当前位置:文档之家› 双曲线专题经典练习及答案详解

双曲线专题经典练习及答案详解

双曲线专题经典练习及答案详解
双曲线专题经典练习及答案详解

双曲线专题

一、学习目标:

1.理解双曲线的定义;

2.熟悉双曲线的简单几何性质;

3.能根据双曲线的定义和几何性质解决简单实际题目.

二、知识点梳理

定 义

1、到两个定点1F 与2F 的距离之差的绝对值等于定长(小于

2

1F F )的点的轨迹

2、到定点F 与到定直线l 的距离之比等于常数()1>e e

e (>1)的点的轨迹

标准方程

-2

2a x 22

b y =1()0,0>>b a -22a y 22

b

x =1()0,0>>b a 图 形

性质

范围

a x ≥或a x -≤,R y ∈

R x ∈,a y ≥或a y -≤

对称性 对称轴: 坐标轴 ;对称中心: 原点

渐近线

x a

b

y ±

= x b

a y ±

= 顶点 坐标 ()0,1a A -,()0,2a A ()b B -,01,()b B ,02 ()a A -,01,()a A ,02()0,1b B -,()0,2b B

焦点 ()0,1c F -,()0,2c F

()c F -,01,()c F ,02

轴 实轴21A A 的长为a 2 虚轴21B B 的长为b 2

离心率

1>=

a

c

e ,其中22b a c += 准线

准线方程是c a x 2

±=

准线方程是c

a y 2

±=

三、课堂练习

1.椭圆x 24+y 2a 2=1与双曲线x 2a -y 2

2=1有相同的焦点,则a 的值是( )

A.1

2 B .1或-2 C .1或1

2

D .1

2.已知F 是双曲线x 24-y 2

12=1的左焦点,点A (1,4),P 是双曲线右支上的动点,则|PF |+|P A |的最小值为________.

3.已知F 1,F 2分别为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1||PF 2|=( )

A .2

B .4

C .6

D .8

4.已知双曲线的两个焦点F 1(-10,0),F 2(10,0),M 是此双曲线上的一点,且MF 1→·MF 2→=0,|MF 1→|·|MF 2→|=2,则该双曲线的方程是( )

A.x 29-y 2

=1 B .x 2-y

29=1

C.x 23-y 2

7=1

D.x 27-y 2

3=1

5.若F 1,F 2是双曲线8x 2-y 2=8的两焦点,点P 在该双曲线上,且△PF 1F 2是等腰三角形,则△PF 1F 2的周长为________.

6.已知双曲线x 26-y 2

3=1的焦点为F 1,F 2,点M 在双曲线上,且MF 1⊥x 轴,则F 1到直线F 2M 的距离为( )

A.365

B.566

C.65

D.56

7.已知△ABC 的两个顶点A ,B 分别为椭圆x 2+5y 2=5的左焦点和右焦点,且三个内角A ,B ,C 满足关系式sin B -sin A =1

2sin C .

(1)求线段AB 的长度; (2)求顶点C 的轨迹方程.

8.双曲线C 的中点在原点,右焦点为F ? ??

??233,0,渐近线方程为y =±3x .

(1)求双曲线C 的方程;

(2)设直线L :y =kx +1与双曲线交于A ,B 两点,问:当k 为何值时,以AB 为直径的圆过原点?

双曲线专题练习(含解析)

双曲线专题练习 5.(2020·陕西省西安市育才中学模拟)已知双曲线C:x2 a2-y2 16=1(a>0)的一条渐近线方程为4x+3y =0,F1,F2分别是双曲线C的左、右焦点,点P在双曲线C上,且|PF1|=7,则|PF2|=()

A .1 B .13 C .17 D .1或13 6.(2020·辽宁省东北中山中学模拟)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的右焦点为F ,点A 在双曲线 的渐近线上,△OAF 是边长为2的等边三角形(O 为原点),则双曲线的方程为( ) A.x 24-y 2 12=1 B.x 212-y 2 4=1 C.x 23 -y 2 =1 D .x 2- y 2 3 =1 7.(2020·河北省秦皇岛市第三中学模拟)如图,双曲线C :x 2a 2-y 2 b 2=1(a >0,b >0)的左、右焦点分别 为F 1,F 2,直线l 过点F 1且与双曲线C 的一条渐近线垂直,与两条渐近线分别交于M ,N 两点,若|NF 1|=2|MF 1|,则双曲线C 的渐近线方程为( ) A .y =± 33x B .y =±3x C .y =±22 x D .y =±2x 8.(2020·辽宁省海城市高级中学模拟)已知双曲线C :x 2a 2-y 2b 2=1的离心率e =5 4,且其右焦点为F 2(5, 0),则双曲线C 的方程为( ) A.x 24-y 2 3=1 B.x 29-y 2 16=1 C.x 216-y 2 9 =1 D.x 23-y 2 4 =1

9.(2020·吉林省四平市实验中学模拟)已知双曲线C :x 2a 2-y 2 b 2=1(a >0,b >0),右焦点F 到渐近线的 距离为2,点F 到原点的距离为3,则双曲线C 的离心率e 为( ) A. 53 B.355 C.63 D.62 10.(2020·黑龙江省双鸭山市第一中学模拟)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos △F 1PF 2=( ) A.14 B.35 C.34 D.4 5 11.(2020·江西省赣州市第一中学模拟)双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =3 5x ,则a = . 12.(2020·福建省福州高级中学模拟)在平面直角坐标系xOy 中,若双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的 右焦点F (c,0)到一条渐近线的距离为 3 2 c ,则其离心率的值为 . 13.(2020·安徽省马鞍山市第二中学模拟)双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的渐近线为正方形OABC 的 边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a = . 14.(2020·江苏省太湖高级中学模拟)已知椭圆D :x 250+y 2 25=1与圆M :x 2+(y -5)2=9.双曲线G 与 椭圆D 有相同的焦点,它的两条渐近线恰好与圆M 相切,求双曲线G 的方程. 15.(2020·浙江省义乌第二中学 模拟)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点P (4,-10). (1)求双曲线的方程; (2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→ =0. 16.(2020·黑龙江省绥化市第一中学模拟)中心在原点,焦点在x 轴上的椭圆与双曲线有共同的焦点

双曲线专题经典练习及答案详解

双曲线专题 一、学习目标: 1.理解双曲线的定义; 2.熟悉双曲线的简单几何性质; 3.能根据双曲线的定义和几何性质解决简单实际题目. 二、知识点梳理 定 义 1、到两个定点1F 与2F 的距离之差的绝对值等于定长(小于 2 1F F )的点的轨迹 2、到定点F 与到定直线l 的距离之比等于常数()1>e e e (>1)的点的轨迹 标准方程 -2 2a x 22 b y =1()0,0>>b a -22a y 22 b x =1()0,0>>b a 图 形 性质 范围 a x ≥或a x -≤,R y ∈ R x ∈,a y ≥或a y -≤ 对称性 对称轴: 坐标轴 ;对称中心: 原点 渐近线 x a b y ± = x b a y ± = 顶点 坐标 ()0,1a A -,()0,2a A ()b B -,01,()b B ,02 ()a A -,01,()a A ,02()0,1b B -,()0,2b B 焦点 ()0,1c F -,()0,2c F ()c F -,01,()c F ,02 轴 实轴21A A 的长为a 2 虚轴21B B 的长为b 2 离心率 1>= a c e ,其中22b a c += 准线 准线方程是c a x 2 ±= 准线方程是c a y 2 ±= 三、课堂练习

1.椭圆x 24+y 2a 2=1与双曲线x 2a -y 2 2=1有相同的焦点,则a 的值是( ) A.1 2 B .1或-2 C .1或1 2 D .1 2.已知F 是双曲线x 24-y 2 12=1的左焦点,点A (1,4),P 是双曲线右支上的动点,则|PF |+|P A |的最小值为________. 3.已知F 1,F 2分别为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1||PF 2|=( ) A .2 B .4 C .6 D .8 4.已知双曲线的两个焦点F 1(-10,0),F 2(10,0),M 是此双曲线上的一点,且MF 1→·MF 2→=0,|MF 1→|·|MF 2→|=2,则该双曲线的方程是( ) A.x 29-y 2 =1 B .x 2-y 29=1 C.x 23-y 2 7=1 D.x 27-y 2 3=1 5.若F 1,F 2是双曲线8x 2-y 2=8的两焦点,点P 在该双曲线上,且△PF 1F 2是等腰三角形,则△PF 1F 2的周长为________. 6.已知双曲线x 26-y 2 3=1的焦点为F 1,F 2,点M 在双曲线上,且MF 1⊥x 轴,则F 1到直线F 2M 的距离为( ) A.365 B.566 C.65 D.56

打印双曲线基础训练题(含答案)

: 双曲线基础训练题(一) 1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( D ) A .椭圆 B .线段 C .双曲线 D .两条射线 2.方程1112 2=-++k y k x 表示双曲线,则k 的取值范围是 (D ) A .11<<-k B .0>k C .0≥k D .1>k 或1-

8.双曲线方程为 152||2 2=-+-k y k x ,那么k 的取值范围是 ( D ) A .k >5 B .2<k <5 C .-2<k <2 D .-2<k <2或k >5 9.双曲线的渐近线方程是y=±2x ,那么双曲线方程是 ( D ) A .x 2 -4y 2 =1 B .x 2 -4y 2 =1 C .4x 2 -y 2 =-1 D .4x 2 -y 2 =1 10.设P 是双曲线192 22=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF (C ) A .1或5 B . 6 C . 7 D . 9 11.已知双曲线22 221,(0,0)x y a b a b -=>>的左,右焦点分别为12,F F ,点P 在双曲线 的右支上,且12||4||PF PF =,则双曲线的离心率e 的最大值为 ( B ) A . 4 3 B . 5 3 C .2 D . 73 — 12.设c 、e 分别是双曲线的半焦距和离心率,则双曲线122 22=-b y a x (a>0, b>0)的一 个顶点到它的一条渐近线的距离是 ( D ) A . c a B . c b C . e a D . e b 13.双曲线)1(122 >=-n y n x 的两焦点为F 1,F 2,P 在双曲线上,且满足|PF 1|+|PF 2|=,22+n 则△PF 1F 2的面积为 ( B )

椭圆双曲线抛物线典型例题

椭圆典型例题 一、已知椭圆焦点的位置,求椭圆的标准方程。 例1:已知椭圆的焦点是F 1(0,-1)、F 2(0,1),P 是椭圆上一点,并且PF 1+PF 2=2F 1F 2,求椭圆的标准方程。 解:由PF 1+PF 2=2F 1F 2=2×2=4,得2a =4.又c =1,所以b 2=3. 所以椭圆的标准方程是y 24+x 2 3=1. 2.已知椭圆的两个焦点为F 1(-1,0),F 2(1,0),且2a =10,求椭圆的标准方程. 解:由椭圆定义知c =1,∴b =52 -1=24.∴椭圆的标准方程为x 225+y 2 24 =1. 二、未知椭圆焦点的位置,求椭圆的标准方程。 例:1. 椭圆的一个顶点为()02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11 42 2=+y x ; (2)当()02, A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为: 116 42 2=+y x ; 三、椭圆的焦点位置由其它方程间接给出,求椭圆的标准方程。 例.求过点(-3,2)且与椭圆x 29+y 2 4 =1有相同焦点的椭圆的标准方程. 解:因为c 2 =9-4=5,所以设所求椭圆的标准方程为x 2a 2+y 2a 2-5=1.由点(-3,2)在椭圆上知9 a 2+ 4a 2 -5 =1,所以a 2 =15.所以所求椭圆的标准方程为x 215+y 2 10 =1. 四、与直线相结合的问题,求椭圆的标准方程。 例: 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程. 解:由题意,设椭圆方程为12 22=+y a x , 由?????=+=-+1012 22y a x y x ,得()0212 22=-+x a x a , ∴222112a a x x x M +=+=,2 11 1a x y M M +=-=, 41 12===a x y k M M OM Θ,∴42=a , ∴14 22 =+y x 为所求. 五、求椭圆的离心率问题。 例1 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率. 解:31222??=c a c Θ ∴223a c =,∴333 1-=e .

双曲线经典例题讲解

第一部分 双曲线相关知识点讲解 一.双曲线的定义及双曲线的标准方程: 1 双曲线定义:到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨 迹(21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点. 要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|,这两点与椭圆的定义有本质的不同. 当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支; 当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线; 当2a >|F 1F 2|时,动点轨迹不存在. 2.双曲线的标准方程:12222=-b y a x 和122 22=-b x a y (a >0,b >0).这里222a c b -=,其中 |1F 2F |=2c.要注意这里的a 、b 、c 及它们之间的关系与椭圆中的异同. 3.双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 4.求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. 二.双曲线的外部: (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<. 三.双曲线的方程与渐近线方程的关系 (1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a b y ±=. (2)若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上,0<λ, 焦点在y 轴上). 四.双曲线的简单几何性质 22 a x -22b y =1(a >0,b >0) ⑴围:|x |≥a ,y ∈R

双曲线基础练习题特别

双曲线基础练习 、选择题: 1 .已知a 3, c 5,并且焦点在X轴一上,则双曲线的标准程是() 2 2 2 2 2 2 2 2 (A) x y 1 ( B) x y 1 (C) x y 1 (D)x y 1 9 16 9 16 9 16 16 9 2 .已知b 4,c 5,并且焦点在y轴 上, 则双曲线的标准方程是() 2 2 2 2 2 2 2 2 (A) X y 1 (B) X y 1 (C) x y 1 (D)x y 1 16 9 16 9 9 16 9 16 2 2 3.. 双曲线 —J 1上P点到左焦点的距离是6,则P到右焦点的距离是()16 9 (A)12 (B)14 (C)16 (D)18 2 2 4.. 双曲线—y 1的焦点坐标是() 16 9 (A)(5, 0)和(-5 , 0)(B)(0, 5)和(0,-5 ) (C) (0, 5)和(5, 0) (D) (0, -5 )和(-5 , 0) 5、方程J(x 5)2y2V(x 5)2 2 y 6化简得:() 2 2 2 2 2 2 2 2 (A)—y 1 (B)x y 1 (C)—y 1 (D) x y 1 9 16 16 9 9 16 16 9 6.已知实轴长是6,焦距疋10的双曲线的标准方程是( 是() (A) . x 2y2 1和 2 x 匸1 2 2 (B) x y1和x2匸1 9 16 9 16 9 16 16 9 2 2 2 2 2 2 2 2 (C)—y 1和x y 1 (D) x y 1 和x y 1 16 9 16 9 25 16 16 25 7.过点A (1,0)和 B B;2,1)的双曲线标准方程() (A) x22y2 1 (B) 2 2 x y 1 (C) x2y2 1 (D x2 2y2 1 2 2 8. P为双曲线—y 1上一点,A、B为双曲线的左、右焦点,且AP PB,贝V PAB的 16 9

椭圆、双曲线抛物线综合练习题及答案

一、选择题(每小题只有一个正确答案,每题6分共36分) 1. 椭圆22 1259 x y +=的焦距为。 ( ) A . 5 B. 3 C. 4 D 8 2.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为 ( ) A . 221412x y -= B. 221124x y -= C. 221106x y -= D 22 1610x y -= 3.双曲线22 134 x y -=的两条准线间的距离等于 ( ) A C. 185 D 165 4.椭圆22 143 x y +=上一点P 到左焦点的距离为3,则P 到y 轴的距离为 ( ) A . 1 B. 2 C. 3 D 4 5.双曲线的渐进线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的方程为。 ( ) A . 22149y x -= B. 22194x y -= C. 2213131100225y x -= D 2213131225100y x -= 6.设12,F F 是双曲线22221x y a b -=的左、右焦点,若双曲线上存在点A ,使1290F AF ? ∠=且 123AF AF =,则双曲线的离心率为 ( ) A . 2 B. 2 C. 2 7.设斜率为2的直线l 过抛物线y 2 =ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( ) A .y 2 =±4 B .y 2 =±8x C .y 2 =4x D .y 2 =8x 8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2 =4x 上一动点P 到直线 l 1和直线l 2的距离之和的最小值是( ) A .2 B .3 9.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2 =4x 上一动点P 到直线

双曲线经典练习题总结(带答案)

双曲线经典练习题总结(带答案) 一、选择题 1.以椭圆x 216+y 2 9=1的顶点为顶点,离心率为2的双曲线方程为( C ) A .x 216-y 2 48=1 B .y 29-x 2 27 =1 C .x 216-y 248=1或y 29-x 2 27=1 D .以上都不对 [解析] 当顶点为(±4,0)时,a =4,c =8,b =43,双曲线方程为x 216-y 2 48=1;当顶点为(0, ±3)时,a =3,c =6,b =33,双曲线方程为y 29-x 2 27=1. 2.双曲线2x 2-y 2=8的实轴长是( C ) A .2 B .22 C .4 D .42 [解析] 双曲线 2x 2-y 2=8 化为标准形式为x 24-y 2 8 =1,∴a =2,∴实轴长为2a =4. 3.(全国Ⅱ文,5)若a >1,则双曲线x 2a 2-y 2 =1的离心率的取值范围是( C ) A .(2,+∞) B .(2,2 ) C .(1,2) D .(1,2) [解析] 由题意得双曲线的离心率e =a 2+1 a . ∴c 2=a 2+1a 2=1+1a 2. ∵a >1,∴0<1a 2<1,∴1<1+1 a 2<2,∴10,b >0)的离心率为2,则点(4,0)到C 的渐近线的距离为( D ) A .2 B .2 C .322 D .22 [解析] 由题意,得e =c a =2,c 2=a 2+b 2,得a 2=b 2.又因为a >0,b >0,所以a =b ,渐近

双曲线专题复习讲义及练习

双曲线专题复习讲义 ★知识梳理★ 1. 双曲线的定义 (1)第一定义:当1212||||||2||PF PF a F F -=<时, P 的轨迹为双曲线; 当1212||||||2||PF PF a F F -=>时, P 的轨迹不存在; 当21212||F F a PF PF ==-时, P 的轨迹为以21F F 、为端点的两条射线 (2)双曲线的第二义 平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (1>e )的点的轨迹为双曲线 与双曲线12222=-b y a x 共渐近线的双曲线系方程为:)0(22 22≠=-λλb y a x 与双曲线122 22=-b y a x 共轭的双曲线为22221y x b a -= 等轴双曲线222a y x ±=-的渐近线方程为x y ±= ,离心率为2=e .; ★重难点突破★ 1.注意定义中“陷阱” 问题1:已知12(5,0),(5,0)F F -,一曲线上的动点P 到21,F F 距离之差为6,则双曲线的方程为 点拨:一要注意是否满足122||a F F <,二要注意是一支还是两支 12||||610PF PF -=< ,P 的轨迹是双曲线的右支.其方程为)0(116 92 2>=- x y x 2.注意焦点的位置

问题2:双曲线的渐近线为x y 2 3 ± =,则离心率为 点拨:当焦点在x 轴上时, 23=a b ,213=e ;当焦点在y 轴上时,2 3 =b a ,313=e ★热点考点题型探析★ 考点1 双曲线的定义及标准方程 题型1:运用双曲线的定义 [例1 ] 某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同 时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上) 【解题思路】时间差即为距离差,到两定点距离之差为定值的点的轨迹是双曲线型的. [解析]如图,以接报中心为原点O ,正东、正北方向为x 轴、y 轴正向,建立直角坐标系.设A 、B 、C 分别是西、东、北观测点,则A (-1020,0),B (1020,0),C (0,1020) 设P (x,y )为巨响为生点,由A 、C 同时听到巨响声,得|PA|=|PC|,故P 在AC 的垂直平分线PO 上,PO 的方程为y=-x ,因B 点比A 点晚4s 听到爆炸声,故|PB|- |PA|=340×4=1360 由双曲线定义知P 点在以A 、B 为焦点的双曲线 122 22=-b y a x 上, 依题意得a=680, c=1020, 用y=-x 代入上式,得5680±=x ,∵|PB|>|PA|, 答:巨响发生在接报中心的西偏北450距中心m 10680处. 【名师指引】解应用题的关键是将实际问题转换为“数学模型” 【新题导练】 1.设P 为双曲线112 2 2 =-y x 上的一点F 1、F 2是该双曲线的两个焦点,若|PF 1|:|PF 2|=3:2,则△PF 1F 2的面积为 ( ) A .36 B .12 C .312 D .24 解析:2:3||:||,13,12,121====PF PF c b a 由 ① 又,22||||21==-a PF PF ② 由①、②解得.4||,6||21==PF PF 为21F PF ∴直角三角形,

双曲线练习题经典(含答案)

《双曲线》练习题 一、选择题: 1.已知焦点在x 轴上的双曲线的渐近线方程是y =±4x ,则该双曲线的离心率是( A ) 2.中心在原点,焦点在x 轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为,则双曲线方 程为( B ) A .x 2 ﹣y 2 =1 B .x 2 ﹣y 2 =2 C .x 2 ﹣y 2 = D .x 2﹣y 2 = 3.在平面直角坐标系中,双曲线C 过点P (1,1),且其两条渐近线的方程分别为2x+y=0和2x ﹣y=0,则双曲线C 的标准方程为( B ) A . B . C .或 D . 4.已知椭圆222a x +222b y =1(a >b >0)与双曲线2 2 a x -22 b y =1有相同的焦点,则椭圆的离心率为( A ) A .22 B .21 C .66 D .36 5.已知方程﹣ =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( A ) A .(﹣1,3) B .(﹣1,) C .(0,3) D .(0,) 6.设双曲线 =1(0<a <b )的半焦距为c ,直线l 过(a ,0)(0,b )两点,已知原点到直线l 的距 离为,则双曲线的离心率为( A ) A .2 B . C . D . 7.已知双曲线22219y x a -=的两条渐近线与以椭圆22 1259y x + =的左焦点为圆心、半径为165 的圆相切,则双曲线的离心率为( A ) A .54 B .5 3 C . 43 D .6 5 8.双曲线虚轴的一个端点为M ,两个焦点为F 1、F 2,∠F 1MF 2=120°,则双曲线的离心率为( B ) 9.已知双曲线 22 1(0,0)x y m n m n -=>>的一个焦点到一条渐近线的距离是2,一个顶点到它的一条渐近线的

圆锥曲线经典例题及总结(全面实用)

圆锥曲线经典例题及总结 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程2 2 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。

(完整版)高二双曲线练习题及答案(整理)总结

x y o x y o x y o x y o 高二数学双曲线同步练习 一、选择题(本大题共10小题,每小题5分,共50分) 1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( ) A .椭圆 B .线段 C .双曲线 D .两条射线 2.方程1112 2=-++k y k x 表示双曲线,则k 的取值范围是 ( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-

双曲线专题复习(精心整理).

《圆锥曲线》---------双曲线 主要知识点 1、 双曲线的定义: (1) 定义:_____________________________________________________________ (2) 数学符号:________________________ (3) 应注意问题: 2 注意:如何根据双曲线的标准方程判断出它的焦点在哪个轴上?进一步,如何求出焦点坐标? 3 注意:(1)如何比较标准地在直角坐标系中画出双曲线的图像? (2)双曲线的离心率的取值范围是什么?离心率有什么作用? (3)当时b a ,双曲线有什么特点? 4.双曲线的方程的求法 (1)双曲线的方程与双曲线渐近线的关系

①已知双曲线段的标准方程是22221x y a b -=(0,0)a b >>(或22 221(0,0)x y a b b a -=>>), 则渐近线方程为________________________________________________________________; ②已知渐近线方程为0bx ay ±=,则双曲线的方程可表示为__________________________。 (2)待定系数法求双曲线的方程 ①与双曲线22 221x y a b -=有共同渐近线的双曲线的方程可表示为_______________________; ②若双曲线的渐近线方程是b y x a =± ,则双曲线的方程可表示为_____________________; ③与双曲线22 221x y a b -=共焦点的双曲线方程可表示为_______________________________; ④过两个已知点的双曲线的标准方程可表示为______________________________________; ⑤与椭圆22 221x y a b +=(0)a b >>有共同焦点的双曲线的方程可表示为 ______________________________________________________________________________。 5.双曲线离心率的有关问题 (1)c e a = ,1e >,它决定双曲线的开口大小,e 越大,开口越大。 (2)等轴双曲线的两渐近线互相垂直,离心率2e = 。 (3)双曲线离心率及其范围的求法。 ①双曲线离心率的求解,一般可采用定义法、直接法等方法求解。 ②双曲线离心率范围的求解,一般可以从以下几个方面考虑:a .与已知范围联系,通过求 值域或解不等式来完成;b . 通过判别式?;c .利用点在曲线内部形成的不等式关系;d .利用解析式的结构特点。 6、直线与双曲线的位置关系的判定及相关计算 (1)直线与双曲线的位置关系有:____________、____________、____________ 注意:如何来判断位置关系? (2)若斜率为k 的直线被双曲线所截得的弦为AB , A 、B 两点分别为A(x 1,y 1)、B(x 2,y 2),则相交弦长 =AB _____________________ 二、典型例题: 考点一:双曲线的定义 例1 已知动圆M 与圆C 1:(x +4)2 +y 2 =2外切,与圆C 2:(x -4)2 +y 2 =2内切,求动圆圆心M 的 轨迹方程. 变式训练:由双曲线4 92 2y x -=1上的一点P 与左、右两焦点F 1、F 2构

高中数学双曲线经典例题

高中数学双曲线经典例题 一、双曲线定义及标准方程 1.已知两圆C1:(x+4)2+y2=2,C2:(x﹣4)2+y2=2,动圆M与两圆C1,C2都相切,则动圆圆心M的轨迹方程是() A.x=0 B. C.D. 2、求适合下列条件的双曲线的标准方程: (1)焦点在 x轴上,虚轴长为12,离心率为; (2)顶点间的距离为6,渐近线方程为. 3、与双曲线有相同的焦点,且过点的双曲线的标准方程是

4、求焦点在坐标轴上,且经过点A(,﹣2)和B(﹣2,)两点的双曲线的标准方程. 5、已知P是双曲线=1上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为. 二、离心率 1、已知点F1、F2分别是双曲线的两个焦点,P为该双曲线上一点,若△PF1F2为等腰直角三角形,则该双曲线的离心率为. 2、设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为. 3、双曲线的焦距为2c,直线l过点(a,0) 和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l 的距离之和.则双曲线的离心率e的取值范围是() A. B.C.D. 3、焦点三角形

1、设P是双曲线x2﹣=1的右支上的动点,F为双曲线的右焦点,已知A(3,1),则|PA|+|PF|的最小值为. 2、.已知F1,F2分别是双曲线3x2﹣5y2=75的左右焦点,P是双曲线上的一点,且∠F1PF2=120°,求△F1PF2的面积. 3、已知双曲线焦点在y轴上,F1,F2为其焦点,焦距为10,焦距是实轴长的2倍.求: (1)双曲线的渐近线方程; (2)若P为双曲线上一点,且满足∠F1PF2=60°,求△PF1F2的面积. 4、直线与双曲线的位置关系 已知过点P(1,1)的直线L与双曲线只有一个公共点,则直线L的斜率k= ____ 5、综合题型

职高数学双曲线练习题-(拓展模块)

&下列双曲线既有相同离心率,又有相同渐近线的是( ) 《双曲线的方程》练习 一、选择题: 1、已知动点P 到F i (-5,0)的距离与它到F 2(5,0)的距离的差等于 2 x 2 y =1 A . 9 16 2 2 C . x y = 1(x _ -3) 9 16 16 2 2 D . 1r1r 1(x -3) 2、设 j ,则方程x 2cosv y 2 sinv -1表示的曲线是( ) 12丿 3、双曲线x 2 -y 2 = 1上一点,它与两焦点连线互相垂直,则该点的坐标是( (屈 伍、 A . ---- , ------ 12 2 2 4、两条直线X 二 —把双曲线焦点间的距离三等分,则双曲线的离心率是( ) C 5、方程 Ax 2 By 2 C =0( A 0,B :: 0, C ::: 0)表示() B .焦点在x 轴上的双曲线 4 5 4 5 A . B .-- C . -— D.- 5 4 5 4 7、渐近线为 --y -0的双曲线方程- .宀曰 / 定是( ) a b c .焦点在y 轴上的双曲线 D .椭圆 2 2 6、双曲线- —=1的两条渐近线夹的锐角的正切值是( ) 16 25 2 2 x 2 a 2 y_ b 2 -1 2 y_ b 2 --1 C . 2 2 x_ y (ak)2 (bk)2 = 1(k =0) 2 x D .兀 a k 6,则点P 的轨迹方程是( A ?椭圆 B .圆 C .抛物线 D .双曲线 2.3 B. ■■ 3 C . 2.3 2 A .两条直线 C . D .

文科圆锥曲线专题练习及问题详解

文科圆锥曲线 1.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32a x =上一点,12PF F ?是底角为30的等腰三 角形,则E 的离心率为( ) () A 12 () B 23 () C 3 4 () D 4 5 【答案】C 【命题意图】本题主要考查椭圆的性质及数形结合思 想,是简单题. 【解析】∵△21F PF 是底角为0 30的等腰三角形, ∴322c a = ,∴e =3 4 , ∴0260PF A ∠=,212||||2PF F F c ==,∴2||AF =c , 2.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =;则C 的实轴长为( ) ()A ()B ()C 4 ()D 8 【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题. 【解析】由题设知抛物线的准线为:4x =,设等轴双曲线方程为:222x y a -=,将4x =代入等轴双曲线方程解 得y =||AB =a =2, ∴C 的实轴长为4,故选C. 3.已知双曲线1C :22 221(0,0)x y a b a b -=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距 离为2,则抛物线2C 的方程为 (A) 2x y = (B) 2x y = (C)28x y = (D)216x y = 考点:圆锥曲线的性质 解析:由双曲线离心率为2且双曲线中a ,b ,c 的关系可知a b 3=,此题应注意C2的焦点在y 轴上,即(0,p/2)到直线x y 3=的距离为2,可知p=8或数形结合,利用直角三角形求解。 4.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为 (A ) 2211612x y += (B )221128x y += (C )22184x y += (D )22 1124 x y += 【命题意图】本试题主要考查了椭圆的方程以及性质的运用。通过准线方程确定焦点位置,然后借助于焦距和准线求解参数,,a b c ,从而得到椭圆的方程。 【解析】因为242c c =?=,由一条准线方程为4x =-可得该椭圆的焦点在x 轴上县2 2448a a c c =?==,所以2 2 2 844b a c =-=-=。故选答案C 5.已知1F 、2F 为双曲线22 :2C x y -=的左、右焦点,点 P 在C 上,12||2||PF PF =,则12cos F PF ∠=

高中数学《双曲线》典型例题12例(含标准答案)

《双曲线》典型例题12例 典型例题一 例1 讨论 19252 2=-+-k y k x 表示何种圆锥曲线,它们有何共同特征. 分析:由于9≠k ,25≠k ,则k 的取值范围为9-k ,09>-k , 所给方程表示椭圆,此时k a -=252,k b -=92,16222=-=b a c ,这些椭圆有共同的焦点(-4,0),(4,0). (2)当259<-k ,09<-k ,所给方程表示双曲线,此时, k a -=252,k b -=92,16222=+=b a c ,这些双曲线也有共同的焦点(-4,0),)(4,0). (3)25

∴所求双曲线方程为19 162 2=+-y x 说明:采取以上“巧设”可以避免分两种情况讨论,得“巧求”的目的. (2)∵焦点在x 轴上,6=c , ∴设所求双曲线方程为:162 2 =-- λ λy x (其中60<<λ) ∵双曲线经过点(-5,2),∴164 25 =-- λ λ ∴5=λ或30=λ(舍去) ∴所求双曲线方程是15 22 =-y x 说明:以上简单易行的方法给我们以明快、简捷的感觉. (3)设所求双曲线方程为: ()16014162 2<<=+--λλλy x ∵双曲线过点() 223, ,∴144 1618=++-λ λ ∴4=λ或14-=λ(舍) ∴所求双曲线方程为18 122 2=- y x 说明:(1)注意到了与双曲线 14 162 2=-y x 有公共焦点的双曲线系方程为14162 2=+--λ λy x 后,便有了以上巧妙的设法. (2)寻找一种简捷的方法,须有牢固的基础和一定的变通能力,这也是在我们教学中应该注重的一个重要方面. 典型例题三 例3 已知双曲线116 92 2=- y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF ,求21PF F ∠的大小.

(完整版)双曲线分类练习练习题

双曲线练习题 1、双曲线的定义 1.设12F F ,是双曲线C :22 221x y a b -=(a >0,b >0)的左右焦点,点P 是C 右支 上异于顶点的任意一点,PQ 是12F PF ∠的角平分线,过点1F 作PQ 的垂线,垂足为Q ,O 为坐标原点,则OQ 的长为( ) A .定值a B .定值b C .定值c D .不确定,随P 点位置变化而变化 2.设双曲线 22 214x y b -=的左右焦点分别为12F F ,,过2F 的直线与该双曲线右支交于点A 、B ,且6AB =,则1ABF ?的周长为( ) A .8 B .12 C .16 D .20 3.过双曲线2 2 115 y x -=的右支上一点P ,分别向圆221:(4)4C x y ++=和圆222:(4)1C x y -+=作切线,切点分别为,M N ,则22 PM PN -的最小值为 A .16 B .15 C .14 D .13 4.如图,双曲线2 214 y x -=的左、右焦点分别是12F F ,,P 是双曲线右支上一点,1PF 与圆221 x y +=相切于点,T M 是1PF 的中点,则MO MT -= ( ) A .1 B .2 C . 12 D .32 5.已知双曲线22 221x y a b -=(a >0,b >0)的左、右焦点分别是F 1,F 2,点P 是其 上一点,双曲线的离心率是2,若△F 1PF 2是直角三角形且面积为3,则双曲线的实轴长为( ) A .2 B .2 C .2或2 D .1或 22 6.已知双曲线C:2 2 13 y x -=的左焦点为1F ,顶点,是双曲线右支上的动点,则1PF PQ +的最小值等于__________. 7.设P是双曲线 22 1927 x y -=上一点, 12F F ,分别是左右焦点,若17PF =,则2PF =________ 8.在△ABC 中,4BC =,△ABC 的内切圆切BC 于D 点,且22BD CD -=,则顶点A 的轨迹方程为________. 9.设12F F ,分别为双曲线22 221x y a b -=(a >0,b >0)的左、右焦点.若在双曲线 左支上存在点P,满足1PF =12F F ,且1F 到直线2PF 7a ,则该双曲线的离心率e =__________.

相关主题
文本预览
相关文档 最新文档