点睛:本题的关键是应用点差法和平行四边形的性质.31.已知双曲线2222:1(0,0)x y C a b a b-=>> )A .12y x =±B .2y x =±C .y =D .3y x =±【答案】B【详细分析】由离心率求得ba即得渐近线方程.【答案详解】c e a ==,222225c a b a a +==,2b a =, 故选:B32.设12,F F 分别是双曲线22221x y a b -=()0,0a b >>的左、右焦点,若双曲线右支上存在一点P 满足212PF F F =,且124cos 5PF F ∠=,则双曲线的渐近线方程为( ) A .340x y ±= B .430x y ±= C .350x y ±=D .540x y ±=【答案】B【详细分析】结合双曲线的定义,以及条件,得到425a c c +=,再根据222c ab =+,即可求解双曲线渐近线的斜率.【答案详解】作21F Q PF ⊥于点Q ,如图所示,因为122F F PF =,所以Q 为1PF 的中点,由双曲线的定义知|122PF PF a -=,所以122PF a c =+,故1FQ a c =+,因为124cos 5PF F ∠=,所以11212cos FQ PF F F F =∠,即425a c c +=,得35c a =,所以5a =,得43b a =,故双曲线的渐近线方程为43y x =±,即430x y ±=. 故选:B33.已知F 为双曲线C :22221x y a b -=(0a >,0b >)的右焦点,过点F 作x 轴的垂线与双曲线及它的渐近线在第一象限内依次交于点A 和点B .若A B A F =,则双曲线C 的渐近线方程为( )A 0y ±=B .0x =C 0y ±=D .0x =【答案】B【详细分析】分别求出点A,B 的坐标,利用线段相等建立方程求出ba即可得解. 【答案详解】由题意得(),0F c ,双曲线C 的渐近线方程为by x a=±.设点A ,B 的纵坐标依次为1y ,2y ,因为221221c y a b -=,所以21b y a =,所以2b AF a =.因为2bc y a=,所以bcBF a =.因为A B A F =,所以22bc ba a=,得2c b =,所以a =,故b a =C 的渐近线方程为y x =,即0x =, 故选:B .34.如图,已知1F ,2F 为双曲线()222210,0x y a b a b-=>>的焦点,过2F 作垂直于x 轴的直线交双曲线于点P ,且1230PF F ∠=︒,则双曲线的渐近线方程为 .【答案】y =【详细分析】利用点在双曲线上及直角三角形中30︒所对的直角边等于斜边的一半,结合双曲线的定义和渐近线方程即可求解.【答案详解】设()()2,00F c c >,()0,P c y ,则220221y c a b -=,解得20b y a=±,∴22b PF a=.在21Rt PF F △中,1230PF F ∠=︒,则122PF PF =①. 由双曲线的定义,得122PF PF a -=②. 由①②得22PF a =.∵22b PF a =,∴22b a a=,即222b a =.∴ba=∴双曲线的渐近线方程为y =.故答案为:y =.35.过双曲线2222:1-=y W x a b 的右焦点F 作x 轴的垂线,与两条渐近线的交点分别为A ,B ,若OAB 为等边三角形,则W 的渐近线方程为 ,W 的离心率为 .【答案】 3y x =±3【详细分析】根据图形则得到tan 30b a== ,再利用离心率公式即可. 【答案详解】双曲线渐近线方程为by x a =±,因为OAB 是等边三角形,则tan 30b a== y =,即3e ===,故答案为:3y x =±重难点6求双曲线的离心率36.设12,F F 是双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点,过点1F 作双曲线的一条渐近线的垂线,垂足为M .若2MF ,则双曲线C 的离心率为( )AB C .3 D 【答案】A【详细分析】根据题意,先求得焦点1F 到渐近线的距离为b ,在直角1MOF △中,求得1cos bOF M c∠=,再在12MF F △中,利用余弦定理求得222343b c b =-,结合222b c a =-和离心率的定义,即可求解.【答案详解】由双曲线2222:1(0,0)x y C a b a b -=>>,可得1(,0)F c -,渐近线方程为b y x a=±,如图所示,则焦点1F 到渐近线by x a =-的距离为1MF b ==, 在直角1MOF △中,可得111cos MF bOF M OF c∠==, 在12MF F △中,由余弦定理得222212112112cos MF F F MF F F MF OF M =+-∠,即22222342243bb c b cb c b c=+-⨯⨯=-,所以2223c b =, 又由222b c a =-,所以22223()c c a =-,可得223c a =,所以双曲线的离心率为==ce a. 故选:A.。
2020年高中数学 课堂小练 《双曲线的几何性质》一、选择题1.等轴双曲线的一个焦点是F 1(-6,0),则它的标准方程是( )A.1181822=-x y B.1181822=-y x C.18822=-y x D.18822=-x y 2.双曲线C :12222=-by a x (a>0,b>0)的离心率为2,焦点到渐近线的距离为3,则双曲线C 的焦距等于( )A.2B.2 2C.4D.4 23.双曲线两条渐近线互相垂直,那么它的离心率为( )A.2B. 3C. 2D.324.已知点P ,A ,B 在双曲线x 2a 2-y2b2=1(a >0,b >0)上,直线AB 过坐标原点,且直线PA ,PB 的斜率之积为13,则双曲线的离心率为( )A.233 B .153 C .2 D .1025.已知双曲线x 2a 2-y21-a2=1(0<a <1)的离心率为2,则a 的值为( )A.12B.22C.13D.336.已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( ) A.13 B.12 C.23 D.327.设F 1,F 2是双曲线C :x 2a 2-y2b2=1(a>0,b>0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP|,则C 的离心率为( ) A . 5 B .2 C . 3 D . 28.若双曲线E :=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A.11B.9C.5D.39.圆O 的半径为定长,A 是平面上一定点,P 是圆上任意一点,线段AP 的垂直平分线l 和直线OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹为( )A.一个点B.椭圆C.双曲线D.以上选项都有可能10.已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( ) A.13 B .12 C.23 D .32 11.圆O 的半径为定长,A 是平面上一定点,P 是圆上任意一点,线段AP 的垂直平分线l 和直线OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹为( )A.一个点B.椭圆C.双曲线D.以上选项都有可能 12.已知双曲线的标准方程为x 2a 2-y2b2=1,F 1,F 2为其左、右焦点,若P 是双曲线右支上的一点,且tan∠PF 1F 2=12,tan∠PF 2F 1=2,则此双曲线的离心率为( )A. 5B.52C.355D. 3二、填空题13.在平面直角坐标系xOy 中,若双曲线14222=+-m y m x 的离心率为5,则m 的值为________. 14.已知双曲线x 2m -y 23m =1的一个焦点是(0,2),椭圆y 2n -x2m=1的焦距等于4,则n=________.15.设F 1,F 2分别为双曲线C :x 2a 2-y2b2=1(a >0,b >0)的两个焦点,M ,N 是双曲线C 的一条渐近线上的两点,四边形MF 1NF 2为矩形,A 为双曲线的一个顶点,若△AMN 的面积为12c 2,则该双曲线的离心率为________.16.已知双曲线C :x 2a 2-y2b2=1(a>0,b>0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN=60°,则C 的离心率为________.三、解答题17.已知双曲线13222=-by x 的右焦点为(2,0). (1)求双曲线的方程;(2)求双曲线的渐近线与直线x=-2围成的三角形的面积.18.已知点F 1,F 2分别是双曲线C :x 2-y 2b2=1(b >0)的左、右焦点,过F 2作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,∠MF 1F 2=30°. (1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为P 1,P 2,求PP 1―→·PP 2―→的值.答案解析1.答案为:B ;2.答案为:C ;3.答案为:C ;解析:双曲线为等轴双曲线,两条渐近线方程为y=±x ,即b a =1,e=ca= 2.4.答案为:A.解析:根据双曲线的对称性可知点A ,B 关于原点对称,设A(x 1,y 1),B(-x 1,-y 1),P(x ,y),所以x 21a 2-y 21b 2=1,x 2a 2-y 2b 2=1,两式相减得x 21-x 2a 2=y 21-y 2b 2,即y 21-y 2x 21-x 2=b 2a2,因为直线PA ,PB 的斜率之积为13,所以k PA ·k PB =y 1-y x 1-x ·-y 1-y -x 1-x =y 21-y 2x 21-x 2=b 2a 2=13,所以双曲线的离心率为e=1+b 2a2=1+13=233.故选A.5.答案为:B ;解析:∵c 2=a 2+1-a 2=1,∴c=1,又c a =2,∴a=22,故选B.6.答案为:D ;解析:法一:由题可知,双曲线的右焦点为F(2,0),当x=2时,代入双曲线C 的方程,得4-y23=1,解得y=±3,不妨取点P(2,3),因为点A(1,3),所以AP ∥x 轴,又PF ⊥x 轴,所以AP ⊥PF ,所以S △APF =12|PF|·|AP|=12×3×1=32.法二:由题可知,双曲线的右焦点为F(2,0),当x=2时,代入双曲线C 的方程,得4-y23=1,解得y=±3,不妨取点P(2,3),因为点A(1,3),所以AP ―→=(1,0),PF ―→=(0,-3),所以AP ―→·PF ―→=0,所以AP ⊥PF ,所 7.答案为:C ;解析:由题可知|PF 2|=b ,|OF 2|=c ,∴|PO|=a .在Rt △POF 2中,cos ∠PF 2O=|PF 2||OF 2|=bc,∵在△PF 1F 2中,cos ∠PF 2O=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2||F 1F 2|=bc,∴b 2+4c 2-(6a )22b·2c =b c ⇒c 2=3a 2,∴e=3.故选C .8.B. 9.C.解析:∵A 为⊙O 外一定点,P 为⊙O 上一动点线段AP 的垂直平分线交直线OP 于点Q ,则QA=QP ,则QA ﹣QO=QP ﹣QO=OP=R ,即动点Q 到两定点O 、A 的距离差为定值,根据双曲线的定义, 可知点Q 的轨迹是:以O ,A 为焦点,OP 为实轴长的双曲线故选:C.10.答案为:D.解析:由题可知,双曲线的右焦点为F(2,0),当x=2时,代入双曲线C 的方程,得4-y23=1,解得y=±3,不妨取点P(2,3),因为点A(1,3),所以AP∥x 轴,又PF⊥x 轴,所以AP⊥PF,所以S △APF =12|PF|·|AP|=12×3×1=32.故选D.11.C.解析:∵A 为⊙O 外一定点,P 为⊙O 上一动点线段AP 的垂直平分线交直线OP 于点Q ,则QA=QP ,则QA ﹣QO=QP ﹣QO=OP=R ,即动点Q 到两定点O 、A 的距离差为定值,根据双曲线的定义,可知点Q 的轨迹是:以O ,A 为焦点,OP 为实轴长的双曲线,故选:C.12.答案为:A ;解析:由tan∠PF 1F 2=12,tan∠PF 2F 1=2知,PF 1⊥PF 2,作PQ⊥x 轴于点Q ,则由△PF 1Q∽△F 2PQ ,得|F 1Q|=4|F 2Q|=85c ,故P ⎝ ⎛⎭⎪⎫35c ,45c , 代入双曲线的方程,有b 2⎝ ⎛⎭⎪⎫35c 2-a 2·⎝ ⎛⎭⎪⎫45c 2=a 2b 2,又a 2+b 2=c 2,则(9c 2-5a 2)(c 2-5a 2)=0,解得c a =5或c a =53(舍),即离心率e=5,故选A.一、填空题13.在平面直角坐标系xOy 中,若双曲线14222=+-m y m x 的离心率为5,则m 的值为________. 答案为:2;14.答案为:5;解析:因为双曲线的焦点是(0,2),所以焦点在y 轴上,所以双曲线的方程为y 2-3m -x2-m=1,即a 2=-3m ,b 2=-m ,所以c 2=-3m -m=-4m=4,解得m=-1.所以椭圆方程为y 2n+x 2=1,且n >0,椭圆的焦距为4,所以c 2=n -1=4或1-n=4,解得n=5或-3(舍去).15.答案为:2;解析:设M ⎝ ⎛⎭⎪⎫x ,b a x ,根据矩形的性质,得|MO|=|OF 1|=|OF 2|=c ,即x 2+⎝ ⎛⎭⎪⎫b a x 2=c 2,则x=a ,所以M(a ,b).因为△AMN 的面积为12c 2,所以2×12×a ×b=12c 2,所以4a 2(c 2-a 2)=c 4,所以e 4-4e 2+4=0,所以e= 2.16.答案为:233;解析:如图,由题意知点A(a ,0),双曲线的一条渐近线l 的方程为y=bax ,即bx-ay=0,∴点A 到l 的距离d=aba 2+b 2.又∠MAN=60°,|MA|=|NA|=b ,∴△MAN 为等边三角形,∴d=32|MA|=32b ,即ab a 2+b 2=32b ,∴a 2=3b 2,∴e=c a =a 2+b 2a 2=233.17.解:18.解:(1)由题易知F 2(1+b 2,0),可设M(1+b 2,y 1).因为点M 在双曲线C 上且在x 轴上方,所以1+b 2-y 21b2=1,得y 1=b 2,所以|F 2M|=b 2.在Rt △MF 2F 1中,∠MF 1F 2=30°,|MF 2|=b 2,所以|MF 1|=2b 2.由双曲线的定义可知,|MF 1|-|MF 2|=b 2=2,故双曲线C 的方程为x 2-y 22=1.(2)易知两条渐近线方程分别为l 1:2x -y=0,l 2:2x +y=0. 设双曲线C 上的点P(x 0,y 0),两条渐近线的夹角为θ, 不妨设P 1在l 1上,P 2在l 2上,则点P 到两条渐近线的距离分别为|PP 1|=|2x 0-y 0|3,|PP 2|=|2x 0+y 0|3.因为P(x 0,y 0)在双曲线x 2-y 22=1上,所以2x 20-y 20=2,又易知cos θ=13,所以PP 1―→·PP 2―→=|2x 0-y 0|3·|2x 0+y 0|3cos θ=|2x 20-y 20|3·13=29.。
双曲线标准方程及其简单性质(人教A版)一、单选题(共10道,每道10分)1.方程化简的结果是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:双曲线的定义2.双曲线上的点到点的距离是6,则点P的坐标是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:双曲线的定义3.虚轴长为2,离心率的双曲线两焦点为,过作直线交双曲线的同一支于两点,且,则△的周长为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:双曲线的定义4.若方程表示双曲线,则实数的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:双曲线的标准方程5.双曲线的渐近线方程为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:双曲线的简单性质6.双曲线的一个顶点为,一条渐近线方程为,则该双曲线的方程是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:双曲线的简单性质7.已知双曲线的一条渐近线平行于直线,双曲线的一个焦点在上,则双曲线的方程为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:双曲线的简单性质8.已知中心在原点,焦点在轴上的双曲线的离心率,其焦点到渐近线的距离为1,则此双曲线的方程为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:双曲线的简单性质9.一动圆与两圆和都外切,则动圆圆心轨迹为( )A.双曲线B.椭圆C.双曲线的一支D.抛物线答案:C解题思路:试题难度:三颗星知识点:双曲线的定义10.点在曲线上,点在曲线上,点在曲线,则的最大值是( ) A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:双曲线的简单性质。
双曲线
1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( )
A .椭圆
B .线段
C .双曲线
D .两条射线
2.方程1112
2=-++k y k x 表示双曲线,则k 的取值范围是
( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k
3. 双曲线14122
2
22=--+m y m x 的焦距是
( ) A .4 B .22 C .8 D .与m 有关
4.已知m,n 为两个不相等的非零实数,则方程m x -y+n=0与n x 2+my 2
=mn 所表示的 曲线可能是 ( )
5.焦点为()6,0,且与双曲线12
2=-y 有相同的渐近线的双曲线方程是( )
A .1241222=-y x
B .1241222=-x y
C .1122422=-x y
D .112
242
2=-y x
6.若a k <<0,双曲线12222=+--k b y k a x 与双曲线122
22=-b
y a x 有 ( )
A .相同的虚轴
B .相同的实轴
C .相同的渐近线
D . 相同的焦点
7.过双曲线19
162
2=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长是( A ) A .28 B .22
C .14
D .12 8.双曲线方程为
152||2
2=-+-k
y k x ,那么k 的取值范围是 ( )
A .k >5
B .2<k <5
C .-2<k <2
D .-2<k <2或k >5 9.双曲线的渐近线方程是y=±2x ,那么双曲线方程是 ( )
A .x 2-4y 2=1
B .x 2-4y 2=1
C .4x 2-y 2=-1
D .4x 2-y 2=1
10.设P 是双曲线192
22=-y a
x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF ( )
A .1或5
B . 6
C . 7
D . 9
11.已知双曲线22
221,(0,0)x y a b a b
-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,
且12||4||PF PF =,则双曲线的离心率e 的最大值为 ( )
A .
4
3
B .
5
3
C .2
D .
73
12.设c 、e 分别是双曲线的半焦距和离心率,则双曲线122
22=-b
y a x (a>0, b>0)的一个顶点到
它的一条渐近线的距离是 ( )
A .
c
a
B .
c b
C .
e
a D .
e
b 13.双曲线)1(122
>=-n y n
x 的两焦点为F 1,F 2,P 在双曲线上,且满足|PF 1|+|PF 2|=,22+n 则△PF 1F 2的面积为 ( )
A .
2
1 B .1 C .
2 D .4
14.二次曲线142
2=+m
y x ,]1,2[--∈m 时,该曲线的离心率e 的取值范围是 ( )
A .]2
3,22[
B .]2
5,23[
C .]2
6,25[
D .]2
6,23[
15.直线1+=x y 与双曲线13
22
2=-y x 相交于B A ,两点,则AB =_____
16.设双曲线122
22=-b
y a x 的一条准线与两条渐近线交于A 、B 两点,相应的焦点为F ,若以AB
为直径的圆恰好过F 点,则离心率为
17.双曲线12
2=-by ax 的离心率为5,则a :b=
18.求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离
心率.
19.(本题12分)已知双曲线122
22=-b
y a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的
距离是
.2
3
求双曲线的方程;
一, 选择题
DDCCB DADDC BDBC 二,填空题, 15.6
4
16.2 17.4或4
1
18.[解析]:设双曲线方程为:λ=-22169y x ,∵双曲线有一个焦点为(4,
0),0>∴λ
双曲线方程化为:25
481616
9
116
9
222=⇒=+⇒=-λλλλ
λ
y x ,
∴双曲线方程为:
125
1442525622=-y x ∴455
164=
=
e 19.[解析]∵(1)
,3
3
2=a c 原点到直线AB :1=-b
y a x 的距离
.
3,1.23
2
2=
=∴==+=
a b c ab b a ab d .
故所求双曲线方程为 .
13
22
=-y x。