七年级数学基础知识图文稿
- 格式:docx
- 大小:55.09 KB
- 文档页数:8
七年级上册数学知识点图文在七年级上册数学中,有许多重要的知识点,这些知识点为我们今后的学习和生活打下了坚实的基础。
下面将为大家介绍这些知识点,并提供相应的图文说明。
1. 分式分式是数学中一个重要的概念,在七年级上册中我们学习了分式的初步概念,包括分子、分母、真分数、假分数等。
2. 分数的加减分数的加减是七年级数学中的重要知识点之一,我们需要先将分数的分母合并,然后根据分子的大小来进行加减操作。
3. 分数的乘法分数的乘法是一种重要的数学运算,我们需要将分子与分子相乘,分母与分母相乘,然后将两者的积再进行约分。
4. 分数的除法分数的除法也是七年级数学中的重要知识点,我们需要将除数取其倒数,然后将两个分数相乘即可。
5. 基础代数式在七年级上册中,我们初步学习了代数式的概念,包括基础代数式的化简和展开等操作。
6. 一元一次方程在七年级上册中,我们初步接触了一元一次方程,掌握了解一元一次方程的基本方法和步骤。
7. 几何图形的性质几何图形的性质是数学中一个重要的概念,我们需要了解不同图形的特征和性质,如三角形、长方形等。
8. 等式和不等式在七年级上册数学中我们学习了等式和不等式的概念,掌握了解等式和不等式的基本性质和运算。
9. 两点间的距离在七年级上册数学中我们学习了两点间的距离,掌握了解求两点间距离的方法和步骤。
10. 长度、面积和体积的单位换算长度、面积和体积的单位换算是七年级上册数学的重点,我们需要掌握各种不同单位之间的换算关系。
总结以上就是七年级上册数学的主要知识点,这些知识点是我们今后学习和工作的重要基础,在实际运用中也会频繁用到。
让我们共同努力,刻苦学习数学知识,为未来的成功打下坚实的基础。
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容。
第一章 有理数一. 知识框架二.知识概念1。
有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数。
正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5。
有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6。
互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=—1⇔ a 、b 互为负倒数.7。
有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数。
第一章:有理数★知识结构图:正分数负分数 正整数负整数★正数和负数 概念、定义:1.大于0的数叫做正数(positive number)。
2.在正数前面加上负号“-”的数叫做负数(negative number)。
3.整数和分数统称为有理数(rational number)。
4.规定了原点、正方向和单位长度的直线叫做数轴(number axis)。
5.在直线上任取一个点表示数0,这个点叫做原点(origin)。
6.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。
7.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8.正数大于0,0大于负数,正数大于负数。
两个负数,绝对值大的反而小。
★有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
4.有理数的加法中,两个数相加,交换交换加数的位置,和不变。
5.有理数的加法中,三个数相加,先把前两个数相加,或者先将后两个数相加,和不变。
6.有理数减法法则:减去一个数,等于加上这个数的相反数。
★有理数乘法法则1.两数相乘,同号得正,异号得负,并把绝对值向乘;任何数同0相乘,都得0。
2. 有理数中仍然有:乘积是1的两个数互为倒数。
3. 一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
4.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
5.一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
★有理数除法法则1.除以一个不等于0的数,等于乘这个数的倒数。
2.两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
★做有理数混合运算时,应注意以下运算顺序:。
1 第一章:有理数★知识结构图:正分数负分数正整数0负整数第二章:整式的加减★知识结构图:2★概念、定义:1.都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。
单项式中的数字因数叫做这个单项式的系数(coefficient)。
32.一个单项式中,所有字母的指数的和叫做这个单项式的次数。
3.几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
4.多项式里次数最高项的次数,叫做这个多项式的次数。
5.把多项式中的同类项合并成一项,叫做合并同类项。
6.合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母和字母的指数不变。
7.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;8.如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
4第三章:一元一次方程知识结构图:概念、定义:1.含有一个未知数,未知数的次数都是1,这样的方程叫做一元一次方程。
3等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
5.等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。
56.把等式一边的某项变号后移到另一边,叫做移项。
7.工程问题:工作总量=工作效率×时间盈亏问题:利润=售价-成本利率=利润÷成本×100%售价=标价×折扣数×10%储蓄利润问题:利息=本金×利率×时间本息和=本金+利息三:图形的初步认识知识结构图:61.我们把实物中抽象的各种图形统称为几何图形(geometric figure)。
72.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solid figure)。
3.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(plane figure)。
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容。
第一章 有理数一. 知识框架二.知识概念1。
有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数。
正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;—a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数。
4。
绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数。
7。
有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数。
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容。
第一章 有理数一. 知识框架二.知识概念1。
有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数。
正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数。
4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数 > 0,小数—大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c )。
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容。
第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数。
正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;—a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数。
4。
绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5。
有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6。
互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=—1⇔ a 、b 互为负倒数。
7。
有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数。
七年级数学(上)知识点第一章、有理数第二章、整式的加减第三章、一元一次方程第四章、图形的认识初步七年级数学(下)知识点)(无限不循环小数负无理数正无理数无理数⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎩⎨⎧---)()32,21()32,21()()3,2,1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、ΛΛΛΛ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧实数第五章、相交线与平行线第六章、实数第七章:平面直角坐标系第八章、二元一次方程组第九章、不等式与不等式组第十章、数据的收集、整理与描述八年级数学(上)知识点第十一章:三角形第十二章、全等三角形全面调查抽样调查收集数据描述数据整理数据分析数据得出结论第十三章、轴对称第十四章、整式的乘除与分解因式 1.同底数幂的乘法法则: nm nmaa a +=⋅(m,n 都是正数)2.. 幂的乘方法则:mn n m a a =)((m,n 都是正数)⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a nn n3. 整式的乘法 (1) 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
(3).多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
4.平方差公式: 22))((b a b a b a -=-+ 5.完全平方公式: 2222)(b ab a b a +±=±6. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即nm n m aa a -=÷ (a ≠0,m 、n 都是正数,且m>n).7.整式的除法单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;多项式除以单项式: 多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.分解因式的一般方法:1. 提公共因式法2. 运用公式法3.十字相乘法分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。
七年级数学基础知识集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)
七年级数学基础知识
第一章有理数
(一)有理数
1、有理数的分类:
按有理数的定义分类:按有理数的性质符号分类:
正整数正整数整数零正有理数
有理数负整数正分数
正分数有理数 0
分数负整数
负整数负有理数
负分数(二)数轴
1、定义:规定了原点、正方向和单位长度的直线叫做数轴。
2、数轴的三要素是:原点、正方向、单位长度。
(三)相反数
1、定义:只有符号不同的两个数互为相反数,0的相反数是0。
(四)绝对值
1.定义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。
2.相关结论:
(1)0的相反数是它本身。
(2)非负数的绝对值是它本身。
(3)非正数的绝对值是它的相反数。
(4)互为相反数的两个数的绝对值相等。
(5)任何数的绝对值都是它的正数或0,即|a|≥0。
(五)倒数
1、定义:乘积是1的两个数互为倒数。
2、求法:调换这个数的分子和分母的位置。
(六)有理数的运算
(1)有理数的加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加;
2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大
的绝对值减去较小的绝对值。
3.一个数同零相加,仍得这个数;
4、两个互为相反数的两个数相加得0。
(2)有理数的减法法则:
减去一个数,等于加上这个数的相反数。
(3)有理数的乘法法则:
1、两数相乘,同号得正,异号得负,并把绝对值相乘;
2、任何数同0相乘,都得0;
3、乘积是1的两个数互为倒数。
(4)有理数的除法法则:
1、除以一个不等于0的数,等于乘上这个数的倒数;
2、两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
(七)乘方
1、定义:求几个(n个)相同因数的积的运算,叫做乘方。
2、幂的符号法则:正数的任何次幂都是正数;
负数的奇次幂是负数,负数的偶次幂是正数;
0的任何次正整数次幂都是0。
(八)有理数的混合运算顺序:
1.先乘方,再乘除,后加减;
2.同级运算,按从左到右进行;
3.如果有括号,先做括号内的运算,先做小括号,再做中括号最后大括
号。
(九)科学计数法、有效数字、近似数
1、科学计数法
(1)定义:
把一个绝对值大于10的数表示成 a×10n的形式(其中1≤a<10,且n 是正整数),这种计数方法叫做科学计数法。
(3)近似数的定义:
一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。
采用四舍五入的方法计算
第二章整式的加减
一、单项式、多项式、整式
单项式:数或字母的乘积的式子叫做单项式;
单独的一个数或一个字母也是单项式。
多项式:几个单项式的和叫做多项式。
整式:单项式与多项式统称整式。
二、单项式的系数和次数
(1)单项式的系数是指单项式中的数字因数;
(2)单项式的次数是指单项式中所有字母的指数之和。
三、多项式的项、常数项、次数
(1)在多项式中,每个单项式叫做多项式的项;
(2)其中不含字母的项叫常数项;
(3)多项式中次数最高的那一项的次数,就是这个多项式的次数。
四、同类项的概念:
(1)所含字母相同,并且相同字母的指数也相同的项叫做同类项;(2)所有常数项都是同类项。
五、合并同类项的法则:
同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
六、去括号的法则
(1)如果括号外的符号是“+”号,去掉括号后,括号里每一项的符号都不变;(2)如果括号外的符号是“-”号,去掉括号后,括号里每一项的符号都与原来的符号相反。
第三章一元一次方程
一、一元一次方程的概念
定义:(1)方程中只含有一个未知数;
(2)并且未知数的指数是1;
(3)每一项都是单项式;
这样的方程叫做一元一次方程。
二.解方程
移项:移项要变号。
解一元一次方程的一般步骤:
1.去分母:在方程两边都乘以分母的最小公倍数;
2.去括号:先去小括号,再去中括号,最后去大括号;
3.移项:把含有未知数的项都移到左边,不含未知数的项移到右边;
4.合并同类项:把方程化成ax=b(a≠0)的形式;
第四章图形认识初步
一.几何图形都是由点、线、面、体组成的,点动成线,线动成面,面动成体。
二.直线、射线、线段
1、直线
(1)概念:可以向两方无限延伸的的一条笔直的线。
(2)基本性质:两点确定一条直线。
(3)特点:①直线没有长短,向两方无限延伸;③两点确定一条直线;
2、射线
只有一个端点,可以向一方无限延伸,无法度量。
3、线段
(1)有两个端点,不能向任何一方延伸,可以量出长短;
(2)基本性质:两点之间线段最短。
4、线段的中点:把一条线段分成相等的两条线段的点。
如图,点M 把线段AB 分成相等的两条线段AM 与BM ,点M 叫做线段AB 的中点,记作:AM=MB 或者AM=MB=21AB 。
如图,点M 、N 把线段AB 分成相等的三段AM 、MN 、NB ,点M 、N 叫做线段AB 的三等分点。
三.角 1、角的概念:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。
3、角的换算:
(2)角的换算:
1周角=360° 1平角=180° 1直角=90°
1°=60′ 1′=60″ 1°=3600″
5、角的平分线:从一个角的顶点出发,把这
个角分成相等的两个角的射线,叫做这个角的平分
线。
如果OB 是∠AOB 的平分线,
那么∠AOB= ∠BOC=21∠AOC
或者∠AOC=2∠AOB= 2∠BOC
6、余角和补角:
(1)余角:如果两个角的和等于90°(直角),那么这两个角互为余角; A B M
B
M N
(2)补角:如果两个角的和等于180°(平角),那么这两个角互为补角;
如果有∠,那么它的余角是90°-∠,它的补角是180°-∠;(3)余角的性质:相等角的余角相等;
等角的性质:相等角的补角相等。