七年级上册数学全册基础知识整合
- 格式:doc
- 大小:1.41 MB
- 文档页数:32
人教版七年级数学上册第一章有理数全章知识点总结归纳人教版七年级数学上册第一章有理数全章知识点归纳一、知识要点1、正数和负数1) 大于的数为正数。
2) 在正数前面加上负号“-”的数为负数。
3) 数既不是正数也不是负数,是正数与负数的分界。
4) 在同一个问题中,分别用正数与负数表示的量具有相反的意义。
2、有理数1) 凡能写成分数形式的数,都是有理数,整数和分数统称有理数。
注意:即不是正数,也不是负数;-a不一定是负数,如:-(-2)=4,这个时候的a=-2.不是有理数;正有理数:正整数、正分数。
负有理数:负整数、负分数。
零。
3) 自然数:和正整数;a>:a是正数;a<:a是负数;a≥0:a是正数或是非负数;a≤0:a是负数或是非正数。
3、数轴1) 用一条直线上的点表示数,这条直线叫做数轴。
它满足以下要求:在直线上任取一个点表示数,这个点叫做原点;通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…2) 数轴的三要素:原点、正方向、单位长度。
3) 画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。
数轴的规范画法:是条直线,数字在下,字母在上。
注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。
4) 一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
4、相反数1) 只有符号不同的两个数叫做互为相反数。
注意:a的相反数是-a;a-b的相反数是b-a;a+b的相反数是-(a+b)=-a-b;非零数的相反数的商为-1;相反数的绝对值相等。
2、设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点的两侧,表示a和-a。
完整版)七年级上册数学知识点大全2)异号两数相加,取绝对值大的符号,并把绝对值相减;3)加数与被加数的顺序可以交换,即满足交换律;4)加法结合律成立,即(a+b)+c=a+(b+c);5)0是加法的零元素,即a+0=a;6)有理数加法满足可逆律,即对于任意有理数a,都有相反数-b,使得a+b=0.8.有理数减法法则:1)a-b=a+(-b);2)减数与被减数的顺序不能交换,即不满足交换律;3)减法不满足结合律,即(a-b)-c≠a-(b-c);4)减法没有零元素;5)有理数减法也满足可逆律,即对于任意有理数a,都有相反数-b,使得a-b=a+(-b)=0.9.有理数乘法法则:1)同号两数相乘,积为正数;2)异号两数相乘,积为负数;3)0乘以任何数都等于0;4)1是乘法的单位元素,即a×1=a;5)乘法满足交换律,即a×b=b×a;6)乘法满足结合律,即(a×b)×c=a×(b×c);7)有理数乘法满足可逆律,即对于任意非零有理数a,都有倒数1/a,使得a×1/a=1.10.有理数除法法则:1)a÷b=a×1/b;2)被除数为0时,无法进行除法运算;3)除数为0时,无意义;4)除法不满足交换律,即a÷b≠b÷a;5)除法不满足结合律,即(a÷b)÷c≠a÷(b÷c);6)有理数除法满足可逆律,即对于任意非零有理数a,都有倒数1/a,使得a×1/a=1.11.分数:1)分数由分子和分母组成,分母不能为0;2)分数可以化为最简分数,即分子和分母没有公因数;3)分数可以比大小,比较分数大小时,可以通分,然后比较分子大小;4)分数可以加减乘除,加减法通分后再进行运算,乘法直接将分子和分母相乘,除法将除数取倒数后再乘以被除数.12.小数:1)小数是有理数的一种表示形式;2)小数可以化为分数,分母为10的正整数的分数;3)小数的加减乘除法与分数的运算法则相同;4)小数可以用数轴表示,小数点左边的数表示整数部分,右边的数表示小数部分;5)小数可以化为百分数,即乘以100,化为千分数即乘以1000等.1.有理数的基本概念:有理数包括正有理数、负有理数和零,可以表示成分数形式,分母不为零。
提分数学七年级上知识清单第一章 有理数一.正数和负数⒈正数和负数的概念负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数注意:①字母a 可以表示任意数,当a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当a 表示0时,-a 仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数: 比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。
3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
2. (1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
·有理数加减法法那么·——口诀记法 先定符号,再计算, 同号相加不变号;异号相加“大〞减“小〞, 符号跟着“大数〞跑; 减负加正不混淆。
一、【正负数】有理数分类: _____________统称整数,试举例说明。
_____________统称分数,试举例说明。
____________统称有理数。
二、【数轴】 规定了 、 、 直线,叫数轴 三、【相反数】概念像2和-2、--2.5这样,只有 不同两个数叫做互为相反数。
0相反数是 。
一般地:假设a 为任一有理数,那么a 相反数为-a 相反数相关性质:1、相反数几何意义:表示互为相反数两个点〔除0外〕分别在原点O 两边,并且到原点间隔 相等。
2、互为相反数两个数,和为0。
四、【肯定值】一般地,数轴上表示数a 点与原点 叫做数a 肯定值,记作∣a ∣. 一个正数肯定值是 ; 一个负数肯定值是它 ; 0肯定值是 . 五、【有理数运算】 ·有理数加减法法那么 ·有理数乘除法法那么·求几个一样因数积运算,叫做有理数乘方。
即:a n =aa …a(有n 个a)五、【科学记数法】【近似数及有效数字】·把一个大于10数记成a ×10n 形式(其中a 是整数数位只有 一位数),叫做科学记数法.·对一个近似数,从左边第一个不是0数字起,到末位数字止, 全部数字都称为这个近似数有效数字。
一、【本章根本概念】★☆▲π 1、______和______统称整式。
①单项式:由 与 乘积..式子称为单项式。
单独 一个数或一个字母也是单项式,如a ,5。
·单项式系数:单式项里 叫做单项式 系数。
·单项式次数:单项式中 叫 做单项式次数。
②多项式:几个 和叫做多项式。
其中,每个单项式叫做多项式 ,不含字母项叫做 。
有理数【任一个有理数a 绝值】用式子表示就是:〔1〕当a 是正数〔即a >0〕时,∣a ∣= ;〔2〕当a 是负数〔即a <0〕时,∣a ∣= ; 〔3〕当a =0时,∣a ∣= . ·有理数乘除法法那么·同号得 ,异号得 ,肯定值相乘〔除〕。
人教七年级数学上知识点
一、整数及其运算
整数的概念、数轴、绝对值、相反数、加法、减法、乘法、除法及运算法则。
二、平面图形
平面图形的基本概念、直线、线段、射线、角、三角形、四边形、圆等基本图形及其性质。
三、一次函数
一次函数的概念、函数的解析式、函数图象、函数的变化及其含义。
四、数据的收集、整理与分析
数据的调查与应用、频数表、频数直方图、统计量和样本。
五、解方程
一元一次方程的概念和性质,基本解法和应用。
六、数列
数列的概念,等差数列、等比数列,数列的通项公式和前n项和。
七、三角形
三角形的基本性质、三角形的元素、三角形的周长和面积、勾股定理、解决实际问题。
八、比例与相似
比例的概念、比例的性质、比例的应用、相似的概念、相似三角形的性质及其应用。
九、两点间的距离与中点
两点间距离公式、平面直角坐标系、中点公式。
十、几何变换
平移、旋转、翻折及其组合。
以上是人教七年级数学上的基本知识点,学生们在学习过程中需要深入掌握,从而能够进行更深入的应用和解决实际问题。
希望本文对广大师生有所帮助,祝大家学习进步!。
第一章:有理数一、有理数的基础知识1、三个重要的定义:(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。
概念剖析:①判断一个数是否是正数或负数,不能用数的前面加不加“+”“-"去判断,要严格按照“大于0的数叫做正数;小于0的数叫做负数”去识别.②正数和负数的应用:正数和负数通常表示具有相反意义的量。
③所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数,正整数、0、负整数组成整数集合;④常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;2、有理数的概念及分类:整数和分数统称为有理数.有理数的分类如下:(1)按定义分类: (2)按性质符号分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0 概念剖析:①整数和分数统称为有理数,也就是说如果一个数是有理数,则它就一定可以化成整数或分数; ②正有理数和0又称为非负有理数,负有理数和0又称为非正有理数③整数和分数都可以化成小数部分为0或小数部分不为0的小数,但并不是所有小数都是有理数,只有有限小数和无限循环小数是有理数;3、数轴:标有原点、正方向和单位长度的直线叫作数轴。
数轴有三要素:原点、正方向、单位长度。
画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
在数轴上所表示的数,右边的数总比左边的数大,即从数轴的左边到右边所对应的数逐渐变大,所以正数都大于0,负数都小于0,正数大于负数。
概念剖析:①画数轴时数轴的三要素原点、正方向、单位长度缺一不可;②数轴的方向不一定都是水平向右的,数轴的方向可以是任意的方向;③数轴上的单位长度没有明确的长度,但单位长度与单位长度要保持相等;④有理数在数轴上都能找到点与之对应,一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数—a 的点在原点的左边,与原点的距离是a 个单位长度。
七年级上册数学知识要点(全册)第一章 有理数1、有理数的分类:① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数(小数)负整数零正整数整数有理数 (分类标准不同,分类不同)2.数轴三要素:原点、正方向、单位长度。
3.数轴上0左边的数是负数,0右边的数是正数;左边的数<0<右边的数(负数 < 0 < 正数)。
4.相反数:(1)只有符号不同的两个数互为相反数;(2)相反数是相互依存的,单独一个数不能说是相反数数;(例如2与-2互为相反数,就是指:2的相反数是-2,-2的相反数是2)。
(3)a 的相反数是-a, 0的相反数是0.(4)相反数的和为0 ;如果 a+b=0 ,则a 与b 互为相反数.5、倒数:(1)乘积为1的两个数互为倒数。
(例如83×38=1,则83与38互为倒数,就是指83的倒数是38,38的倒数是83。
)(2)1的倒数是1,0没有倒数。
注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数。
6、绝对值:(1)一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a .(2)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数。
注意:绝对值的几何意义是数轴上表示某数的点与原点的距离。
(3) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a 或 ⎩⎨⎧<-≥=)0a (a )0a (a a注:涉及到绝对值的问题经常需要分类讨论。
7、绝对值具有非负性的性质:a≥0,若+a b =0,则a=0,b=0 8、比较两个数的大小: (1)负数< 0 < 正数,任何一个正数都大于一切负数(2)数轴上的点表示的有理数,左边的数总比右边的数小(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小。
七年级上册数学知识点 (全册)单元一:数的概念和认识
- 自然数、整数、有理数、无理数的概念及其表示方法- 数轴的认识和使用
- 数的比较和大小的判断方法
- 数的分类和性质
单元二:整数的加减法
- 整数的加法和减法运算规则
- 整数的加减法计算方法
- 整数加减法的应用
单元三:小数的认识和运算
- 小数的概念和表示方法
- 小数和分数的转换
- 小数的加减乘除运算法则
- 小数的应用问题
单元四:比例与相等
- 比例的概念和性质
- 比例的表示方法和比例的简化- 比例的相等和比例的应用
单元五:百分数
- 百分数的概念和表示方法
- 百分数与比例的关系
- 百分数的转化和运算法则
- 百分数的应用问题
单元六:图形的认识
- 几何图形的基本概念和性质- 点、线、面、体的认识
- 常见平面图形的名称和特征
- 三角形的分类和性质
单元七:平面图形的性质和计算
- 四边形的分类和性质
- 平行四边形的性质和判定方法
- 直角、等腰和等边三角形的性质
- 平面图形的周长和面积的计算方法
单元八:数据的收集和整理
- 数据的收集方法和调查问题的设计
- 数据的整理和分类
- 数据的统计和分析
- 数据的应用和解读
以上是七年级上册数学的主要知识点,通过学习这些内容,你可以打下坚实的数学基础。
希望你在学习中能够发现数学的乐趣,不断提升自己的数学能力。
加油!。
第一章有理数一、有理数:1.定义:凡能写成形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;2.有理数的分类:3.注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。
4.自然数Û0和正整数a>0 Ûa是正数;a<0 Ûa是负数;a≥0 Ûa是正数或0 Ûa是非负数;a≤0 Ûa是负数或0 Ûa是非正数.二、数轴1.定义:数轴是规定了原点、正方向、单位长度的一条直线。
三、相反数1.只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0。
2.注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;3.相反数的和为0 Ûa+b=0 Ûa、b互为相反数。
4.相反数的商为-1。
5.相反数的绝对值相等。
四、绝对值1.正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;2、绝对值可表示为:4.|a|是重要的非负数,即|a|≥0;五、有理数比大小1.正数永远比0大,负数永远比0小;2.正数大于一切负数;3.两个负数比较,绝对值大的反而小;4.数轴上的两个数,右边的数总比左边的数大;5.-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
六、倒数1.定义:乘积为1的两个数互为倒数;2.注意:(1)0没有倒数(2)若ab=1Ûa、b互为倒数(3)若ab=-1Ûa、b互为负倒数2.等于本身的数汇总:(1)相反数等于本身的数:0(2)倒数等于本身的数:1,-1(3)绝对值等于本身的数:正数和0(4)平方等于本身的数:0,1(5)立方等于本身的数:0,1,-1.七、有理数加法法则1.同号两数相加,取相同的符号,并把绝对值相加。
提分数学七年级上知识清单第一章有理数一.正数和负数1 .正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,是负数;当a表示负数时,是正数;当a表示0 时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“ +”,有时省略不写。
所以省略“ +”的正数的符号是正号。
2 .具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8c表示为:・8 °C支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。
3 .0表示的意义⑴0表示“没有。
如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
二,有理数1 .有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①H是无限不循环小数,不能写成分数形式,不是有理数。
②有小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,・4,・6,-8 也是偶数,也是奇数。
2.(1)凡能写成9 (P, q为整数且H0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负P 分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;不一定是负数,+a也不一定是正数;正是有理数;「匚右刑物f正整数正有理数I正分数⑵有理数的分类:①按正、负分类:有理数{零负有理数[ [■正整数整数彳零②按有理数的意义来分:有理数出整数分数年分数分数一分数■总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数⑶注意:有理数中,1、0、・1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域, 这四个区域的数也有自己的特性;(4)自然数U 0和正整数;a>0 U a是正数;a< 0 a是负数;a20 = a是正数或0 u a是非负数;aW 0 = a是负数或0 u a是非正数.三.数轴1 .数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
第一章:有理数一、有理数的基础知识1、三个重要的定义:(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。
概念剖析:①判断一个数是否是正数或负数,不能用数的前面加不加“+”“-”去判断,要严格按照“大于0的数叫做正数;小于0的数叫做负数”去识别。
②正数和负数的应用:正数和负数通常表示具有相反意义的量。
③所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数,正整数、0、负整数组成整数集合;④常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;2、有理数的概念及分类:整数和分数统称为有理数。
有理数的分类如下:(1)按定义分类: (2)按性质符号分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0 概念剖析:①整数和分数统称为有理数,也就是说如果一个数是有理数,则它就一定可以化成整数或分数;②正有理数和0又称为非负有理数,负有理数和0又称为非正有理数③整数和分数都可以化成小数部分为0或小数部分不为0的小数,但并不是所有小数都是有理数,只有有限小数和无限循环小数是有理数;3、数轴:标有原点、正方向和单位长度的直线叫作数轴。
数轴有三要素:原点、正方向、单位长度。
画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
在数轴上所表示的数,右边的数总比左边的数大,即从数轴的左边到右边所对应的数逐渐变大,所以正数都大于0,负数都小于0,正数大于负数。
概念剖析:①画数轴时数轴的三要素原点、正方向、单位长度缺一不可;②数轴的方向不一定都是水平向右的,数轴的方向可以是任意的方向;③数轴上的单位长度没有明确的长度,但单位长度与单位长度要保持相等;④有理数在数轴上都能找到点与之对应,一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数-a 的点在原点的左边,与原点的距离是a 个单位长度。
七年级上册数学知识点归纳大全
七年级上册数学知识点归纳如下:
1. 数的分类:整数、分数、有理数。
2. 数的性质:正数、负数、0。
3. 绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,记作a。
若a=a,则a≥0;若a=-a,则a≤0。
4. 相反数:只有符号不同的两个数互为相反数。
5. 有理数的运算:加、减、乘、除、乘方。
多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。
6. 数轴:通常用一条直线上的点表示数,这条直线叫数轴。
所有的有理数都可以用数轴上的点表示出来,但数轴上的点不全表示有理数。
7. 几何图形的组成:点、线、面、体。
点是几何图形中最基本的图形,线和线相交的地方是点;面和面相交的地方是线,分为直线和曲线;包围着体的是面,分为平面和曲面。
8. 点动成线,线动成面,面动成体。
9. 生活中的立体图形:柱、棱柱(三棱柱、四棱柱、五棱柱等)。
以上内容仅供参考,如需获取更多知识点归纳,建议查阅七年级数学教材或咨询数学老师。
七年级上册数学知识点 (全册)第一章:数的认识1.1 整数1.1.1 整数的定义与性质- 整数包括正整数、0 和负整数。
- 整数具有加法、减法、乘法和除法等基本运算性质。
1.1.2 整数的分类- 自然数:正整数和0。
- 整数:包括自然数、负整数和0。
1.2 分数1.2.1 分数的定义与性质- 分数是整数比上整数,形式为 a/b,其中 a 和 b 是整数,b 不为0。
- 分数具有加法、减法、乘法和除法等基本运算性质。
1.2.2 分数的分类- 正分数:分子大于分母的分数。
- 负分数:分子小于分母的分数。
- 零分数:分子等于分母的分数。
1.3 小数1.3.1 小数的定义与性质- 小数是十进制数的一种,由整数部分和小数部分组成,用小数点分隔。
- 小数具有加法、减法、乘法和除法等基本运算性质。
1.3.2 小数的分类- 有限小数:小数部分有限的小数。
- 无限小数:小数部分无限的小数。
第二章:代数式2.1 代数式的定义与性质2.1.1 代数式的定义- 代数式是由数字、变量和运算符组成的表达式。
2.1.2 代数式的性质- 代数式具有加法、减法、乘法和除法等基本运算性质。
2.2 变量2.2.1 变量的定义与性质- 变量是代数式中的未知数,用字母表示。
- 变量可以取不同的数值。
2.3 代数式的运算2.3.1 代数式的加减法- 同类项:变量和它们的指数相同的代数式。
- 代数式的加减法:同类项之间进行加减运算。
2.3.2 代数式的乘除法- 代数式的乘除法:将代数式与数字相乘或相除。
第三章:一元一次方程3.1 一元一次方程的定义与性质3.1.1 一元一次方程的定义- 一元一次方程是形如 ax + b = 0 的方程,其中 a 和 b 是常数,x 是变量。
3.1.2 一元一次方程的性质- 一元一次方程的解是使方程成立的变量 x 的值。
3.2 一元一次方程的解法3.2.1 解法概述- 一元一次方程的解法有代入法、移项法、消元法等。
七年级上下册数学课本知识点归纳数学作为一门基础学科,是学生必修的科目之一。
在初中阶段,七年级数学课本是数学学科的入门教材,是学生掌握基本知识的基石。
本文将对七年级上下册数学课本的知识点进行归纳,帮助初学者快速掌握数学基础知识。
一、整数与小数(上册)整数与小数是数学学科中最基本的概念,也是其他知识点的基础。
在七年级上册中,主要包括整数的基本概念、运算及应用;小数的基本概念、运算及比较大小等。
二、代数式(上册)代数式是数学中非常重要的概念,是我们后续学习的基础。
在七年级上册中,主要包括代数式的基本概念、加减乘除及应用等。
三、几何图形(上册)几何图形是数学学科中非常重要的知识点之一,涉及到平面和立体图形。
在七年级上册中,主要包括多边形的基本概念、分类及性质;圆的基本概念、周长与面积等。
四、分数(下册)分数是数学学科中较难的知识点之一,但是对于我们日常生活中相当常见。
在七年级下册中,主要包括分数的基本概念、运算、化简及应用等。
五、比例与相似(下册)比例是数学中重要的概念之一,涉及到相似、变化等。
在七年级下册中,主要包括比例的基本概念、比例的性质及应用;相似的基本概念、相似三角形的性质及应用等。
六、函数(下册)函数是数学中非常重要的概念,也是高中数学学科的重要基础。
在七年级下册中,主要包括函数的基本概念、函数的图像、定义域与值域、函数的四则运算及应用等。
总结:以上是七年级上下册数学课本的知识点归纳,内容包括整数与小数、代数式、几何图形、分数、比例与相似以及函数等。
初学者可以根据此归纳快速掌握七年级数学的基础知识,为后续学习打下坚实的基础。
新人教版七年级数学上册重点知识复习资
料(全册)
单元一:整数
- 整数的概念:整数由正整数、0和负整数组成。
- 整数的比较:比较整数大小时,先比较绝对值大小,再根据
正负确定大小关系。
- 整数的加法和减法:同号相加减取结果的绝对值,符号与原
值相同;异号相加减取结果的绝对值,符号与较大数相同。
- 整数的乘法和除法:同号相乘除结果为正,异号相乘除结果
为负。
单元二:分数
- 分数的概念:分数由分子和分母组成,表示真数、假数和零。
- 分数的相等:两个分数相等表示代表同一量的两个数。
- 分数的大小比较:分数大小比较可以通过求公共分母,比较
分子大小进行。
- 分数的加法和减法:分数加减法可以通过通分,然后对分子进行加减。
- 分数的乘法:分数乘法可以直接对分子和分母进行相乘。
- 分数的除法:分数除法可以先求倒数,再进行相乘。
单元三:代数式
- 代数式的概念:含有变量的数学式子称为代数式。
- 代数式的运算:代数式的运算包括加法、减法和乘法。
- 代数式的化简:对代数式进行合并同类项、提取公因式、运用分配律等方法进行化简。
...
(继续写下去,覆盖全册)。
七年级数学(上册)重点知识点整理总结有理数1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;(3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|,ba ba =. 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;倒数是本身的数是±1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a.13.有理数乘方的法则: (1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n=-a n或(a-b)n=-(b-a)n, 当n 为正偶数时: (-a)n=a n或 (a-b)n=(b-a)n. 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; (3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;(4)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a ×10n的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.代数初步知识1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写; (2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号; (3)数与字母相乘时,一般在结果中把数写在字母前面,如a ×5应写成5a ; (4)带分数与字母相乘时,要把带分数改成假分数形式,如a ×211应写成23a ;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a 写成a3的形式; (6)a 与b 的差写作a-b ,要注意字母顺序;若只说两数的差,当分别设两数为a 、b 时,则应分类,写做a-b 和b-a .3.几个重要的代数式:(m 、n 表示整数)(1)a 与b 的平方差是: a 2-b 2; a 与b 差的平方是:(a-b )2;(2)若a 、b 、c 是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c ; (3)若m 、n 是整数,则被5除商m 余n 的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n 、n+1 ;(4)若b >0,则正数是:a 2+b ,负数是: -a 2-b ,非负数是: a 2,非正数是:-a 2.整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
第一章有理数1.1 正数和负数像3,2,1.8%这样大于0的数叫做正数。
像-3,-2,-2.7%这样在正数前面加上负号“—”的数叫做负数。
0既不是正数,也不是负数归纳在同一个问题中,分别用正数与负数表示的量具有相反的意义1.2 有理数整数可以看作分母为1的分数,正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数1.2.2 数轴一般地在数学中人们用画图的方式把数”直观化”,通常用一条直线上的点表示数,这条直线表示数轴它满足以下要求(1)在直线任取一点表示数0,这个点叫做原点(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示为1,2,3。
从原点向左,用类似的方法依次表示为-1,-2,-3.。
归纳一般地,设a是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度,表示-a的点在原点的左边,与原点距离是a个单位长度1.2.3 相反数思考?数轴上与原点的距离是2的点有两个,这些点表示的数是2,-2,与原点距离是5的点有2个,这些点表示的数是5,-5.归纳一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的左右,表示-a和a,我们说这两个点关于原点对称像2和-2,5和-5这样,只有符号不同的两个数叫做互为相反数,这就是说2的相反数是-2,5的相反数是-5。
(一般地a和-a为相反数,特别地,0的相反数仍是0)1.2.4 绝对值两辆汽车从同一处O点出发,分别向东西方向行驶10Km,到达A,B两点出,它们行驶路线相同吗?它们行驶路程远近相同吗?一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|,10与-10它们与原点的距离都是10个单位长度,所以10和-10的绝对值都是10,1即|10|=10,|-10|=10,显然|0|=0由此绝对值的定义可知;一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是(1)当a是正数时|a|=a(2)当a是负数时|a|=a(3)当a=0时|a|=0正数大于0,0大于负数,正数大于负数。