立体几何、数列、三角函数、不等式、平面向量综合练习
- 格式:doc
- 大小:1.61 MB
- 文档页数:23
基本(均值)不等式与其他知识相结合的9种方式基本(均值)不等式是解决函数、立体几何、三角函数、数列、向量、解三角形等知识领域重要的方法之一。
本资料整理高一知识融合试题,试题偏难,仅供强基计划学生选用。
一、不等式与三角函数1.已知αβγπ++=,β为锐角,tan 3tan αβ=,则11tan tan γα+的最小值为( ) A .12B .43C .32 D .34解析:∵αβγπ++=, ∴2tan tan 4tan tan tan()1tan tan 13tan αββγαβαββ+=-+=-=---,22113tan 119tan 1tan tan 4tan 3tan 12tan ββγαβββ-+∴+=+= 31321tan 49tan 432ββ⎛⎫=+≥⨯= ⎪⎝⎭, 当且仅当1tan 9tan ββ=即1tan 3β=时取等号, 所以11tan tan γα+的最小值为12.故选:A.二、不等式与数列2.阅读:已知a 、b ∈(0,+∞),a +b =1,求y =1a +2b 的最小值. 解法如下:y =1a +2b =(1a +2b )(a +b)=ba +2a b+3≥3+2√2,当且仅当ba =2ab,即a =√2−1,b =2−√2时取到等号,则y =1a +2b 的最小值为3+2√2. 应用上述解法,求解下列问题:(1)已知a,b,c ∈(0,+∞),a +b +c =1,求y =1a +1b +1c 的最小值; (2)已知x ∈(0,12),求函数y =1x +81−2x 的最小值;(3)已知正数a 1、a 2、a 3,⋯,a n ,a 1+a 2+a 3+⋯+a n =1, 求证:S =a 12a1+a 2+a 22a2+a 3+a 32a3+a 4+⋯+a n2an +a 1≥12.解析:(1)∵a +b +c =1,∴y =1a +1b +1c =(a +b +c )(1a +1b +1c )=3+(b a+a b+c a+a c+c b+b c)≥3+2√b a⋅ab+2√ca ⋅a c +2√cb ⋅bc=9, 当且仅当a =b =c =13时取等号.即y =1a +1b +1c 的最小值为9. (2)y =22x +81−2x =(22x +81−2x )(2x +1−2x)=10+2⋅1−2x 2x+8⋅2x1−2x ,而x ∈(0,12),∴2⋅1−2x 2x+8⋅2x 1−2x≥2√2(1−2x)2x⋅8⋅2x1−2x =8,当且仅当2(1−2x)2x =8⋅2x1−2x ,即x =16∈(0,12)时取到等号,则y ≥18,∴函数y =1x +81−2x 的最小值为18. (3)∵a 1+a 2+a 3+…+a n =1, ∴2S =(a 12a 1+a 2+a 22a 2+a 3+a 32a 3+a 4+⋯+a n 2a n +a 1)[(a 1+a 2)+(a 2+a 3)+…+(a n +a 1)]=(a 12+a 22+⋯+a n 2)+[a 12a 1+a 2(a 2+a 3)+a 22a 2+a 3(a 1+a 2)+⋯+a n2an +a 1(a 1+a 2)+a 12a 1+a 2(a 3+a 4)+⋯]≥(a 12+a 22+⋯+a n 2)+(2a 1a 2+2a 2a 3+⋯+2a n a 1)=(a 1+a 2+⋯+a n )2=1.当且仅当a 1=a 2=⋯=a n =1n 时取到等号,则S ≥12.三、不等式与立体几何3.已知三棱锥A BCD -的所有顶点都在球O 的球面上,AD ⊥平面,120ABC BAC ︒∠=,2AD =,若球O 的表面积为20π,则三棱锥A BCD -的体积的最大值为( )A B C D .【解析】设球O 的半径为R ,AB x =,AC y =, 由2420R ππ=,得25R =. 如图:设三角形ABC 的外心为G ,连接OG ,GA ,OA ,可得112OG AD ==,则2AG ==.在ABC ∆中,由正弦定理可得:24sin120BCAG ==︒,即BC =由余弦定理可得,222221122()32BC x y xy x y xy xy ==+-⨯-=++,4xy ∴.则三棱锥A BCD -的体积的最大值为114sin120232⨯⨯⨯︒⨯=.故选:B .4.如图,在三棱锥S ABC -中,SA ⊥面ABC ,AB BC E F ⊥,、是SC 上两个三等分点,记二面角E AB F --的平面角为α,则tan α( )A .有最大值43B .有最大值34C .有最小值43D .有最小值34【解析】将三棱锥放入长方体中,设AB a ,BC b =,AS c =,如图所示:过E 作EN ⊥平面ABC 与N ,NM AB ⊥与M ,连接ME , 则EMN ∠为二面角E AB C --的平面角,设为1α,则13NE c =,23MN b =,故1tan 2cbα=. 同理可得:设二面角F AB S --的平面角为2α,2tan 2b cα=. 12121231tan tan 34tan tan 2tan tan 422c b b cααπααααα-⎛⎫=--==≤ ⎪+⎝⎭+,当22c b b c=,即b c =时等号成立. 故选:B .5.如图,已知四面体ABCD 为正四面体,AB =E ,F 分别是AD ,BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A .1BC .2D .【解析】把正四面体补为正方体,如图,根据题意,//KL BC ,//LM GH ,KL AL BC AB =,LM BLAD AB=, 所以KL AL =,LM BL =,故KL LM AL BL +=+=,222KL LM S KL LM +⎛⎫=⋅≤= ⎪⎝⎭截面,当且仅当KL LM =时成立,故选:C.四、不等式证明6.设,,0x y z >,1114,4,4a x b y c z y z x=+=+=+,则,,a b c 三个数( ) A .都小于4 B .至少有一个不大于4 C .都大于4D .至少有一个不小于4【解析】假设三个数144x y +<且144y z +<且144z x+<, 相加得:11144412x y z x y z+++++<, 由基本不等式得:144x x +;144y y +;144z z+;相加得:11144412x y z x y z+++++,与假设矛盾;所以假设不成立,三个数14x y +、14y z +、14z x+至少有一个不小于4. 故选:D .7.已知a ,b ,R c ∈,2221a b c ++=.()1证明:112ab bc ca -≤++≤. ()2证明:()()()22222222223a b c b c a c a b +++++≤.【解析】()1证明:由()222222212220a b c a b c ab bc ca ab bc ca ++=+++++=+++≥,得12ab bc ca ++≥-.另一方面,222a b ab +≥,222b c bc +≥,222c a ca +≥, 所以222222222a b c ab bc ca ++≥++,即1ab bc ca ++≤.所以112ab bc ca -≤++≤.()2证明:()()()222222222a b c b c a c a b +++++()()()()2222224441111a a b b c c a b c =-+-+-=-++,因为()()24442222222224444442221a b c a b ca b b c c a a b b c c a ++=++---≥-+++++,即()44431a b c ++≥,则44413a b c ++≥, 所以()()()22222222223a bc b c a c a b +++++≤.8.已知,,a b c 为正数,且满足 1.a b c ++= 证明:(1)1119a b c++≥; (2)8.27ac bc ab abc ++-≤【解析】(1)1a b c ++=,故111a b c a b c a b c a b c a b c++++++++=++ 332229b a c a c ba b a c b c =++++++≥+++=,当13a b c ===时等号成立. (2)易知10,10,10a b c ->->->.()()()()1111ac bc ab abc a b c ac bc ab abc a b c ++-=-+++++-=---31118327a b c -+-+-⎛⎫≤= ⎪⎝⎭.当13a b c ===时等号成立.9.设实数x ,y 满足2x y 1+=.()1若2y 12x 3--<,求x 的取值范围;()2若x 0>,y 0>,求证:1215x y 2+. 【解析】()1由21x y +=,得12y x =-,所以不等式2123y x --<,即为4123x x --<,所以有{1423x x x <-+<或1041423x x x ⎧≤≤⎪⎨⎪--<⎩或144123x x x ⎧>⎪⎨⎪--<⎩ 解得10x -<< 或10?4x ≤≤或 124x <<, 所x 的取值范围为()1,2x ∈-.()20x >,0y >,21x y +=所以()1212424448y xx y x y x y x y⎛⎫+=++=++≥+= ⎪⎝⎭ 当且仅当4y x x y =,即122x y ==时取等号.又2122x y +≥-=-,当且仅当122x y ==时取等号,所以12152x y +≥,当且仅当122x y ==时取等号.10、在锐角ABC ∆中,证明:(1)tan tan tan tan tan tan A B C A B C ++=;(2)tan tan tan A B C ⋅⋅≥证明:(1)tan tan tan tan()tan tan 1A BC A B A B +=-+=-∴tan tan tan tan tan tan A B C A B C ++=(5分)(2)解法1:tan ,(0,)2y x x π=∈是凸函数,∴tan tan tan A B C ≥解法2:3tan tan tan tan tan tan ()3A B C A B C ++≤,∴tan tan tan A B C ≥五、最值问题11.设0,0x y >>且4x y +=,则2212x y x y +++的最小值是 A .167B .73C .2310D .94【解析】∵4x y +=,∴(x+1)+(y+2)=7∴()()()()2222121124241212x x y y x y x y x y +-+++-+++=+++++=1+()1414x 1y 214y 24x 112216112?x 1y 2x 1y 277777x 17y 2777⎛⎫++++⎛⎫+=+++=++++≥+⨯= ⎪⎪++++++⎝⎭⎝⎭()() 12.已知实数0,1a b >>满足5a b +=,则211a b +-的最小值为( ) A.34+ B.34+ C.36+ D.36+ 【解析】因为0,1a b >>满足5a b +=,则()21211()1114a b a b a b +=++-⨯⎡⎤⎣⎦--()21113(3414b a a b -⎡⎤=++≥+⎢⎥-⎣⎦ 当且仅当()211b aa b -=-时取等号,故选:A .13.设0a b >>,则()241ab b b a b ++-的最小值是( ) A .2B .3C .4D .6【解析】因为00a b a b >>⇒->; 所以22224114()()ab ab b b b b a b b a b b ++=-+++--2214()2(246()b a b b b a b b a b b =-+++-=+=-.当且仅当1()()b a b b a b -=-,224b b=时取等号,∴241()ab b b a b ++-的最小值为6.故选:D .六、不等式与函数14.已知()221f x x x =-++. (1)求不等式()6f x <的解集;(2)设,,m n p 为正实数,且()2m n p f ++=,求证:3mn np pm ++≤.【解析】(1)不等式2216x x -++<等价于不等式组1336x x <-⎧⎨-+<⎩或1256x x -≤≤⎧⎨-+<⎩或2336x x >⎧⎨-<⎩,所以不等式2216x x -++<的解集为()1,3-; (2)证明:因为3m n p ++=,所以()22222229m n p m n p mn mp np ++=+++++=, 因为,,m n p 为正实数,所以由基本不等式222m n mn +≥(当且仅当m n =时等号成立), 同理22222,2m p mp p n pn +≥+≥,所以222m n p mn mp np ++≥++, 所以()22222229333m n p m n p mn mp np mn mp np ++=+++++=≥++, 所以3mn mp np ++≤.15.已知函数()f x =的定义域为R .(1)求实数m 的取值范围;(2)设实数t 为m 的最大值,若实数,,a b c 满足2222a b c t ++=,求222111123a b c +++++的最小值. 【解析】(1)函数()f x =R .∴231x x m ---≥对任意的x ∈R 恒成立,令()231g x x x =---,则()()()()7,353,035,0x x g x x x x x ⎧-≥⎪=-<<⎨⎪-≤⎩,结合()g x 的图像易知()g x 的最小值为4-,所以实数m 的取值范围(],4-∞-.(2)由(1)得4t =-,则22216a b c ++=,所以()()()22212322a b c +++++=,()()()22222222211112311112312322a b c a b c a b c ⎛⎫⎡⎤+++++++ ⎪⎣⎦+++⎝⎭++=+++ 222222222322213132312132322b ac a c b a b a c b c ++++++++++++++++++=922≥=,当且仅当222221233a b c +=+=+=,即2193a =,2163b =,2133c =时等号成立,∴222111123a b c +++++的最小值为922.七、不等式与向量16.若非零向量,m n 满足||||1m e m e n e n e --⋅=--⋅=(e 为单位向量),且m n ⊥,则||m n -的最小值是( )A .1B .2C .4D .8【解析】由非零向量,m n 满足m n ⊥,可设(,0)m a =,(0,)n b =,其中,a b 均不为0. 因为e 为单位向量,可设(cos ,sin )e θθ=,因为||(cos 1m e m e a a θ--⋅=-=,所以222222cos cos sin 12cos cos a a a a θθθθθ+=++-+,即2sin 4cos a θθ= ①, 同理,由||1n e n e --⋅=可得2cos 4sin b θθ= ②,由①②,可得22224416cos 16sin sin cos a b θθθθ+=+=42242244cos sin cos sin sin cos 16sin cos θθθθθθθθ⎛⎫+++ ⎪⎝⎭42421116tan tan 16(22)64tan tan θθθθ⎛⎫=+++≥⨯+= ⎪⎝⎭当且仅当2tan 1θ=时,等号成立,所以当2tan 1θ=时,min ||8m n -=, 故选:D .17.已知平行四边形ABCD的面积为,23πBAD ∠=,E 为线段BC 的中点.若F 为线段DE 上的一点,且56AF AB AD λ=+,则AF 的最小值为___________. 【解析】由题可知,平行四边形ABCD 的图象如下:设DF kDE =,()=AF AD DF AD kDE AD k DC CE ∴=++=++,DC AB =,12CE DA =,则1+2AF AD k AB k DA =+, 所以11122AF k AB AD k AD k AB k AD ⎛⎫=+-=+- ⎪⎝⎭,又56AF AB AD λ=+,则有:15126k k λ=⎧⎪⎨-=⎪⎩,解得:13k λ==,即1536AF AB AD =+, 平行四边形ABCD的面积为,即2sin3AB AD π⋅=18AB AD ∴⋅=, 2222151525369936AF AB AD AB AB AD AD ⎛⎫∴=+=+⋅+ ⎪⎝⎭,即:2221525cos 9936AF AB AB AD BAD AD ∴=+⋅∠+, 222221512512518=+599236936AF AB AD AB AD ⎛⎫∴=+⨯⨯-+- ⎪⎝⎭,即:222125=+5936AF AB AD -, 222212512552=218=1093618AB AD AB AD +≥⨯⨯⨯,即22125+10936AB AD ≥, 所以22125+55936AB AD -≥,25AF ∴≥,5AF ∴≥,当且仅当:22125=936AB AD 时,取等号,AF ∴的最小值为.18.平面向量,,a b c →→→满足||1a →≤,||1b →≤,|2()|||c a b a b →→→→→≤--+,则||c →的最大值为_______. 【解析】由绝对值不等式的性质可知,已知中|2()|||c a b a b -+≤-,可得|2|||||c a b a b -+≤-,即|2|||||c a b a b ≤++-,将a ,b 的起点移到同一点,以a ,b 为边构造平行四边形,则a b +,a b -为平行四边形的两条对角线,在平行四边形ABCD 中,2222||||||||AC AB AD AB AD ==++2||||cos AB AD BAD +⋅∠,由余弦定理可知222||||||2||||cos BD AB AD AB AD BAD -=+⋅∠,则22||||AC BD +=222||2||AB AD +,显然||||AC BD +若取最大值,则||AB ,||AD 应为最大1,即()()2222||||||||4||||||22||4||||2AC BD AC BD AC BD AC BD AC BD ++=⇒=--+=⇒由基本不等式可知()()()222|||||||||||282|||||||||4AC BD AC BD AC BD AC BD AC BD ++=≤⇒⇒++≤-≤当且仅当||||AC BD =时取等号,所以当||1a =,||1b =且||||a b a b +=-时,||||a b a b ++-取得最大值则|2|||||22c a b a b ≤++-≤,即||2c ≤,所以||c .八、不等式与解三角形19.在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,ABC ∆的面积为S ,若222sin()SA C b c +=-,则1tan 2tan()CBC +-的最小值为( )AB .2C .1D.【解析】因为222sin()SA C b c +=-,即222sin S B b c =-,所以22sin sin ac B B b c =-,因为sin 0B ≠,所以22b c ac =+,由余弦定理2222cos b a c ac B =+-,可得2cos a c B c -=, 再由正弦定理得sin 2sin cos sin A C B C -=,因为sin 2sin cos sin()2sin cos sin()A C B B C C B B C -=+-=-, 所以sin()sin B C C -=,所以B C C -=或B C C π-+=, 得2B C =或B π=(舍去).因为ABC ∆是锐角三角形,所以02022032C C C ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,得64C ππ<<,即tan C ∈,所以11tan tan 2tan()2tan C C B C C+=+≥-当且仅当tan C =,取等号. 故选:A20.已知在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且6a =,点O 为其外接圆的圆心.已知·15BO AC =,则当角C 取到最大值时ABC 的面积为( )A .B .CD .【解析】设AC 中点为D ,则()BO AC BD DO AC ⋅=+⋅ BD AC =⋅ ()()12BC BA BC BA =+⋅- 221122BC BA =-,22111522a c ∴-=,即c = 由c a <知角C 为锐角,故222cos 2a b c C ab+-=2301301212b b b b +⎛⎫==+ ⎪⎝⎭ 1212b ⨯=,当且仅当30b b =,即b =cos C 最小,又cos y x =在0,2π⎛⎫⎪⎝⎭递减,故C 最大.此时,恰有222a b c =+,即ABC 为直角三角形,ABC12Sbc ==,故选A .21.在ABC 中,已知·9AB AC =,sin cos sin B A C =,6ABCS =,P 为线段AB 上的点,且CA CB CP xyCACB=+,则xy 的最大值为________.【解析】由sin cos sin B A C =得2222221622ABC b c a b c a b c S ab bc ∆+-=⇒+=⇒==所以由·9AB AC =得29,3,4AC b a =∴== 又P 为线段AB 上的点,且CA CB CP xyCACB=+,所以1,1,1334x y x y xy b a +=∴+=∴≥≤ ,当且仅当3,22x y ==时,等号成立即xy 的最大值为3.22.设ABC △的内角,,A B C 所对的边分别为,,a b c ,且3cos cos 5a Bb Ac -=,则()tan A B -的最大值为A.2B .34C .32D【解析】3cos cos 5a Bb Ac -=∴由正弦定理,得35sinAcosB sinBcosA sinC -=, C A B sinC sin A B π=-+⇒=+()(),, ∴35sinAcosB sinBcosA sinAcosB cosAsinB -=+(),整理,得4sinAcosB sinBcosA =,同除以cosAcosB , 得4tanA tanB = , 由此可得23311144tanA tanB tanBtan A B tanAtanB tan BtanB tanB(),--===+++A B 、 是三角形内角,且tan A 与tanB 同号,A B ∴、 都是锐角,即00tanA tanB >,>,144tanB tanB +≥= 33144tan A B tanB tanB-=≤+(),当且仅当14tanB tanB =,即12tanB = 时,tan A B -()的最大值为34.故选B .23.已知△ABC 的三边分别为a ,b ,c ,若满足a 2+b 2+2c 2=8,则△ABC 面积的最大值为( )A .5B .5C .5D .3【解析】因为a 2+b 2+2c 2=8,所以22282a b c +=-,由余弦定理得222283cos 22a b c c C ab ab+--==,即22cos 83ab C c =-① 由正弦定理得in 12s S ab C =,即2sin 4ab C S =② 由①,②平方相加得()()()()()222222222483482ab c S abc =-+≤+=-,所以()()()()2222222222116556448283165525c c S c c c c ⎛⎫-+≤---=-≤= ⎪⎝⎭,即245S ≤,所以5S ≤, 当且仅当22a b =且221655c c -=即222128,55a b c ===时,取等号. 故选:B24.已知G 是ABC 的重心,过点G 作直线MN 与AB ,AC 交于点,M N ,且AM xAB =,AN y AC =,(),0x y >,则3x y +的最小值是( )A .83B .72C .52D .433+ 【解析】因为,,M G N 三点共线,故()1AG t AM t AN =+-,因为,AM x AB AN y AC ==,所以()1AG txAB t yAC =+-,又G 为重心,故1331AG AB AC =+,而,AB AC 不共线,所以()11,133tx t y =-=,也即是113x y +=.()1111333433y x x y x y x y x y ⎡⎤⎛⎫⎛⎫+=++=++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦,由基本不等式可以得到:3y x x y +≥13x y ==+等号成立,故3x y +的最小值为433+,故选D .25.已知O 是ABC 的外心,45C ∠=︒,2,(,)OC mOA nOB m n R =+∈,则2214m n +的最小值为____.【解析】()2222222244OC mOA nOB OC mOA nOBm OA n OB mnOA OB =+∴=+=++⋅90045C AOB OA OB ∠=︒∴∠=︒∴⋅=故2241m n +=()2222222222414141644816m n n m m n mn m n ⎛⎫+=+=+++≥= ⎪⎭+⎝ 当222216n m m n=即2211,28n m ==时等号成立,故答案为:1626.在锐角三角形ABC 中,角,,A B C 的对边分别为,,a b c ,若224sin 6b c bc A π⎛⎫+=+⎪⎝⎭,则tan tan tan A B C ++的最小值是______.【解析】由余弦定理,得2222cos b c a bc A +=+,则由224sin 6b c bc A π⎛⎫+=+⎪⎝⎭,得22cos 4sin 2cos )6a bc A bc A bc A A π⎛⎫+=+=+ ⎪⎝⎭,所以2sin a A =,由正弦定理,得2sin sin sin A B C A =⋅⋅,所以sin sin A B C =,所以sin()sin B C B C +=,sin cos cos sin sin B C B C B C +=,tan tan tan B C B C +=.因为tan tan tan tan()tan tan 1B CA B C B C +=-+=-,所以tan tan tan tan tan tan A B C A B C ++=⋅⋅,则tan tan tan tan tan tan tan tan tan tan tan 1B C A B C B C B C B C +++=⋅⋅=⋅-.令tan tan 1B C m ⋅-=,而tan tan tan tan 1,0tan tan B CB C m A A⋅-=+∴> 则tan tan 1B C m ⋅=+,)221tan tan tan m m A B C m++++==1223(22)m m m ⎫=++=⎪⎭当且仅当1m =时,等号成立,故tan tan tan A B C ++的最小值为27.已知ABC ∆的内角,,A B C 所对边分别为,,a b c ,且3cos cos 5a C c Ab -=,则tan()A C -的最大值为______. 【解析】因为3cos cos 5a Cc A b -=,由正弦定理得3sin cos sin cos sin 5A C C AB -=, 又()B AC π=-+,所以3sin cos sin cos sin[()]5A C C A A C -=-+π, 即3sin cos sin cos sin()5A C C A A C -=+, 所以5sin cos 5sin cos 3sin cos 3cos sin A C C A A C A C -=+,所以2sin cos 8cos sin A C A C =,当cos 0C ≤或cos 0A ≤时,等式不成立,所以,(0,)2A C π∈, 所以tan 4tan A C =, 所以2tan tan 3tan 3tan()11tan tan 14tan 4tan tan A C C A C A C C C C--===+++ 又tan 0C >,所以14tan tan C C +≥, 当且仅当14tan tan C C =,即1tan 2C =时,等号成立, 所以33tan()144tan tan A C C C -=≤+, 所以tan()A C -的最大值为34.28.已知ABC ∆的三个内角,,A B C 的对边分别为,,,a b c 且满足0,cos cos a b A B++=则2sin 2tan B C ⋅的取值范围是__________.【解析】0cos cos a b A B+=,即cos cos cos 0a B b A A +=,即sin cos sin cos cos 0A B B A C A ++=,()sin 10C A =,sin 0C ≠,故10A =,34A π=,故4B C π+=. ()()222222222cos 11cos sin 1sin 2tan cos 232cos cos cos cos C C C B C C C C C C --⎛⎫⋅=⋅==-+ ⎪⎝⎭, 0,4C π⎛⎫∈ ⎪⎝⎭,故21cos ,12t C ⎛⎫=∈ ⎪⎝⎭,故132y t t ⎛⎫=-+ ⎪⎝⎭,根据双勾函数性质知:函数在1,22⎛ ⎝⎭上单调递增,在2⎫⎪⎢⎪⎣⎭上单调递减.故max 3y =-,当1t =时,0y = ,当12t =时,0y =,故(2sin 2tan 0,3B C ⋅∈-.故答案为:(0,3-.九、不等式与恒成立问题29.正数,a b 满足191a b+=,若不等式2418a b x x m +≥-++-对任意实数x 恒成立,则实数m 的取值范围是( )A .[3,)+∞B .(,3]-∞C .(,6]-∞D .[6,)+∞ 【解析】190,0,1a b a b>>+=,199()1010216b a b a b a b a b a b a ⎛⎫∴+=++=+++= ⎪⎝⎭当且仅当3a b =,即4, 12a b ==时,“=”成立,若不等式2418a b x x m +≥-++-对任意实数x 恒成立,则241816x x m -++-≤, 即242x x m -++≤对任意实数x 恒成立,2242(2)66x x x -++=--+≤ 6m ∴≥ 实数m 的取值范围是[6,)+∞30.数列{}n a 中,112a =,()()()*111n n n na a n n na +=∈++N ,若不等式()24110n n a n nλ++-≥恒成立,则实数λ的取值范围为__________. 【解析】由数列{} n a 满足112a =,1()(1)(1)x n n nna a n N n na +=∈++, 两边取倒数可得:1111(1)n n n a na +-=+,∴数列1n na ⎧⎫⎨⎬⎩⎭是等差数列, 公差为1, 首项为2 12(1)1n n n na ∴=+-=+,1(1)n a n n =+∴ 由241(1)0n n a n nλ++-恒成立,得221414(1)(1)n n n n n n n λ---⋅--=+, 当 n 为偶数时,(1)(4)4(5)n n n n nλ-++=-++, 则9λ≥-,当n 为奇数时,45n n λ++,则283λ ,∴实数λ的取值范围为289,3⎡⎤-⎢⎥⎣⎦。
高考专题训练二十二三角函数、平面向量、立体几何、概率与统计型解答题班级_______ 姓名_______ 时间:45分钟 分值:50分 总得分________1.(12分)(2011·广东卷)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6,x ∈R. (1)求f ⎝ ⎛⎭⎪⎫5π4的值;(2)设α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫3α+π2=1013,f (3β+2π)=65,求cos(α+β)的值.分析:本题考查运用三角公式化简求值.(1)f (x )的解析式已给出,求f ⎝ ⎛⎭⎪⎫5π4即可;(2)先化简f ⎝ ⎛⎭⎪⎫3α+π2=1013,f (3β+2π)=65,再结合α,β∈⎣⎢⎡⎦⎥⎤0,π2求cos α与sin β,代入即得cos(α+β)的值. 解:(1)∵f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6, ∴f ⎝ ⎛⎭⎪⎫5π4=2sin ⎝ ⎛⎭⎪⎫5π12-π6=2sin π4= 2. (2)∵α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫3α+π2=1013,f (3β+2π)=65,∴2sin α=1013,2sin ⎝ ⎛⎭⎪⎫β+π2=65,即sin α=513,cos β=35,∴cos α=1213,sin β=45,∴cos(α+β)=cos αcos β-sin αsin β=1213×35-513×45=1665.2.(12分)(2011·重庆卷)如图,在四面体ABCD 中,平面ABC ⊥平面ACD ,AB ⊥BC ,AD =CD ,∠CAD=30°.(1)若AD =2,AB =2BC ,求四面体ABCD 的体积;(2)若二面角C -AB -D 为60°,求异面直线AD 与BC 所成角的余弦值.分析:本小题主要考查面面垂直的性质、四面体的体积计算公式、二面角的意义与异面直线所成的角的意义及求法.在具体处理过程中,可围绕线面垂直的性质定理去考虑,从而添加相关的辅助线,由此求得相关几何体的体积;在求异面直线所成的角的过程中,注意根据异面直线所成角的意义,考虑平移其中一条或两条直线,从而将问题转化为求两条相交直线的夹角问题.也可考虑通过建立坐标系的方式解决相关问题.解:(1)如图所示,设F 为AC 中点,连接FD ,由于AD =CD ,所以DF ⊥AC .又由平面ABC ⊥平面ACD ,知DF ⊥平面ABC ,即DF 是四面体ABCD 的面ABC 上的高,且DF =AD sin30°=1,AF =AD cos30°= 3.在Rt △ABC 中,因AC =2AF =23,AB =2BC ,由勾股定理易知BC =2155,AB =4155.故四面体ABCD 的体积V =13·S △ABC ·DF =13×12×4155×2155=45.(2)解法一:如图所示,设G ,H 分别与边CD ,BD 的中点,则FG ∥AD ,GH ∥BC ,从而∠FGH 是异面直线AD 与BC 所成的角或其补角.设E 为边AB 的中点,则EF ∥BC ,由AB ⊥BC ,知EF ⊥AB .又由(1)知DF ⊥平面ABC ,故由三垂线定理知DE ⊥AB .所以∠DEF 为二面角C -AB -D 的平面角.由题设知 ∠DEF =60°.设AD =a ,则DF =AD ·sin ∠CAD =a2.在Rt △DEF 中,EF =DF ·cot ∠DEF =a 2·33=36a ,从而GH =12BC =EF =36a .因Rt △ADE ≌△BDE ,故BD =AD =a , 从而,在Rt △BDF 中,FH =12BD =a 2.又FG =12AD =a 2,从而在△FGH 中,因FG =FH ,由余弦定理得cos ∠FGH =FG 2+GH 2-FH 22FG ·GH =GH 2FG =36.因此,异面直线AD 与BC 所成角的余弦值为36.解法二:如图所示,过F 作FM ⊥AC ,交AB 于M ,已知AD =CD ,平面ABC ⊥平面ACD ,易知FC ,FD ,FM 两两垂直.以F 为原点,射线FM ,FC ,FD 分别为x 轴,y 轴,z 轴的正半轴,建立空间直角坐标系F -xyz .不妨设AD =2,由CD =AD ,∠CAD =30°,易知点A ,C ,D 的坐标分别为A (0,-3,0),C (0,3,0),D (0,0,1),则AD →=(0,3,1).显然向量k =(0,0,1)是平面ABC 的一个法向量.已知二面角C -AB -D 为60°,故可取平面ABD 的一个单位法向量n =(l ,m ,n ),使得〈n ,k 〉=60°,从而n =12.由n ⊥AD →,有3m +n =0,从而m =-36.由l 2+m 2+n 2=1,得l =±63.设点B 的坐标为B (x ,y,0),由AB →⊥BC →,n ⊥AB →,取l =63,有⎩⎨⎧x 2+y 2=3,63x -36(y +3)=0,解之得,⎩⎨⎧x =469,y =739或⎩⎪⎨⎪⎧x =0,y =-3(舍去). 易知l =-63与坐标系的建立方式不合,舍去.因此点B 的坐标为⎝ ⎛⎭⎪⎫469,739,0.所以CB →=⎝ ⎛⎭⎪⎫469,-239,0.从而cos 〈AD →,CB →〉=AD →·CB →|AD →||CB →|=3×⎝ ⎛⎭⎪⎫-2393+1×⎝ ⎛⎭⎪⎫4692+⎝ ⎛⎭⎪⎫-2392=-36.故异面直线AD 与BC 所成的角的余弦值为36.3.(13分)(2011·浙江卷)如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得二面角A -MC -B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由.分析:此题主要考查了线线位置关系和二面角的求解,对(1)问线线垂直的证明易入手,利用线面垂直即可进行证明;对(2)问可采用空间直角坐标向量法进行处理;解题时对(2)问要注意恰当建立坐标系,恰当设参数,从而有效快速求解.解:方法一:(1)如图,以O 为原点,以射线OP 为z 轴的正半轴,建立空间直角坐标系O -xyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4). BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ), AC →=(-4,5,0),BC →=(-8,0,0). 设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎨⎧x 1=0,z 1=2+3λ4-4λ1,可取n 1=⎝⎛⎭⎪⎫0,1,2+3λ4-4λ. 由⎩⎪⎨⎪⎧ AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3).由n 1·n 2=0,得4-3·2+3λ4-4λ0,解得λ=25,故AM =3.综上所述,存在点M 符合题意,AM =3.方法二:(1)由AB =AC ,D 是BC 的中点,得AD ⊥BC . 又PO ⊥平面ABC ,得PO ⊥BC .因为PO ∩AD =O ,所以BC ⊥平面PAD , 故BC ⊥PA .(2)如图,在平面PAB 内作BM ⊥PA于M ,连接CM .由(1)中知PA ⊥BC ,得AP ⊥平面BMC .又AP ⊂平面APC ,所以平面BMC ⊥平面APC .在Rt △ADB 中,AB 2=AD 2+BD 2=41,得AB =41.在Rt △POD 中,PD 2=PO 2+OD 2, 在Rt △PDB 中,PB 2=PD 2+BD 2, 所以PB 2=PO 2+OD 2+DB 2=36,得PB =6. 在Rt △POA 中,PA 2=AO 2+OP 2=25,得PA =5. 又cos ∠BPA =PA 2+PB 2-AB 22PA ·PB =13,从而PM =PB cos ∠BPA =2,所以AM =PA -PM =3. 综上所述,存在点M 符合题意,AM =3.4.(13分)(2011·天津)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球,2个黑球,乙箱子里装有1个白球,2个黑球, 这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱).(1)求在1次游戏中; (ⅰ)摸出3个白球的概率; (ⅱ)获奖的概率;(2)求在2次游戏中获奖次数X 的分布列及数学期望E (X ). 解:(1)(ⅰ)设“在1次游戏中摸出i 个白球”为事件A i =(i =0,1,2,3),则P (A 3)=C 23C 25·C 12C 23=15.(ⅱ)设“在1次游戏中获奖”为事件B ,则B =A 2∪A 3.又P (A 2)=C 23C 25·C 22C 23+C 13C 12C 25·C 12C 23=12. 且A 2,A 3互斥,所以P (B )=P (A 2)+P (A 3)=12+15=710.(2)由题意可知X 的所有可能取值为0,1,2.P (X =0)=⎝ ⎛⎭⎪⎫1-7102=9100.P (X =1)=C 12710⎝ ⎛⎭⎪⎫1-710=2150. P (X =2)=⎝ ⎛⎭⎪⎫7102=49100. 所以X 的分布列是X 的数学期望E (X )=0×9100+1×2150+2×49100=75.。
高中数学练习题基础一、集合与函数(1) A = {x | x是小于5的自然数}(2) B = {x | x² 3x + 2 = 0}(1) 若A∩B = ∅,则A∪B = A(2) 对于任意实数集R,有R⊆R(1) f(x) = √(x² 5x + 6)(2) g(x) = 1 / (x² 4)(1) f(x) = x³ 3x(2) g(x) = |x| 2二、三角函数(1) sin 45°(2) cos 60°(3) tan 30°2. 已知sin α = 1/2,α为第二象限角,求cos α的值。
(1) y = sin(2x + π/3)(2) y = cos(3x π/4)三、数列(1) an = n² + 1(2) bn = 2^n 1(1) 2, 4, 8, 16, 32, …(2) 1, 3, 6, 10, 15, …(1) 1, 4, 9, 16, 25, …四、平面向量1. 已知向量a = (2, 3),求向量a的模。
2. 计算向量a = (4, 5)与向量b = (3, 2)的数量积。
(1) a = (2, 1),b = (4, 2)(2) a = (1, 3),b = (2, 1)五、平面解析几何(1) 经过点(2, 3)且斜率为2的直线(2) 经过点(1, 3)且垂直于x轴的直线(1) 圆心在原点,半径为3的圆(2) 圆心在点(2, 1),半径为√5的圆(1) 点(1, 2)到直线y = 3x 1的距离(2) 点(2, 3)到直线2x + 4y + 6 = 0的距离六、立体几何(1) 正方体边长为2(2) 长方体长、宽、高分别为3、4、52. 已知正四面体棱长为a,求其体积。
(1) 正方体A边长为2,正方体B边长为4(2) 长方体A长、宽、高分别为3、4、5,长方体B长、宽、高分别为6、8、10七、概率与统计1. 抛掷一枚硬币10次,求恰好出现5次正面的概率。
全国乙卷数学试题及解析2021一、试题概述全国乙卷数学试题2021年以考查基础知识和基本技能为主,同时注重考查考生的数学思维能力和水平。
试题涵盖了函数、数列、三角函数、平面向量、不等式、解析几何、立体几何等多个知识点,题型丰富多样,难度适中。
二、试题具体内容1. 选择题:试题涵盖了多个基础知识点,如函数图像、方程根、三角函数性质等。
题目难度适中,注重考查考生对基础知识的掌握情况。
2. 填空题:填空题主要考查考生对数学概念、公式、定理的理解和运用。
题目难度适中,注重考查考生的解题思路和技巧。
3. 解答题:解答题主要考查考生的综合应用能力,包括解三角形、数列求和、函数单调性证明、导数应用、圆锥曲线问题等。
题目难度中等偏难,需要考生具备一定的数学思维和解题能力。
三、试题解析以下为部分试题解析:1. 选择题第1题:函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(x)在x=0处取得极值。
求证:在(0,1)内至少存在一个点ξ,使得f’(ξ)=0。
解析:根据极值的定义,函数f(x)在区间内取得极值的条件是函数在该区间内至少存在两个不同的点ξ,使得在该点处的导数为0。
因此,我们可以通过构造辅助函数,利用导数性质证明该结论。
2. 填空题第8题:已知数列{an}的前n项和Sn满足:a1=2,a2=4,a(n+2)=4an+2(n≥2)。
求证:数列{a(n+1)+2}是等比数列。
解析:根据题意,可得到递推关系式Sn-S(n-1)=4an+2,化简得S(n+1)-Sn=4a(n+1),从而得到Sn+2=(a(n+1)+2)·3/2,从而证明了{a(n+1)+2}是等比数列。
四、备考建议针对本次试题,考生在备考时应注意以下几点:1. 夯实基础,注重对基础知识的理解和运用;2. 强化解题技巧和方法,提高解题速度和准确度;3. 加强综合应用能力的培养,提高解决实际问题的能力;4. 注重平时积累,多做习题,积累解题经验。
全国甲卷2023高考理科数学试卷全国甲卷2023高考理科数学试卷(含答案)新高考数学各知识点所占比如下:一、分数占比1、集合5分2、三大函数5分3、立体几何初步12分+5分4、平面几何初步5分+12分5、算法初步5分6、统计5分7、概率5分+12分8、三角函数恒等变换5分+5分+12分9、平面向量5分10、解三角形5分+12分11、数列5分+12分12、不等式5分+12分13、常用逻辑用语5分14、圆锥曲线与方程5分+12分15、空间向量与立体几何5分+12分16、导数及应用5分+12分17、推理与证明12分18、数系扩充与复数的引入5分19、计数原理5分20、坐标系与参数方程10分二、题型1、选择+填空(8题单选+4题多选+4题填空)16道,每道5分,共80分。
占总分的大半。
送分题、基础题较多,以书上性质、公式的运用为主。
2、集合、复数:默认送分题。
平面向量:能建系尽量建系做。
计数原理:以二次项定理与分配问题居多。
统计与概率:可能会在读题上挖坑。
其他:命题、各章基本概念、计算(不等式或者比大小)3、中高档题会以几何或函数为主,可能会考新定义题。
几何:解三角形、立体几何、解析几何。
函数:函数(指对幂、正余切)的性质(单调奇偶对称周期)与图像(识别和变换)、简单求导、构造函数(常见于指对数比大小)。
4、新定义题:近年来高考的趋势,题干给出一个新的定义(高中课本里没学过的),然后让你利用其解题。
难度一般都不会太大,只要严格按照题干描述一步一步做就行。
高考数学为什么这么重要?数学是最好得分的科目,同时数学又是高考成败的关键。
多少学子因为数学成绩而走向不同的大学。
从某种意义上讲,高一高二的基础很重要,高一高二有没有“弄懂”将在很大程度上影响高三复习的进度,如果基础打得牢,高三可以向更高的层次冲一把,如果自认为基础有些薄弱,也不是完全没办法,一轮复习将在很大程度上弥补以前的弱势。
首先建议看看自己来年参加的考试的试卷题型分布,在复习方面,进入高三,哪些知识点只属于识记和基础理解层次,哪些知识点属于重难点。
《平面向量》学法指导向量是近代数学中重要和基本的概念之一,有着极其丰富的数学和物理背景;同时它也是沟通代数、几何与三角函数的一种工具,在表述和解决相关问题中有着重要应用。
在本模块的学习中,我们首先将了解向量丰富的数学背景(有向线段)和物理背景(位移、速度、力和做功)。
有向线段具有长度和方向,向量也具有大小和方向,两者的几何特征是完全一致的,因此我们常用有向线段来表示..一个向量。
向量也是对物理学中的矢量的进一步抽象,因此我们在学习中可以将向量和矢量对照学习,尤其是向量的正交分解、加减、数乘与数量积运算。
向量的运算的学习要从一些实例开始,如从位移的合成引入向量的加法(减法),从速度的倍数引入数乘向量,从“做功”引入向量的数量积。
同时我们要注意充分利用几何图形语言,从图形直观上获得解题的思路甚至直接获得解法。
在学习中我们要注意到利用向量法解决有关几何问题、力学问题和其它一些实际问题,如距离、角度等的计算以及各种空间关系如垂直、平行等的论证,发展学生的运算能力和解决实际问题的能力。
由22a a = 可知,222222121()()a a x y x x y y ==+=-+- ,此即求距离和线段长度的向量法 ;由cos a b a b θ∙=∙∙ (θ为向量,a b 夹角),知θcos =121222221212,x x y y a b a b x x y y +∙=++ 利用这个公式可以求已知方向向量的两条直线的夹角; 求两条直线夹角常见如已知两条直线方程,则可由方程求出方向向量进而求夹角;再如,判断两条直线的位置关系,求直线方程,求符合某些条件的曲线方程等,均可利用向量法进行;另外,由于空间向量是平面的自然推广,由于向量的平移不变性,每两个空间向量均可视为两个平面向量,所以在立体几何中模块中,对向量的应用将更加广泛,对空间垂直、平行关系的判断与证明、对空间角度与距离的求解等利用向量均有很好的解法。
解析几何和数列综合练习1.在平面直角坐标系xOy 中,点()(),0P a b a b >>为动点,1F 、2F 分别为椭圆22221x y a b+=的左、右焦点.已知11PF F ∆为等腰三角形.(1)求椭圆的离心率e ;(2)设直线2PF 与椭圆相交于A 、B 两点,M 是直线2PF 上的点,满足2AM BM ⋅=-,求点M 的轨迹方程.【答案】(1)12e =;(2)218150x --=. 【解析】试题分析:(1)先利用平面向量的数量积确定12F PF ∠为钝角,从而得到当12PF F ∆时,必有212F F F P =,根据两点间的距离公式列有关a 、b 、c 的方程,求出a 与c 之间的等量关系,从而求出离心率的值;(2)先求出直线2PF 的方程,与椭圆方程联立求出交点A 、B 的坐标,利用2AM BM ⋅=-以及P 、M 、2F 三点共线列方程组消去c ,从而得出点M 的轨迹方程.试题解析:(1)设椭圆22221x y a b+=的焦距为2c ,则c =()1,0F c -,()2,0F c ,()()()21,0,02,0F F c c c =--=- ,()()()2,,0,F P a b c a c b =-=-, ()21220F F F P c a c ∴⋅=-⋅-<,所以12F F P ∠为钝角,由于12PF F ∆为等腰三角形,212F F F P ∴=,2c ∴=,即()2224a c b c -+=,即()()22224a c a c c -+-=,整理得2220c ac a +-=,即()()20c a c a -+=,由于0a c >>,故有122c c a e a =⇒==,即椭圆的离心率为12; (2)易知点P的坐标为()2c ,则直线2PF的斜率为k ==故直线2PF的方程为)y x c =-,由于2a c =,b ==,故椭圆的方程为2222143x y c c+=,即22243x y c +=, 将直线2PF 的方程代入椭圆方程并化简得2580x cx -=,解得85cx =或0x =,于是得到点85c A ⎛⎝⎭,()0,B , (2)设点M 的坐标为(),x y ,由于点M 在直线2PF 上,所以)3y x c c x y =-⇒=-, ()88,,,5555c c AM x y x y ⎛⎫⎛⎫=-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,()()()(),0,,BM x y x y x =-=+=,8255c AM BM x x y ⎛⎫⎛⎫⋅=-⋅+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭ ,即825x x y x y x y ⎡⎤⎡⎤⎛⎫⎛⎫-⋅+=-⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,整理得218150x --=,即点M的轨迹方程为218150x --=. 考点:1.椭圆的方程;2.两点间的距离;3.平面向量的数量积;4.动点的轨迹方程2.如图,F 1,F 2C :22221x y a b +=(a >b >0)的左、右焦点,直线l :x =-12将线段F 1F 2分成两段,其长度之比为1:3.设A ,B 是C 上的两个动点,线段AB的中垂线与C 交于P ,Q 两点,线段AB 的中点M 在直线l 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)求22F P F Q ⋅的取值范围.【答案】(Ⅰ)2212x y +=; (Ⅱ)[1-,125232). 【解析】试题分析:(Ⅰ)由题意比例关系先求c ,再由离心率求a ,从而可求椭圆的方程;(Ⅱ)分直线AB 斜率是否存在两种情况讨论:(1)当直线AB 垂直于x 轴时,易求;(2)当直线AB 不垂直于x 轴时,先设直线AB 的斜率,点M 、A 、B 的坐标,把点A 、B 坐标代入椭圆方程求k 、m 之间的关系,再求PQ 直线方程,然后与椭圆方程联立方程组,由韦达定理求22F P F Q ⋅的表达式,最后求其范围.试题解析:(Ⅰ) 设F 2(c ,0),则1212c c -+=13,所以c =1. 因为离心率e2,所以a所以椭圆C 的方程为2212x y +=. 6分(Ⅱ)当直线AB 垂直于x 轴时,直线AB 方程为x =-12,此时P(2-,0)、Q(2,0)221F P F Q ⋅=-.当直线AB 不垂直于x 轴时,设直线AB 的斜率为k ,M(-12,m) (m ≠0),A(x 1,y 1),B(x 2,y 2).由 221122221,21,2x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 得(x 1+x 2)+2(y 1+y 2)1212y y x x -⋅-=0,则-1+4mk =0,故k =14m .此时,直线PQ 斜率为m k 41-=,PQ 的直线方程为)21(4+-=-x m m y .即m mx y --=4.联立⎪⎩⎪⎨⎧=+--=12422y x m mx y 消去y ,整理得2222(321)16220m x m x m +++-=. 所以212216321m x x m +=-+,212222321m x x m -=+. 于是=⋅F F 22(x 1-1)(x 2-1)+y 1y 2)4)(4(1)(212121m mx m mx x x x x +++++-=22122121))(14()161(m x x m x x m +++-++=2222222(116)(22)(41)(16)1321321m m m m m m m +---=+++++22191321m m -=+. 令t =1+32m 2,1<t <29,则tF F 3251321922-=⋅. 又1<t <29,所以221251232F P F Q -<⋅< .综上,F F 22⋅的取值范围为[1-,125232). 15分考点:1、椭圆的方程及性质;2、直线与椭圆相交的性质;3、向量的坐标运算.3.P 为椭圆2212516x y +=上任意一点,1F 、2F 为左右焦点.如图所示:(1)若1PF 的中点为M ,求证1152MO PF =-;(2)若1260F PF ︒∠=,求12PF PF 的值. 【答案】(1))证明:在12F PF ∆ 中,MO 为中位线21112152222PF a PF PF MO a PF -∴===-=- (2)643【解析】试题分析:(1)由椭圆定义知12210PF PF a +==,则2110PF PF =-,由条件知点O 、M 分别是1PF 、12F F 的中点,所以MO 为12F PF ∆的中位线,则22PF MO =,从而命题得证;(2)根据椭圆定义,在12F PF ∆中有1210PF PF +=,126F F =,又由条件1260F PF ︒∠=,从这些信息中可得到提示,应从余弦定理入手,考虑到22212121212cos 2PF PF F F F PF PF PF +-∠=⋅,所以需将1210PF PF +=两边平方,得2212121002PF PF PF PF +=-,将其代入余弦定理,得到关于12PF PF 的方程,从而可得解.试题解析:(1)证明:在12F PF ∆ 中,MO 为中位线21112152222PF a PF PF MO a PF -∴===-=- 5分 (2)2212121210,1002PF PF PF PF PF PF +=∴+=- ,126F F =在12PF F ∆中,222121212cos 602PF PF F F PF PF ︒+-=⋅,1212100236PF PF PF PF ∴⋅=-⋅-12643PF PF ∴=12分 考点:1.椭圆定义;2.余弦定理.4.如图,已知椭圆C 的方程为()222210x y a b a b +=>>,双曲线12222=-by a x 的两条渐近线为1l 、2l .过椭圆C 的右焦点F 作直线l ,使1l l ⊥,又l 与2l 交于点P ,设l 与椭圆C 的两个交点由上至下依次为A 、B .(1)若1l 与2l 的夹角为60,且双曲线的焦距为4,求椭圆C 的方程; (2)求||||AP FA 的最大值.【答案】(1)2213x y +=;(21. 【解析】试题分析:(1)先确定双曲线的渐近线方程,根据条件两条渐近线的夹角为60,确定a 与b 的等量关系,再结合c 的值,确定a 与b 的值,最终确定椭圆C 的方程;(2)设点A 的坐标为()00,x y ,并设||||FA AP λ=得到FA AP λ= ,利用向量的坐标运算得到()2201c a x c λλ+=+,()01ab y c λλ=+,再由点A 在椭圆C 上这一条件将点A 的坐标代入椭圆方程,通过化简得到λ与离心率e 之间的关系式2222232e e λ⎛⎫=--++ ⎪-⎝⎭,结合基本不等式得到λ的最大值.试题解析:(1)因为双曲线方程为12222=-by a x ,所以双曲线的渐近线方程为x aby ±=. 因为两渐近线的夹角为60且1<ab,所以30POF ∠= .所以a b tan 303== ,所以b a 3=.因为2c =,所以2222=+b a ,所以a =1b =.所以椭圆C 的方程为2213x y +=; (2)因为1l l ⊥,所以直线l 与的方程为()ay x c b=-,其中c = 因为直线2l 的方程为by x a=, 联立直线l 与2l 的方程解得点2,a ab P c c ⎛⎫⎪⎝⎭.设||||FA AP λ=,则FA AP λ= . 因为点(),0F c ,设点()00,A x y ,则有()20000,,a abx c y x y c c λ⎛⎫-=-- ⎪⎝⎭.解得()2201c a x c λλ+=+,()01ab y c λλ=+.因为点()00,A x y 在椭圆22221x y a b+=上,所以()()()()2222222222111c a ab a c b c λλλλ++=++. 即()()222224221c aa a c λλλ++=+.等式两边同除以4a 得()()222221e e λλλ++=+,()0,1e ∈,所以24222222322e e e e e λ-⎛⎫==--++ ⎪--⎝⎭,)2331≤-=-=所以当22222e e-=-,即e =λ1. 故FA AP1.考点:1.双曲线的渐近线方程;2.椭圆的方程;3.三点共线的转化5.如图,直线AB 经过⊙O 上的点C ,并且OA=OB ,CA=CB ,⊙O 交直线OB 于E 、D ,连结EC 、CD.(Ⅰ)求证:直线AB 是⊙O 的切线;(Ⅱ)若tan ∠CED=21,⊙O 的半径为3,求OA 的长. 【答案】(1)详见解析;(2)5OA =【解析】 试题分析:(1)连接OC ,要证明AB 是圆O 的切线,根据切线的判定定理,只需证明OC AB ⊥,因为,OA OB CA CB ==,所以OC AB ⊥;(2)由已知OA OB =,所以求OB 即可,因为圆O 的半径已知,所以求BD 即可,这时需要 寻求线段BD 长的等量关系,或者考虑全等或者考虑相似,由(1)知AB 是圆O 的切线,有弦切角定理可知,BCD E ∠=∠还有公共角B B ∠=∠,所以可判定BCD ∆∽BEC ∆,从而列出关于线段BD 的比例式,从中计算即可.试题解析:(1)连接OC ,因为,OA OB CA CB ==,所以OC AB ⊥,所以AB 是圆O 的切线;(2)因为AB 是圆O 的切线,所以,BCD E ∠=∠又B B ∠=∠,所以BCD ∆∽BEC ∆,BC CE BE BD CD BC ==,所以2()CE BECD BD=,因为DE 是圆O 的直径,所以EC CD ⊥,在ECD ∆中,1tan 2CED ∠=,所以4BE BD =,64BD BD +=,∴2BD =,5OA =. 考点:1、圆的切线的判定;2、三角形的相似;3、弦切角定理.6.如图,设F(-c,0)是椭圆)0(12222>>=+b a by a x 的左焦点,直线l :x =-c a 2与x轴交于P 点,MN 为椭圆的长轴,已知|MN|=8,且|PM|=2|MF|。
专题三立体几何与空间向量专题检测选题明细表知识点·方法A组B组集合与常用逻辑用语 1 2复数9 1平面向量 4 4,13 不等式与线性规划 2 15计数原理与古典概型8 11三角函数11 5,10,16空间几何体3,10,13 4,6,7,9,12空间位置关系5,7,12,14,15 3,8,14,17 立体几何的向量方法6,16 18A组一、选择题1.若集合A={-1,1},B={0,2},则集合{z︱z=x+y,x∈A,y∈B}中的元素的个数为( C )(A)5 (B)4 (C)3 (D)2解析:x=-1,y=0时,z=-1;x=-1,y=2时,z=1;x=1,y=0时,z=1;x=1,y=2时,z=3.故z的值为-1,1,3,共3个元素.2.设a= log2π,b== loπ,c=π-2,则( C )(A)a>b>c (B)b>a>c(C)a>c>b (D)c>b>a解析:因为a= log2π> log22=1,b= loπ< lo1=0,c=π-2∈(0,1),所以a>c>b,故选C.3.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积是( A )(A)1 cm3(B)2 cm3(C)3 cm3(D)6 cm3解析:本题主要考查了三视图的应用,根据三棱锥的体积公式V=××2×1×3=1,所以选A.4.△ABC的三个内角A,B,C所对的边分别为a,b,c,设向量p=(a+c,b),q=(b-a,c-a),若p∥q,则角C的大小为( B )(A)(B)(C)(D)解析:因为p∥q,所以(a+c)(c-a)=b(b-a),即b2+a2-c2=ab.由余弦定理得cos C=,又0<C<π,所以C=.5.已知正四棱锥S ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE,SD所成的角的余弦值为( C )(A)(B) (C) (D)解析:设AC,BD的交点为O,连接EO,则∠AEO为AE,SD所成的角或其补角;设正四棱锥的棱长为a,则AE=a,EO=a,OA=a,所以cos ∠AEO===,故选C.6.在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥平面ABCD,AB=PD=a.点E为侧棱PC的中点,又作DF⊥PB交PB于点F,则PB与平面EFD所成角为( D )(A)30°(B)45°(C)60°(D)90°解析:以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系D xyz,D(0,0,0),P(0,0,a),B(a,a,0),E(0,,),=(a,a,-a),又=(0,,),·=0+-=0,所以PB⊥DE.由已知DF⊥PB,又DF∩DE=D,所以PB⊥平面EFD,所以PB与平面EFD所成角为90°.故选D.7.在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥底面ABCD,M是棱PC上一点.若PA=AC=a,则当△MBD的面积为最小值时,直线AC与平面MBD所成的角为( B )(A)(B)(C)(D)解析:连接AC,BD交于O,在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥底面ABCD,所以PA⊥BD,AC⊥BD,所以BD⊥平面PAC,进一步求出BM=DM,过O点作OM⊥PC于M,当△MBD的面积为最小值,只需OM最小即可,若PA=AC=a,所以∠ACP=即为所求.故选B.二、填空题8.现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.解析:因为这10个数是1,-3,(-3)2,(-3)3,(-3)4,(-3)5,(-3)6,(-3)7,(-3)8,(-3)9,所以它小于8的概率为=.答案:9.已知复数z=a2-1+(a+1)i(a∈R)为纯虚数,则为.解析:因为复数z=a2-1+(a+1)i(a∈R)为纯虚数,所以解得a=1,故z=2i,则=-2i.答案:-2i10.已知三棱锥S ABC的各顶点都在一个表面积为4π的球面上,球心O在AB上,SO⊥平面ABC,AC=,则三棱锥S-ABC的表面积为.解析:因为球的表面积为4π,所以球的半径为R=1,三棱锥S ABC的图形如图所示,由题意及图可知AB=2R=2,SO=AO=BO=CO=1,又SO⊥平面ABC,所以SA=SB=SC=,又AC=,所以BC=,所以△ABC与△ABS均为等腰直角三角形,其面积和为2×1=2,△SAC与△SBC均为等边三角形,其面积和为××=,所以三棱锥的表面积为2+.答案:2+11.方程3sin x=1+cos 2x在区间[0,2π]上的解为.解析:3sin x=1+cos 2x,即3sin x=2-2sin2x,所以2sin2x+3sin x-2=0,解得sin x=或sin x=-2(舍去),所以在区间[0,2π]上的解为或.答案:或12.平面α∥平面β,A,C∈α,B,D∈β,直线AB与CD交于点S,且S位于平面α,β之间,AS=8,BS=6,CS=12,则SD= .解析:根据题意做出图形.因为AB,CD交于S点,所以三点确定一平面,所以设ASC平面为n,于是有n交α于AC,交β于DB,因为α,β平行,所以AC∥DB,所以△ASC∽△BSD,所以=,因为AS=8,BS=6,CS=12,所以=,所以SD=9.答案:913. 如图是正方体的平面展开图,则在这个正方体中①BM与ED平行;②CN 与BE是异面直线;③CN与BM成60°角;④DM与BN是异面直线.以上四个命题中,正确命题的序号是(写出所有你认为正确的命题).解析:把展开图复原成正方体,如图,由正方体的性质,可知:BM与ED是异面直线,所以①是错误的;CN与BE是平行直线,所以②是错误的;从图中连接AN,AC,由于几何体是正方体,所以三角形ANC为等边三角形,所以CN,BE所成的角为60°,所以③是正确的;DM与BN是异面直线,所以④是正确的.答案:③④14. 如图,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AF=AD=a,G是EF的中点,则GB与平面AGC所成角的正弦值为.解析: 因为四边形ABCD是正方形,所以CB⊥AB.因为平面ABCD⊥平面ABEF且交于AB,所以CB⊥平面ABEF.因为AG,GB⊂平面ABEF,所以CB⊥AG,CB⊥BG.又AD=2a,AF=a,四边形ABEF是矩形,G是EF的中点,所以AG=BG=a,AB=2a, 所以AB2=AG2+BG2,所以AG⊥BG,因为BG∩BC=B,所以AG⊥平面CBG,而AG⊂平面AGC,故平面AGC⊥平面BGC,如图.在平面BGC内作BH⊥GC,垂足为H,则BH⊥平面AGC,所以∠BGH是GB与平面AGC所成的角.在Rt△CBG中,BH==a,BG=a,所以sin ∠BGH==.答案:三、解答题15. 如图,直三棱柱ABC A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N 分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)求三棱锥A′-MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h 为高)法一(1)证明:连接AB′,AC′,如图,由已知∠BAC=90°,AB=AC,三棱柱ABC-A′B′C′为直三棱柱,所以M为AB′的中点.又因为N为B′C′的中点,所以MN∥AC′,又MN⊄平面A′ACC′,AC′⊂平面A′ACC′,因此MN∥平面A′ACC′.(2)解:连接BN,如图所示,由题意A′N⊥B′C′,平面A′B′C′∩平面B′BCC′=B′C′,所以A′N⊥平面NBC,又A′N=B′C′=1,故====,法二(1)证明:取A′B′的中点P,连接MP,NP,AB′,如图,而M,N分别为AB′与B′C′的中点,所以MP∥AA′,PN∥A′C′,所以MP∥平面A′ACC′,PN∥平面A′ACC′,又MP∩NP=P,因此平面MPN∥平面A′ACC′,而MN⊂平面MPN,因此MN∥平面A′ACC′.(2)解:=-==.16. (2018·全国Ⅱ卷)如图,在三棱锥P-ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M PA C为30°,求PC与平面PAM所成角的正弦值.(1)证明:因为PA=PC=AC=4,O为AC的中点,所以OP⊥AC,且OP=2.如图,连接OB.因为AB=BC=AC,所以△ABC为等腰直角三角形,且OB⊥AC,OB=AC=2.由OP2+OB2=PB2知PO⊥OB.由OP⊥OB,OP⊥AC,OB∩AC=O,得PO⊥平面ABC.(2)解:如图,以O为坐标原点,的方向为x轴正方向,建立空间直角坐标系O-xyz.由已知得O(0,0,0),B(2,0,0),A(0,-2,0),C(0,2,0),P(0,0,2),=(0,2, 2).取平面PAC的一个法向量=(2,0,0).设M(a,2-a,0)(0≤a≤2),则=(a,4-a,0).设平面PAM的法向量为n=(x,y,z).由·n=0,·n=0得可取y=a,得平面PAM的一个法向量为n=((a-4),a,-a),所以cos<,n>=.由已知可得︱cos<,n>︱=cos 30°=,所以=,解得a=-4(舍去)或a=.所以n=(-,,-).又=(0,2,-2),所以cos<,n>=,所以PC与平面PAM所成角的正弦值为.B组一、选择题1.若复数z=1+i(i为虚数单位),是z的共轭复数,则z2+的虚部为( A )(A)0 (B)-1 (C)1 (D)-2解析:法一由z=1+i知=1-i,z2+=(1+i)2+(1-i)2=2i+(-2i)=0,其虚部为0.故应选A.法二由z=1+i知=1-i,z2+=(z+)2-2z=4-4=0,其虚部为0.故应选A.2.已知集合A={1,2,3,4,5},B={(x,y)︱x∈A,y∈A,x-y∈A},则B中所含元素的个数为( D )(A)3 (B)6 (C)8 (D)10解析:因为A={1,2,3,4,5},x,y∈A,x-y∈A,所以所以B中共10个元素,选D.3.(2017·湖州、衢州、丽水三市高三4月联考)已知平面α与两条不重合的直线a,b,则“a⊥α,且b⊥α”是“a∥b”的( A )(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件解析:已知平面α与两条不重合的直线a,b,如果a⊥α,且b⊥α,那么根据直线与平面垂直的性质定理,可得a∥b,充分性成立;反之,如果a∥b,那么不能推断a⊥α,且b⊥α,必要性不成立,即“a⊥α,且b⊥α”是“a∥b”的充分不必要条件.故选A.4.对任意向量a,b,下列关系式中不恒成立的是( B )(A)︱a·b︱≤︱a︱︱b︱ (B)︱a-b︱≤︱︱a︱-︱b︱︱(C)(a+b)2=︱a+b︱2 (D)(a+b)(a-b)=a2-b2解析:因为︱a·b︱=︱a︱︱b︱︱cos <a,b>︱≤︱a︱︱b︱,所以选项A 正确;当a与b方向相反时,︱a-b︱≤︱︱a︱-︱b︱︱不成立,所以选项B 错误;向量的平方等于向量的模的平方,所以选项C正确;(a+b)(a-b)=a2-b2,所以选项D正确.故选B.5.在△ABC中,BC边上的中线AD长为3,且cos B=,cos∠ADC=-,则边AC长为( A )(A)4 (B)16 (C)(D)解析:如图,因为∠ADC与∠ADB互补,所以当cos∠ADC=-时,cos∠ADB=,则sin∠ADB==,又cos B=,则sin B=,所以sin∠BAD=sin(π-∠B-∠ADB)=sin(∠B+∠ADB)=sin Bcos∠ADB+cos Bsin∠ADB=×+×=,在△BAD中,由正弦定理得:=,从而BD=2,所以CD=2,在△ADC中,由余弦定理得:AC2=9+4-2×3×2×(-)=16,所以AC=4.故选A.6. 如图,四面体ABCD中,AB=DC=1,BD=,AD=BC=,二面角A BD C的平面角的大小为60°,E,F分别是BC,AD的中点,则异面直线EF与AC所成的角的余弦值是( B )(A)(B) (C) (D)解析:取DC的中点为G,连EG,FG,则EG=BD=,FG=AC=,易知EF=,则∠EFG=θ就是异面直线EF与AC所成的角,故在△EFG中,cos θ==,故选B.7.如图,在矩形ABCD中,AB=2,AD=3,点E为AD的中点,现分别沿BE,CE将△ABE,△DCE翻折,使得点A,D重合于F,此时二面角E BC F的余弦值为( B )(A)(B) (C)(D)解析: 如图所示,取BC中点P,连接EP,FP,由题意得BF=CF=2,所以PF⊥BC,又因为EB=EC==,所以EP⊥BC,所以∠EPF即为二面角E BC F的平面角,而FP==,在△EPF中,cos ∠EPF===,故选B.8.在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则( A )(A)平面α与平面β垂直(B)平面α与平面β所成的(锐)二面角为45°(C)平面α与平面β平行(D)平面α与平面β所成的(锐)二面角为60°解析:设P1=fα(P),P2=fβ(P),则PP1⊥α,P1Q1⊥β,PP2⊥β,P2Q2⊥α.若α∥β,则P1与Q2重合、P2与Q1重合,所以PQ1≠PQ2,所以α与β相交.设α∩β=l,由PP1∥P2Q2,所以P,P1,P2,Q2四点共面,同理,P,P1,P2,Q1四点共面.所以P,P1,P2,Q1,Q2五点共面,且α与β的交线l垂直于此平面.又因为PQ1=PQ2,所以Q1,Q2重合且在l上,四边形PP1Q1P2为矩形.那么∠P1Q1P2=为二面角αlβ的平面角,所以α⊥β.故选A.二、填空题9.某几何体的三视图如图所示,则此几何体的表面积是,体积是.解析:由三视图可得该几何体的直观图如图所示.该几何体是一个四棱锥A-CDEF和一个三棱锥F-ABC构成的组合体,底面直角梯形ABCD的面积为6,侧面CDEF的面积为4,侧面ABF的面积为2,侧面BCF的面积为2,侧面ADE的面积为4,侧面AEF的面积为2,所以这个几何体的表面积为16+2+2,四棱锥A-CDEF的底面面积为4,高为4,故体积为×4×4=,三棱锥F-ABC的底面积为2,高为2,故体积为×2×2=,故这个几何体的体积为V=+=.答案:16+2+210.若2sin α-cos α=,则sin α= ,tan (α-)=.解析:2sin α-cos α=⇒4sin 2α-4sin αcos α+cos 2α=5⇒sin 2α+4sin αcos α+4cos 2α=0⇒sin α+2cos α=0,因此sin α=,cos α=-,tan α=-2;tan (α-)==3. 答案: 311.若(x+)(2x-)5的展开式中各项系数的和为2,则该展开式中的常数项为.解析:令x=1,即可得到(x+)(2x-)5的展开式中各项系数的和为1+a=2,所以a=1,(x+)(2x-)5=(x+)(2x-)5,要找其展开式中的常数项,需要找(2x-)5的展开式中的x和,由通项公式得T r+1=(2x)5-r·(-)r=(-1)r·25-r·x5-2r,令5-2r=±1,得到r=2或r=3,所以有80x和-项,分别与和x相乘,再相加,即得该展开式中的常数项为80-40=40.答案:4012. 如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°.沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是.解析:如图,连接BD′,设直线AC与BD′所成的角为θ.O是AC的中点.由已知得AC=,以OB为x轴,OA为y轴,过O与平面ABC 垂直的直线为z轴,建立空间直角坐标系,则A(0,,0),B(,0,0),C(0,-,0).作DH⊥AC于H,连接D′H,翻折过程中,D′H始终与AC垂直,则CH===,则OH=,DH==,因此D′(-cos α,-,sin α)(设∠DHD′=α),则=(-cos α-,-,sin α),与平行的单位向量为n=(0,1,0),所以cos θ=︱cos<,n>︱=︱︱=,所以cos α=-1时,cos θ取得最大值为.答案:13.如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则·= .解析:设AC与BD交于O点,则·=2·==2×32=18.(注意AP⊥BD 有·=)答案:1814. 如图,二面角α-l-β的大小是45°,线段AB⊂α.B∈l,AB与l所成的角为30°.则AB与平面β所成的角的正弦值是.解析:过点A作AO垂直平面β于点O,作AC垂直直线l于点C,连接CO,BO,则∠ACO=45°,∠ABC=30°,∠ABO即为AB与平面β所成的角.设AO=a,则AC=a,AB=2a,所以sin∠ABO===.答案:15.已知正数a,b,c满足:5c-3a≤b≤4c-a,cln b≥a+cln c,则的取值范围是.解析:把5c-3a≤b≤4c-a变形为5·-3≤≤4·-1,所以5·-3≤4·-1,所以0<≤2;所以-3<5·-3≤≤4·-1≤7,①又cln b≥a+cln c,所以c(ln b-ln c)>a,所以ln>-ln.设x=,h(x)=x-ln x(x≥),利用导数可以证明h(x)在(,1)上单调递减,在(1,+∞)上单调递增,所以h(x)≥h(1)=1,故ln≥1,所以≥e,②由①②可得e≤≤7.答案:[e,7]三、解答题16.(2017·江苏卷)已知向量a=(cos x,sin x),b=(3,-),x∈[0,π].(1)若a∥b,求x的值;(2)记f(x)=a·b,求f(x)的最大值和最小值以及对应的x的值.解:(1)因为a=(cos x,sin x),b=(3,-),a∥b,所以-cos x=3sin x.若cos x=0,则sin x=0,与sin2x+cos2x=1矛盾,故cos x≠0.于是tan x=-.又x∈[0,π],所以x=.(2)f(x)=a·b=(cos x,sin x)·(3,-)=3cos x-sin x=2cos (x+). 因为x∈[0,π],所以x+∈[,],从而-1≤cos(x+)≤.于是,当x+=,即x=0时,f(x)取到最大值3;当x+=π,即x=时,f(x)取到最小值-2.17.(2018·宁波期末) 如图,在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,底面ABCD为矩形,E为PA中点,AB=2a,BC=a,PC=PD= a.(1)求证:PC∥平面BDE;(2)求直线AC与平面PAD所成角的正弦值.解:(1)设AC与BD的交点为O,连接EO.因为四边形ABCD为矩形,所以O为AC的中点.在△PAC中,由已知E为PA中点,所以EO∥PC.又EO⊂平面BDE,PC⊄平面BDE,所以PC∥平面BDE.(2)在△PCD中,DC=2a,PC=PD=a,所以DC2=PD2+PC2,即PC⊥PD.因为平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,AD⊥CD,所以AD⊥平面PCD,故AD⊥PC.又因为AD∩PD=D,AD,PD⊂平面PAD,所以PC⊥平面PAD,故∠PAC就是直线AC与平面PAD所成的角.在Rt△PAC中AC=a,PC=a,所以sin ∠PAC===.即直线AC与平面PAD所成角的正弦值为.18. (2017·山东卷)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(1)设P是上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E AG C的大小.解:(1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP.又BP⊂平面ABP,所以BE⊥BP.又∠EBC=120°,所以∠CBP=30°.(2)法一如图①,取的中点H,连接EH,GH,CH. 因为∠EBC=120°,所以四边形BEHC为菱形,所以AE=GE=AC=GC==.取AG的中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG, 所以∠EMC为所求二面角的平面角.又AM=1,所以EM=CM==2.在△BEC中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos 120°=12, 所以EC=2,所以△EMC为等边三角形,故所求的角为60°.法二以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图②所示的空间直角坐标系.由题意得A(0,0,3),E(2,0,0),G(1,,3),C(-1,,0),故=(2,0,-3),=(1,,0),=(2,0,3).设m=(x1,y1,z1)是平面AEG的一个法向量,由可得取z1=2,可得平面AEG的一个法向量m=(3,-,2).设n=(x2,y2,z2)是平面ACG的一个法向量,由可得取z2=-2,可得平面ACG的一个法向量n=(3,-,-2).所以cos<m,n>==.故所求的角为60°.。
滚动过关检测六 集合、常用逻辑用语、不等式、函数与导数、三角函数与解三角形、数列、平面向量与复数、立体几何一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2022·湖南师大附中月考]已知全集U ={x ∈N *|1≤x ≤6},集合A ={1,2,3,5},B ={3,4,5},则A ∩(∁U B )=( )A .{1,6}B .{2,6}C .{1,2}D .{1,2,6}2.[2022·湖北武汉模拟]若复数z 满足i +z z=i +2,则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限3.[2022·山东济宁模拟]“直线m 垂直平面α内的无数条直线”是“m ⊥α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.[2022·广东中山模拟]数列{a n }为等差数列,S n 为其前n 项和,a 4+a 6=10,则S 9=( )A .40B .42C .43D .455.[2022·河北石家庄模拟]函数f (x )=cos (π·x )e x -e-x 的图象大致为( )6.[2022·福建福州模拟]将曲线C 1:y =2sin x 上各点的横坐标缩短到原来的12倍(纵坐标不变),得到的曲线C 2,把C 2向左平移π6个单位长度,得到曲线C 3:y =f (x ),则下列结论正确的是( )A .f (x )的最小正周期为4πB .x =π12是f (x )的一条对称轴C .f (x )在⎝⎛⎭⎫-π3,π6上的最大值为3 D .f (x )在⎝⎛⎭⎫-π3,π6上单调递增 7.[2022·山东师范大学附中月考]已知定义在R 上的函数f (x )=3|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =(log 25),c =f (2m ),则a ,b ,c 的大小关系为( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a8.[2022·辽宁抚顺二中月考]已知四棱锥P ABCD ,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,BC =23,CD =PC =PD =26,若点M 为PC 的中点,则下列说法正确的是( )A .BM ⊥平面PCDB .P A ∥平面MBDC .四棱锥P ABCD 外接球的表面积为44πD .四棱锥M ABCD 的体积为6二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.[2022·江苏如皋模拟]已知函数f (x )=sin ⎝⎛⎭⎫2ωx +π3(ω>0),下列命题正确的是( ) A .函数y =f (x )的初相位为π3B .若函数f (x )的最小正周期为π,则ω=2C .若ω=1,则函数y =f (x )的图象关于直线x =π12对称 D .若函数y =f (x )的图象关于直线x =π12对称,则ω的最小值为1 10.[2022·广东蛇口育才中学月考]已知函数f (x )=11+2x,则( ) A .f (log 23)=14B .f (x )是R 上的减函数C .f (x )的值域为(-∞,1)D .不等式f (1+2x )+f (x )>1的解集为⎝⎛⎭⎫-∞,-13 11.[2022·重庆八中月考]等比数列{a n }的公比为q ,且满足a 1>1,a 1010a 1011>1,(a 1010-1)(a 1011-1)<0.记T n =a 1a 2a 3…a n ,则下列结论正确的是( )A .0<q <1B .a 1010a 1012-1>0C .T n <T 1011D .使T n <1成立的最小自然数n 等于202112.[2022·河北唐山模拟]如图,ABCD 是边长为2的正方形,点E ,F 分别为边BC ,CD 的中点,将△ABE ,△ECF ,△FDA 分别沿AE ,EF ,F A 折起,使B ,C ,D 三点重合于点P ,则( )A .AP ⊥EFB .点P 在平面AEF 内的射影为△AEF 的垂心C .二面角A EF P 的余弦值为13D .若四面体P AEF 的四个顶点在同一个球面上,则该球的表面积是24π三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.[2022·广东顺德一中月考]已知向量a =(1,3),向量b =(3,4),若(a -λb )⊥b ,则λ=________.14.[2022·清华附中月考]若α∈⎝⎛⎭⎫0,π2,cos ⎝⎛⎭⎫α+π3=-45,则sin α=________. 15.[2022·山东潍坊模拟]圆台的上、下底面的圆周都在一个直径为6的球面上,上、下底面半径分别为1和3,则该圆台的体积为________.16.[2022·福建厦门模拟]已知a ,b 为正实数,直线y =2x -a 与曲线y =ln(2x +b )相切,则a 与b 满足的关系式为________.2a +3b的最小值为________. 四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且满足(b -c )2=a 2-bc .(1)求角A 的大小;(2)若a =2,sin C =2sin B ,求△ABC 的面积.18.(12分)如图所示,三棱柱ABC A 1B 1C 1中,AB ⊥BC ,AB =BC =1,BB 1=2,B 1C =3.(1)证明:BC ⊥A 1C ;(2)若A 1C =2,求三棱柱ABC A 1B 1C 1的体积.19.(12分)已知数列{a n }中,a 1=1,前n 项和为S n ,且满足nS n +1-(n +1)S n -32n 2-32n =0.(1)证明:数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,并求{a n }的通项公式; (2)设b n =2n ·a n ,求{b n }的前n 项和T n .20.(12分)[2022·辽宁沈阳模拟]如图,已知正方体ABCD A 1B 1C 1D 1的上底面内有一点E ,点F 为线段AA 1的中点.(1)经过点E 在上底面画一条直线l 与CE 垂直,并说明画出这条线的理由;(2)若A 1E →=2EC 1→,求CE 与平面FB 1D 1所成角的正切值.21.(12分)[2022·山东淄博模拟]在图1所示的平面图形ABCD 中,△ABD 是边长为4的等边三角形,BD 是∠ADC 的平分线,且BD ⊥BC ,M 为AD 的中点,以BM 为折痕将△ABM 折起得到四棱锥A BCDM (如图2).(1)设平面ABC 和ADM 的交线为l ,在四棱锥A BCDM 的棱AC 上求一点N ,使直线BN ∥l ;(2)若二面角A BM D 的大小为60°,求平面ABD 和ACD 所成锐二面角的余弦值.22.(12分)[2021·新高考Ⅱ卷]已知函数f(x)=(x-1)e x-ax2+b.(1)讨论f(x)的单调性;(2)从下面两个条件中选一个,证明:f(x)只有一个零点.①12<a≤e22,b>2a;②0<a<12,b≤2a.。
单元检测卷时间:120分钟 满分:150分一、选择题(共12小题,每小题5分,满分60分)1.如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )[答案] C2.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .y =-x 3,x ∈R B .y =sin x ,x ∈R C .y =x ,x ∈RD .y =(12)x ,x ∈R[解析] B 在其定义域内是奇函数但不是减函数;C 在其定义域内既是奇函数又是增函数;D 在其定义域内不是奇函数,只是减函数;故选A.[答案] A3.若a 、b 、c 为任意向量,m ∈R ,则下列等式不一定成立的是( ) A .(a +b )+c =a +(b +c ) B .(a +b )·c =a ·c +b ·c C .m (a +b )=m a +m bD .(a ·b )·c =a ·(b ·c )[解析] 因为(a ·b )·c =|a |·|b |cos θ·c ,而a ·(b ·c )=|b |·|c |cos θ·a ; 而c 方向与a 方向不一定同向. [答案] D4.函数f (x +1)为偶函数,且x <1时,f (x )=x 2+1, 则x >1时,f (x )的解析式为( ) A .f (x )=x 2-4x +4 B .f (x )=x 2-4x +5 C .f (x )=x 2-4x -5D .f (x )=x 2+4x +5[解析] 因为f (x +1)为偶函数,所以f (-x +1)=f (x +1),即f (x )=f (2-x );当x >1时,2-x <1,此时,f (2-x )=(2-x )2+1,即f (x )=x 2-4x +5.[答案] B5.若l ,m ,n 是互不相同的空间直线,α,β是不重合的平面,则下列命题中为真命题的是( )A .若α∥β,l ⊂α,n ⊂β,则l ∥nB .若α⊥β,l ⊂α,则l ⊥βC .若l ⊥n ,m ⊥n ,则l ∥mD .若l ⊥α,l ∥β,则α⊥β[答案] D6.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =12,则下列结论中错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A -BEF 的体积为定值D .△AEF 的面积与△BEF 的面积相等[答案] D7.圆x 2+y 2-4x -4y +5=0上的点到直线x +y -9=0的最大距离与最小距离的差为( )A. 3B .23C .3 3D .6[解析] 圆x 2+y 2-4x -4y +5=0的标准方程是(x -2)2+(y -2)2=3,圆心(2,2)到直线x +y -9=0的距离|2+2-9|2=552>3,故直线x +y -9=0与圆x 2+y 2-4x -4y +5=0相离,∴圆x 2+y 2-4x -4y +5=0上的点到直线x +y -9=0的最大距离与最小距离的差为直径.[答案] B8.在△ABC 中,M 是BC 的中点,AM =1,点P 在AM 上且满足AP →=2PM →,则P A →·(PB→+PC →)等于( )A .-49B .-43C.43D.49[解析] P A →·(PB →+PC →)=2P A →·PM →=-2|P A →|·|PM →|=-2×23×13=-49.[答案] A9.函数y =sin(2x -π4)的图象向左平移π8个单位,所得的图形对应的函数是( )A .偶函数,但不是奇函数B .奇函数,但不是偶函数C .既是奇函数,又是偶函数D .既不是奇函数,又不是偶函数[解析] y =sin(2x -π4)――→左移π8y =sin[2(x +π8)-π4]=sin2x . ∴函数为奇函数,故选B.10.设a ,b ,c 均为正数,且122a log a =,1212()b log b =,2(2)1c log b =,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c[解析] 如下图:∴a <b <c . [答案] A11.如图,已知A (4,0)、B (0,4),从点P (2,0)射出的光线经直线AB 反向后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )A .210B .6C .3 3D .2 5[解析] 点P 关于y 轴的对称点P ′坐标是(-2,0),设点P 关于直线AB :x +y -4=0的对称点P ″(a ,b )∴⎩⎪⎨⎪⎧b -0a -2×(-1)=-1a +22+b +02-4=0⇒⎩⎪⎨⎪⎧a =4b =2∴光线所经过的路程|P ′P ″|=210. [答案] A12.设直线l ⊂平面α,过平面α外一点A 且与l 、α都成30°角的直线有且只有( ) A .1条B .2条C .3条D .4条[解析] 所求直线在平面α内的射影必与直线l 平行,这样的直线只有两条,选B. [答案] B二、填空题(共4小题,每小题4分,满分16分)13.已知四棱锥P -ABCD 的底面是边长为6的正方形,侧棱P A ⊥底面ABCD ,且P A =8,则该四棱锥的体积是________.14.直线l 经过P (1,2),且与A (2,3)、B (4,-5)距离相等,则直线l 的方程为________. [解析] (1)当A 、B 两点在直线l 的同侧时,直线l 平行于直线AB 故直线l 的方程是y -2=k AB (x -1),即4x +y -6=0(2)当A 、B 两点在直线l 的异侧时,直线l 过AB 的中点(3,-1) 故直线l 的方程是y -2-1-2=x -13-1,即3x +2y -7=0.15.cos π5cos 2π5的值是________.[解析] 原式=2sin π5cos π5·cos 2π52sin π5=sin 2π5·cos 2π52sin π5=sin 4π54sin π5=sinπ54sinπ5=14.[答案] 1416.已知向量a 、b 的夹角为45°,且|a |=4,(12a +b )·(2a -3b )=12,则|b |=________;b在a 方向上的投影等于________.[解析] a ·b =|a |·|b |cos <a ,b > =4|b |cos45°=22|b |,又(12a +b )·(2a -3b )=|a |2+12a ·b -3|b |2 =16+2|b |-3|b |2=12, 解得|b |=2或|b |=-232(舍去). b 在a 上的投影为|b |cos <a ,b >=2cos45°=1. [答案] 2 1三、解答题(共6小题,满分74分)17.(本小题满分12分)设不等式2(log 12x )2+9(log 12x )+9≤0的解集为M ,求当x ∈M 时,函数f (x )=(log 2x 2)(log 2x8)的最大、最小值.[解] ∵2(log 12x )2+9(log 12x )+9≤0,∴(2log 12x +3)(log 12x +3)≤0.∴-3≤log 12x ≤-32.即log 12(12)-3≤log 12x ≤log 12(12)-32∴(12)-32≤x ≤(12)-3,即22≤x ≤8. 从而M =[22,8].又f (x )=(log 2x -1)(log 2x -3)=log 22x -4log 2x +3 =(log 2x -2)2-1. ∵22≤x ≤8, ∴32≤log 2x ≤3. ∴当log 2x =2,即x =4时y min =-1; 当log 2x =3,即x =8时,y max =0.18.(本小题满分12分)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB =4,BC =CD =2,AA 1=2,E ,E 1分别是棱AD ,AA 1的中点.(1)设F 是棱AB 的中点,证明:直线EE 1∥平面FCC 1; (2)证明:平面D 1AC ⊥平面BB 1C 1C .[证明] (1)方法一:取A 1B 1的中点为F 1,连接FF 1,C 1F 1,由于FF 1∥BB 1∥CC 1,所以F 1∈平面FCC 1,因此平面FCC 1即为平面C 1CFF 1. 连接A 1D ,F 1C ,由于A 1F 1綊D 1C 1綊CD ,所以四边形A 1DCF 1为平行四边形,因此A 1D ∥F 1C .又EE 1∥A 1D ,得EE 1∥F 1C ,而EE 1⊄平面FCC 1,F 1C ⊂平面FCC 1,故EE 1∥平面FCC 1.方法二:因为F 为AB 的中点,CD =2,AB =4,AB ∥CD ,所以CD 綊AF ,因此四边形AFCD 为平行四边形,所以AD ∥FC .又CC 1∥DD 1,FC ∩CC 1=C ,FC ⊂平面FCC 1,CC 1⊂平面FCC 1,所以平面ADD 1A 1∥平面FCC 1,又EE 1⊂平面ADD 1A 1,所以EE 1∥平面FCC 1.(2)连接AC ,在△FBC 中,FC =BC =FB ,又F 为AB 的中点,所以AF =FC =FB ,因此∠ACB =90°,即AC ⊥BC .又AC ⊥CC 1,且CC 1∩BC =C ,所以AC ⊥平面BB 1C 1C ,而AC ⊂平面D 1AC ,故平面D 1AC ⊥平面BB 1C 1C .19.(2009·湖南,16)(本小题满分12分)已知向量a =(sin θ,cos θ-2sin θ),b =(1,2). (1)若a ∥b ,求tan θ的值; (2)若|a |=|b |,0<θ<π,求θ的值. [解] (1)∵a ∥b∴2sin θ=cos θ-2sin θ即4sin θ=cos θ ∴tan θ=14(2)由|a |=|b |∴sin 2θ+(cos θ-2sin θ)2=5即1-2sin2θ+4sin 2θ=5化简得sin2θ+cos2θ=-1 故有sin(2θ+π4)=-22又∵θ∈(0,π)∴2θ+π4∈(π4,94π)∴2θ+π4=54π或2θ=π4=74π∴θ=π2或θ=34π.20.(本小题满分14分)如图,AEC 是半径为a 的半圆,AC 为直径,点E 为AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FC ⊥平面BED ,FB =5a .(1)证明:EB ⊥FD ;(2)求点B 到平面FED 的距离.(1)[证明] ∵点E 为AC 的中点,且AB =BC ,AC 为直径,∴EB ⊥AC , ∵FC ⊥平面BED ,且BE ⊂平面BED ,∴FC ⊥EB .∵FC∩AC=C,∴EB⊥平面BDF,∵FD⊂平面BDF,∴EB⊥FD.(2)[解]∵FC⊥平面BED,且BD⊂平面BED,∴FC⊥BD.又∵BC=DC,∴FD=FB=5a.∴V E-FBD=13·S△FBD·EB=13·12·2a·5a2-a2·a=2a33.∵EB⊥平面BDF,且FB⊂平面BDF,∴EF=FB2+EB2=a2+5a2=6a.∵EB⊥BD,∴ED=EB2+BD2=a2+4a2=5a,∴S△FED=12·6a·(5a)2-(62a)2=212a2,∴点B到平面FED的距离d=V E-FBD1 3·S△FED =42121a.17.(本小题满分14分)已知圆C:x2+y2-2x+4y-4=0,是否存在斜率为1的直线l,使l被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程,若不存在说明理由.[解]圆C化成标准方程为(x-1)2+(y+2)2=9,假设存在以AB为直径的圆M,圆心M 的坐标为(a,b).∵CM ⊥l ,即k CM ·k l =b +2a -1×1=-1∴b =-a -1∴直线l 的方程为y -b =x -a ,即x -y -2a -1=0 ∴|CM |2=(|1+2-2a -1|2)2=2(1-a )2 ∴|MB |2=|CB |2-|CM |2 =-2a 2+4a +7 ∵|MB |=|OM |∴-2a 2+4a +7=a 2+b 2,得a =-1或32,b =2当a =32时,b =-52,此时直线l 的方程为x -y -4=0当a =-1时,b =0,此时直线l 的方程为x -y +1=0 故这样的直线l 是存在的,方程为x -y +4=0或x -y +1=0.22.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,N 是PB 中点,过A 、N 、D 三点的平面交PC 于M . (Ⅰ)求证:PD ∥平面ANC ; (Ⅱ)求证:M 是PC 中点;(Ⅲ)若PD ⊥底面ABCD ,PA AB =,BC BD ⊥, 证明:平面PBC ⊥平面ADMN .证明:(Ⅰ)连结,,设,连结是平行四边形∴是中点,在中,又是中点∴…………………………………………………3分又平面,平面∴平面……………………………………4分底面为平行四边形, 平面,平面平面………………………………………6分因平面平面∴…………………………………………7分又是中点 ∴是中点…………………………………………………………8分 (Ⅲ),是中点∴………………………………………9分BD AC O AC BD = NO ABCD O BD PBD ∆N PB NO PD //NO ⊂ANC PD ⊄ANC //PD ANC ABCD //AD BC ∴ BC ⊄ADMN AD ⊂ADMN ∴//BC ADMN PBC ADMN MN =//BC MN N PB M PC PA AB =N PB PB AN ⊥,∴ 底面,底面, ,∴面∴………………………………………………………………………………11分 面面∴平面⊥平面…………………………………………12分,//BC BD AD BC ⊥AD BD ⊥ PD ⊥ABCD AD ⊂ABCD PD AD ∴⊥PD BD D = AD ⊥PBD PB AD ⊥ AD AN A ⋂=∴PB ⊥ADMN PB ⊂PBC PBC ADMN。
2012届高三年级第二次月考数学试题(文科)(考试范围:集合与简易逻辑、不等式(含绝对值不等式)、函数、导数、三角函数及解三角形、数列、平面向量、立体几何、直线和圆)本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷l 至2页,第Ⅱ卷3至5页,共150分。
考试时间120分钟。
注意事项: 1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和座位号填写在答题卡上。
2.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
参考公式:球的表面积、体积公式24S πR =,343V πR =,其中R 为球的半径.第Ⅰ卷 (选择题60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求. 1.已知集合}21|{},|{<<=<=x x B a x x A 且R =B C A R ,则实数a 的取值范围是( ) A .1≤aB .1<aC .2≥aD .2>a2.若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23- D .2-3.设平面向量(1,2),(1,)a b m ==-,若//a b ,则实数m 的值为( )A .1-B .2-C .1D .24.下列四个几何体中,每个几何体的三视图中有且仅有两个视图相同的是( )A .①②B .①③C .③④D .②④5.已知x ,y 满足条件5003x y x y x -+≥⎧⎪≥⎨⎪≤⎩,+,,则z=13y x -+的最大值 ( )A .3B .76 C .13D .-236.现有四个函数:①x x y sin ⋅= ②x x y cos ⋅= ③x x y cos ⋅= ④x x y 2⋅=的图象(部分)如下,则按照从左到右图像对应的函数序号安排正确的一组是 ( ) A .①④③② B .④①②③ C .①④②③. D .③④②①7.已知f (x )=(3)4,1log ,1a x a x x x a--≥⎧⎨⎩ 是(-∞,+∞)上的增函数,那么a 的取值范围是( )A .(1,+∞)B .(-∞,3)C .( 35,3) D .(1,3)8.已知三条不重合的直线m 、n 、l 与两个不重合的平面α、β,有下列命题:[ ] ①若m ∥n ,n ⊂α,则m ∥α;②若l ⊥α,m ⊥β且l ∥m ,则α∥β;③若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β;④若α⊥β,α∩β=m ,n ⊂β,n ⊥m ,则n ⊥α.其中正确的命题个数是 ( ) A .1 B .2 C .3 D .49.三棱锥P-ABC 的三条侧棱PA 、PB 、PC 两两互相垂直,且长度分别为3、4、5,则三棱锥P-ABC 外接球的表面积是 ( )A. B. C .50πD .200π10.若点P在曲线上移动,经过点P 的切线的倾斜角为,x则角的取值范围是( )A .B .C .D .11.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短路径是( )A .4B .5C .1D .12.不等式2313x x a a +--≤-对任意实数x 恒成立,则实数a 的取值范围为( )A .(,1][4,)-∞-+∞B .(,2][5,)-∞-+∞C .[1,2]D .(,1][2,)-∞+∞第Ⅱ卷(非选择题90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.已知数列1-,1a ,2a ,4-成等差数列,1-,1b ,2b ,3b ,4-成等比数列,则212b a a -的值为14.若圆2221:240C x y mx m +-+-=与圆2222:24480C x y x my m ++-+-=相离,则m 的取值范围是 .15.在四边形ABCD 中,AB =DC =(1,1),11B A B C B A B C B D+=,则四边形ABCD 的面积是16.下面四个命题:①函数sin ||y x =的最小正周期为π;②在△ABC 中,若0>⋅,则△ABC 一定是钝角三角形; ③函数2log (2)(01)a y x a a =+->≠且的图象必经过点(3,2);④cos sin y x x =-的图象向左平移4π个单位,所得图象关于y 轴对称; ⑤若命题“2,0x R x x a ∃∈++<”是假命题,则实数a 的取值范围为1[,)4+∞;其中所有正确命题的序号是 。
滚动过关检测七 集合、常用逻辑用语、不等式、函数与导数、三角函数与解三角形、数列、平面向量与复数、立体几何、平面解析几何一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2022·辽宁实验中学月考]已知全集U =R ,集合A ={x |x 2-6x +5≤0},B ={x |x -3<0},则(∁R B )∩A =( )A .[1,3]B .[3,5]C .[3,5)D .(1,3]2.已知(1-i)2z =3+2i ,则z =( )A .-1-32iB .-1+32i C .-32+i D .-32-i 3.[2022·河北石家庄实验中学月考]等比数列{a n }满足a 1+a 2=2,a 2+a 3=4,则a 9+a 10=( )A .28B .29C .210D .2114.设D 为△ABC 所在平面内一点,BC →=2CD →,E 为BC 的中点,则AE →=( )A.23AB →+13AD →B.13AB →+23AD → C.23AB →-13AD → D.13AB →-23AD → 5.已知函数f (x )是定义域为R 的奇函数,当x >0,f (x )=10ax ,(a 为常数),若f ⎝⎛⎭⎫lg 15=-25,则实数a =( )A .2B .-2C.12 D .-126.[2022·江苏如皋模拟]已知椭圆x 2a 21+y 2=1与双曲线x 2a 22-y 2=1有相同的焦点F 1、F 2,设椭圆与双曲线的离心率分别为e 1、e 2,则( )A .e 1e 2=1B .e 22-e 21=1C .e 21+e 22=2e 21e 22D .e 2=2e 17.[2022·山东济南历城二中月考]已知过抛物线C :y 2=4x 的焦点F 且倾斜角为30°的直线交C 于A ,B 两点,Q 为AB 的中点,P 为C 上一点,则|PF |+|PQ |的最小值为( )A .5B .6C .7D .88.[2022·湖北汉阳一中模拟]在正四棱锥P ABCD 中,已知P A =AB =2,O 为底面ABCD的中心,以点O 为球心作一个半径为233的球,则该球的球面与侧面PCD 的交线长度为( )A.66πB.64πC.63π D.62π 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分. 9.[2022·山东烟台模拟]下列命题正确的是( )A .若a <b <0,c >0,则1ac <1bcB .若a >0,b >0,则 a 2+b 22≥2ab a +bC .已知a >0,b >0,且a +b =1,则a 2+b 2≥12D .已知a >0,b >0,且ab =1,则1a +1b +2a +b≥4 10.[2022·江苏南通模拟]已知方程x 216+k -y 29-k=1(k ∈R ),则下列说法中正确的有( ) A .方程x 216+k -y 29-k=1可表示圆 B .当k >9时,方程x 216+k -y 29-k=1表示焦点在x 轴上的椭圆 C .当-16<k <9时,方程x 216+k -y 29-k=1表示焦点在x 轴上的双曲线 D .当方程x 216+k -y 29-k=1表示椭圆或双曲线时,焦距均为10 11.关于函数f (x )=|sin x |+|cos x |(x ∈R ),则下列说法中正确的是( )A .f (x )的最大值为2B .f (x )的最小正周期为πC .f (x )的图象关于直线x =π4对称 D .f (x )在⎝⎛⎭⎫π2,2π3上单调递增12.如果函数y =f (x )在区间I 上是增函数,且f (x )x在区间I 是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.则下列函数是区间[1,3]上的“缓增函数”的是( )A .f (x )=e xB .f (x )=ln xC .f (x )=x 2-2x +3D .f (x )=-x 2+23x +3三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.设S n 是等差数列{a n }的前n 项和,若a 1=2,S 7=35,则a 6=________.14.[2022·湖南常德模拟]已知向量a =(1,k ),b =(2-k,3),若a ⊥(2a -b ),且k ≠0,则cos 〈a ,b 〉=________.15.已知函数f (x )=e x -ax 在区间(0,+∞)上无零点,则实数a 的取值范围是________. 16.[2022·北京昌平模拟]已知抛物线C :y 2=4x 与椭圆D :x 2a 2+y 2b2=1(a >b >0)有一个公共焦点F ,则点F 的坐标是________;若抛物线的准线与椭圆交于A ,B 两点,O 是坐标原点,且△AOB 是直角三角形,则椭圆D 的离心率e =________.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且2cos 2A +4cos(B +C )+3=0.(1)求角A 的大小;(2)若a =3,b +c =3,求b 和c 的值.18.(12分)[2022·辽宁实验中学月考]已知等比数列{a n }的公比和等差数列{b n }的公差为q ,等比数列{a n }的首项为2,且a 2,a 3+2,a 4成等差数列,等差数列{b n }的首项为1.(1)求{a n }和{b n }的通项公式;(2)若数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和为T n ,求证:T n <3.19.(12分)已知抛物线y 2=2px (p >0)上横坐标为4的点M 到焦点F 的距离为5.(1)求p 的值;(2)如图,已知AB 为抛物线上过焦点F 的任意一条弦,弦AB 的中点为D ,DP 垂直AB 与抛物线准线交于点P ,若|PD |=|AB |,求直线AB 的方程.20.(12分)[2022·河北唐山模拟]如图所示,在三棱柱ABC A 1B 1C 1中,AB ⊥AC ,AB =AC ,四边形BCC 1B 1为菱形,BC =2,∠BCC 1=π3,D 为B 1C 1的中点.(1)证明:B 1C 1⊥平面A 1DB ;(2)若AC 1=2,求二面角C 1A 1B 1C 的余弦值.21.(12分)[2022·山东潍坊模拟]已知函数f (x )=x sin x .(1)判断函数f (x )在区间⎝⎛⎭⎫0,π2上的单调性,并说明理由; (2)求证:函数f (x )在⎝⎛⎭⎫π2,π内有且只有一个极值点;(3)求函数g (x )=f (x )+1ln x在区间(1,π]上的最小值.22.(12分)[2021·新高考Ⅱ卷]已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63. (1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |= 3.。
高二上册数学练习题大全本文将为您提供一份高二上册数学练习题的大全,旨在帮助学生们更好地巩固和提高数学知识和技能。
以下是各个章节的习题,每个章节包含主题、概念和相应的练习题,供学生们进行训练和复习。
第一章:代数与函数1. 分解因式练习题:将以下多项式完全分解因式:a) x^2 + 6x + 9b) x^2 - 16c) x^2 + 5x + 6d) x^2 - 92. 一次函数图像与性质练习题:给定函数 f(x) = 3x - 2,求出函数的 x 轴截距、斜率和图像的倾斜方向。
3. 二次函数练习题:已知函数 f(x) = -2x^2 + 5x + 3,a) 求出函数的顶点坐标和对称轴方程;b) 求解方程 f(x) = 0。
第二章:三角函数1. 三角函数的基本概念练习题:计算下列三角函数的值:a) sin(π/3)b) cos(π/4)c) tan(π/6)2. 三角函数的性质与图像练习题:画出函数 y = sin(2x) 和 y = cos(3x) 的图像,并分析其性质。
3. 三角函数方程与恒等式练习题:解以下方程:a) sin(x) = 1b) cos(2x) = -1第三章:数列与数列的应用1. 等差数列练习题:已知等差数列的首项为 3,公差为 2,求出第 n 项的通项公式。
2. 等比数列练习题:已知等比数列的首项为 2,公比为 3,求出第 n 项的通项公式。
3. 数列的应用练习题:若数列 a_n 满足 a_(n+1) = a_n + 2n + 1,且 a_1 = 3,a) 求出 a_2 和 a_3;b) 求出前 n 项和 S_n 的表达式。
第四章:平面坐标系与向量1. 平面直角坐标系与坐标练习题:计算点 P(3, -4) 和点 Q(-1, 2) 之间的距离。
2. 向量的基本概念练习题:求出向量 v(3, -1) 和向量 u(-5, 2) 的和向量 v+u。
3. 平面向量的坐标表示与性质练习题:已知向量 v(-2, 3),求出平行于 v 且长度为 5 的向量。
(文数)选择题强化专练——解析几何、立体几何、三角函数与解三角形、函数与导数一、选择题(本大题共15小题,共75.0分)1.已知双曲线-=1(a>0,b>0)的离心率为2,则渐近线方程为()A. y=±2xB. y=±xC. y=±xD. y=±x2.已知焦点为F的抛物线的方程为,点Q的坐标为(3,4),点P在抛物线上,则点P到y轴的距离与到点Q的距离的和的最小值为()A. 3B.C.D. 73.过双曲线的左焦点作倾斜角为30°的直线l,若l与y轴的交点坐标为(0,b),则该双曲线的离心率为()A. B. C. D.4.椭圆2x2-my2=1的一个焦点坐标为(0,),则实数m=()A. B. C. D.5.在平面直角坐标系中,经过点P(2,-),渐近线方程为y=x的双曲线的标准方程为()A. B. C. D.6.设m,n表示不同的直线,α,β表示不同的平面,且m,n⊂α.则“α∥β”是“m∥β且n∥β”的()A. 充分但不必要条件B. 必要但不充分条件C. 充要条件D. 既不充分又不必要条件7.已知四棱锥E-ABCD,底面ABCD是边长为1的正方形,ED=1,平面ECD⊥平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为()A. B. C. D. 18.已知正方形ABCD的边长为2,CD边的中点为E,现将△ADE,△BCE分别沿AE,BE折起,使得C,D两点重合为一点记为P,则四面体P-ABE外接球的表面积是()A. B. C. D.9.将函数向右平移个单位后得到函数,则具有性质A. 在上单调递增,为偶函数B. 最大值为1,图象关于直线对称C. 在上单调递增,为奇函数D. 周期为,图象关于点对称10.要得到函数y=-sin3x的图象,只需将函数y=sin3x+cos3x的图象( )A. 向右平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向左平移个单位长度11.△ABC的内角A,B,C的对边分别为a,b,c,若,,,则b=( )A. B. C. D.12.在中,角的对边分别是,若,则的形状是()A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等腰或直角三角形13.函数f(x)=|log2x|+x-2的零点个数为()A. 1B. 2C. 3D. 414.已知函数f(x)=(x<-1),则()A. f(x)有最小值4B. f(x)有最小值-4C. f(x)有最大值4D. f(x)有最大值-415.若曲线y=x2与曲线y=a ln x在它们的公共点P处具有公共切线,则实数a等于()A. 1B.C. -1D. 2答案和解析1.【答案】C【解析】解:双曲线-=1(a>0,b>0)的离心率为2,可得e==2,即有c=2a,由c2=a2+b2,可得b2=3a2,即b=a,则渐近线方程为y=±x,即为y=±x.故选:C.运用双曲线的离心率公式和a,b,c的关系可得b=a,再由近线方程y=±x,即可得到所求方程.本题考查双曲线的渐近线方程的求法,注意运用离心率公式和a,b,c的关系,考查运算能力,属于基础题.2.【答案】B【解析】【分析】本题考查了抛物线的定义,属于中档题.利用抛物线的定义进行转化,可知当三点共线时满足题设最小要求.【解答】解:如图所示:抛物线y2=4x的焦点为F(1,0),准线l:x=-1,过点P作PM⊥l,垂足为M,则|PM|=|PF|,因为Q(3,4)在抛物线外,因此当F、P、Q三点共线时,|PF|+|PQ|取得最小值,也即|PM|+|PQ|最小∴(|PM|+|PQ|)min=(|PF|+|PQ|)min=|QF|=.则点P到y轴的距离与到点Q的距离的和的最小值为.故选B.3.【答案】A【解析】解:直线l的方程为,令x=0,得.因为,所以a2=c2-b2=3b2-b2=2b2,所以.故选:A.求出直线方程,利用l与y轴的交点坐标为(0,b),列出关系式即可求解双曲线的离心率.本题考查直线与双曲线的位置关系以及双曲线的标准方程,考查运算求解能力.4.【答案】A【解析】【分析】利用椭圆的标准方程,结合焦点坐标,求解即可.本题考查了椭圆的标准方程,椭圆的性质及其几何意义的应用,是基本知识的考查,基础题.【解答】解:椭圆2x2-my2=1的标准方程为:,一个焦点坐标为(0,),可得,解得m=,故选:A.5.【答案】B【解析】解:根据题意,双曲线的渐近线方程为y=x,设双曲线方程为:,双曲线经过点P(2,-),则有8-1=a,解可得a=7,则此时双曲线的方程为:,故选:B.设出双曲线的方程,经过点P(2,-),求出a的值,即可得双曲线的方程.本题考查双曲线的几何性质,涉及双曲线的标准方程的求法,注意双曲线离心率公式的应用.6.【答案】A【解析】解:当α∥β 时,因为m,n⊂α,故能推出m∥β且n∥β,故充分性成立.当m∥β且n∥β 时,m,n⊂α,若m,n是两条相交直线,则能推出α∥β,若m,n不是两条相交直线,则α与β 可能相交,故不能推出α∥β,故必要性不成立.故选:A.由面面平行的性质得,充分性成立;由面面平行的判定定理知,必要性不成立.本题考查平面与平面平行的判定和性质,充分条件、必要条件的定义域判断方法.7.【答案】B【解析】解:如图所示,由题意可得:ED⊥平面ABCD时,△ADE的面积最大,可得点C即点D到平面ABE的距离最大.此时该四棱锥的体积==.故选:B.如图所示,由题意可得:ED⊥平面ABCD时,△ADE的面积最大,可得点C即点D到平面ABE的距离最大.即可得出此时该四棱锥的体积.本题考查了空间线面位置关系、数形结合方法,考查了推理能力与计算能力,属于中档题.8.【答案】C【解析】解:如图,PE⊥PA,PE⊥PB,PE=1,△PAB是边长为2的等边三角形,设H是△PAB的中心,OH⊥平面PAB,O是外接球的球心,则OH=,PH=,则.故四面体P-ABE外接球的表面积是S=.故选:C.由题意画出图形,找出四面体P-ABE外接球的球心,求得半径,代入球的表面积公式求解.本题考查多面体外接球表面积与体积的求法,考查数形结合的解题思想方法,是中档题.9.【答案】A【解析】【分析】本题主要考查三角函数平移、单调性、奇偶性、周期的知识,解答本题的关键是掌握相关知识,逐一分析,进行解答.【解答】解:将f(x)=2x的图象向右平移个单位,得g(x)=2(x-)=(2x-)=-2x,则g(x)为偶函数,在上单调递增,故A正确,g(x)的最大值为1,对称轴为2x=kπ,k∈Z,即x=,k∈Z,当k=1,图象关于x=对称,故B错误,由2kπ≤2x≤2kπ+π,k∈Z,函数g(x)单调递增,∴kπ≤x≤kπ+,k∈Z,∴g(x)在上不是单调函数,故C错误,函数的周期T=π,不关于点对称,故D错误 .故选A.10.【答案】C【解析】【分析】本题考查三角函数的图象的平移变换,是基础题.由条件利用y=A sin(ωx+φ)的图象变换规律,得出结论.【解答】解:因为,所以将其图象向左平移个单位长度,可得,故选C.11.【答案】B【解析】【分析】本题主要考查了正弦定理,两角和与差的三角函数公式,是基础题.先求出sin B,再根据正弦定理求解即可.【解答】解:在△ABC中,,,则,,=,,.故选B.12.【答案】D【解析】【分析】本题考查三角形的形状判断,着重考查正弦定理的应用与三角函数化简运算的能力,属于中档题.化简,得出A=或B=A,即可求解.【解答】解:∵c-a cos B=(2a-b)cos A,C=π-(A+B),∴由正弦定理得:sin C-sin A cos B=2sin A cosA-sin B cos A,∴sin A cos B+cos A sin B-sin A cos B=2sin A cosA-sin B cos A,∴cos A(sin B-sin A)=0,∴cos A=0,或sin B=sin A,∵在中,角的取值范围均为,∴A=或B=A或B=π-A(舍去),故选D.13.【答案】B【解析】【分析】本题考查函数的零点的求法,零点个数问题,考查数形结合以及计算能力,转化思想的应用.转化函数零点问题为方程的根的问题,通过两个函数的图象交点个数判断求解即可.【解答】解:函数f(x)=|log2x|+x-2的零点个数,就是方程|log2x|+x-2=0的根的个数.令h(x)=|log2x|,g(x)=2-x,画出两函数的图象,如图.由图象得h(x)与g(x)有2个交点,∴方程|log2x|+x-2=0的解的个数为2.故选B.14.【答案】A【解析】【分析】本题主要考查利用基本不等式求函数最值的知识,属于中档题.利用“配凑”将函数化为基本不等式的形式,然后根据基本不等式进行计算即可.【解答】解:f(x)==-=-=-=-(x+1)++2,因为x<-1,所以x+1<0,-(x+1)>0,所以f(x)≥2+2=4,当且仅当-(x+1)=,即x=-2时,等号成立.故f(x)有最小值4.故选A.15.【答案】A【解析】【分析】本题考查了利用导数研究曲线上某点切线方程,属于中档题.利用导数的几何意义求切线的斜率以及切线方程,即可得结论.【解答】解:∵曲线的导数为,∴在P(s,t)处的斜率为,又∵曲线y=a ln x的导数为,∴在P(s,t)处的斜率为,∴曲线与曲线y=a ln x在它们的公共点P(s,t)处具有公共切线,∴,并且,t=a ln s,即,∴,解得s2=e,∴a=1.故选A.。
新高考数学创新好题1情境创新之知识综合新高考数学创新好题主题一情境创新之知识综合学科知识综合1.[平面向量与三角函数综合]已知单位向量a,b满足a·b=0,若向量c=a+b,则sin=()A.B.C.D.2.[三角函数与数列综合]已知数列{an}的通项公式是an=f(),其中f(x)=sin(ωx+φ)(ω>0,|φ|.-1B.-C.1D.3.[逻辑联结词与二项式、正态分布综合]已知命题p:(x2-)n的展开式中,仅有第7项的二项式系数最大,则展开式中的常数项为495.命题q:随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.7,则P(0给出四个命题:①p∧q,②p∨q,③p∧(?q),④(?p)∨q,其中真命题是()A.①③B.①④C.②③D.②④4.[数列与平面向量综合]设{an}是首项为-10,公差为2的等差数列,{bn}是首项为-,公差为的等差数列.O为原点,向量=(-1,1),=(1,1),点Pn满足=an+bn(n∈N).若存在点Pk(k∈N)位于第一象限,则k=()A.5或6B.6C.7D.6或75.[导数与三角函数综合]已知函数f(x)的定义域为R,f()=-,对任意的x∈R,满足f''(x)>4x.当α∈[0,2π]时,不等式f(sinα)+cos2α>0的解集为()A.(,)B.(,)C.(,)D.(,)6.[函数与数列综合]定义在[0,+∞)上的函数f(x)满足:当0≤x<2时,f(x)=2x-x2;当x≥2时,f(x)=3f(x-2).若函数f(x)的极大值点从小到大依次记为a1,a2,…,an,…,并记相应的极大值为b1,b2,…,bn,…,则a1b1+a2b2+…+a20b20的值为()A.19×320+1B.19×319+1C.20×319+1D.20×320+17.[椭圆与平面向量综合]已知椭圆C:=1,F1,F2分别是其左、右焦点,若对椭圆C上的任意一点P,·>0恒成立,则实数m的取值范围为()A.(-3,0)∪(0,3)B.[-3,0)∪(0,3]C.(-∞,-3)∪(3,+∞)D.(-∞,-3]∪[3,+∞)8.[抛物线与平面向量综合]已知抛物线C:y2=4x的焦点为F,准线为l,P是l上一点,直线PF与抛物线C交于M,N两点,若=4,则|MN|=()A.B.3C.D.9图1-29.[立体几何与函数综合]如图1-2所示,在长方体ABCD-A1B1C1D1中,底面ABCD是边长为3的正方形,侧棱AA1=t,P为矩形CDD1C1上及内部的动点,M为BC 的中点,∠APD=∠CPM,三棱锥A1-PCD的体积的最大值记为V(t),则下列关于函数V(t)的结论正确的是()A.V(t)为奇函数B.V(t)在(0,+∞)上单调递增C.V(2)=3D.V(3)=10.[双曲线与解三角形综合]已知双曲线E:=1(a>0,b>0)的左、右顶点分别为A,B,M是E上一点,且△ABM为等腰三角形,其外接圆的半径为a,则双曲线E的离心率为()A.B.+1C.D.+111.[解三角形与平面向量、基本不等式综合] 已知锐角△ABC的内角A,B,C的对边分别为a,b,c.若向量m=(a-b,sinC),n=(c-b,sinA+sinB),m=λn(λ≠0),则tanC的最小值为()A.B.2C.D.12.[直线斜率与三角恒等变换综合]若正方形一条对角线所在直线的斜率为2,则该正方形的两条邻边所在直线的斜率分别为,.?13.[数列与双曲线综合]已知一族双曲线En:x2-y2=(n∈N,n≤2019),设直线x=2与En在第一象限内的交点为An,点An在En的两条渐近线上的射影分别为Bn,Cn,记△AnBnCn的面积为an,则a1+a2+a3+…+a2019=.?跨学科知识综合14.[数学与化学综合]溶液的酸碱度是通过pH来刻画的,已知某溶液的pH等于-lg[H+],其中[H+]表示该溶液中氢离子的浓度,且该溶液中氢离子的浓度为10-6mol/L,则该溶液的pH为()A.4B.5C.6D.715.[数学与物理综合]长江流域内某地南北两岸平行,如图1-3所示,已知游船在静水中的航行速度v1的大小|v1|=10km/h,水流的速度v2的大小|v2|=4km/h,设v1和v2所成的角为θ(0行到正北方向上位于北岸的码头B处,则cosθ等于()图1-3A.-B.-C.-D.-16.[数学与物理综合]体育锻炼是青少年学习生活中非常重要的组成部分.某学生做引体向上运动,处于图1-4所示的平衡状态时,两只胳膊的夹角为,每只胳膊的拉力大小均为400 N,则该学生的体重(单位:kg)约为()图1-4(参考数据:重力加速度大小取g=10m/s2,≈1.732)A.63kgB.69kgC.75kgD.81kg17.[2020山东,4,5分][数学与地理综合]日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A 处的水平面所成角为()A.20°B.40°C.50°D.90°图1-518.[数学与体育综合]台球运动已有五、六百年的历史,参与者用球杆在台上击球.若和光线一样,台球在球台上碰到障碍物后也遵从反射定律.如图1-5,有一张长方形球台ABCD,AB=2AD,现从角落A沿角α的方向把球打出去,球经2次碰撞球台内沿后进入角落C的球袋中,则tanα的值为()A.B.C.或D.19.[2020全国卷Ⅱ,12,5分][理][数学与通信技术综合]0-1周期序列在通信技术中有着重要应用.若序列a1a2…an…满足ai∈{0,1}(i=1,2,…),且存在正整数m,使得ai+m=ai(i=1,2,…)成立,则称其为0-1周期序列,并称满足ai+m=ai(i=1,2,…)的最小正整数m为这个序列的周期.对于周期为m的0-1序列a1a2…an…,C(k)=aiai+k(k=1,2,…,m-1)是描述其性质的重要指标.下列周期为5的0-1序列中,满足C(k)≤(k=1,2,3,4)的序列是()A.11010…B.11011…C.10001…D.11001…20.[数学与化学综合]稠环芳烃类化合物中有不少致癌物质,比如学生钟爱的快餐油炸食品中会产生苯并芘,它可看作是由一个苯环和一个芘分子结合而成的稠环芳烃类化合物,长期食用会致癌.下面是一组稠环芳烃的结构简式和分子式:名称萘蒽并四苯…并n苯结构简式……分子式C10H8C14H10C18H12……由此推断并十苯的分子式为.?答案主题一情境创新之知识综合1.B解法一由已知知|a|=|b|=1,|c|=|a+b|==3,则cos=,因为∈(0,π),所以sin=.解法二由题可设a=(1,0),b=(0,1),则c=(,),cos=,因为∈(0,π),所以sin=,故选B.2.B由题图可得(T为f(x)的最小正周期),则T=π,ω==2.将(,-1)代入f(x)=sin(2x+φ)中,可得+φ=2kπ+,k∈Z,则φ=2kπ+,k∈Z.又|φ|n=f()=sin,则{an}为周期为6的数列,因为a1=,a2=0,a3=-,a4=-,a5=0,a6=,所以S2020=336S6+(a1+a2+a3+a4)=0-=-.故选B.3.C对于命题p,(x2-)n的展开式中,仅有第7项的二项式系数最大,即最大,所以n=12.展开式的通项公式为Tr+1=··=(-1)r··x24-3r,令24-3r=0,得r=8,故展开式中的常数项为(-1)8·=495,所以p为真命题.对于命题q,根据正态分布的对称性可知P(0假命题.所以p∧q,(?p)∨q为假命题,p∨q,p∧(?q)为真命题,即②③为真命题.故选C.4.D由已知得an=2n-12,bn=-1.因为=an+bn=(2n-12)·(-1,1)+(-1)·(1,1)=(11-,-13),所以点Pn的坐标为(11-,-13),可得Pk(11-,-13).若存在点Pk(k∈N)位于第一象限,则解得造函数g(x)=f(x)-2x2+1,则g''(x)=f''(x)-4x>0,所以函数g(x)在R上为增函数.因为f()=-,所以g()=f()-2×()2+1=0.又f(sinα)+cos2α>0,所以g(sinα)=f(sinα)-2sin2α+1=f(sinα)+cos2α>0=g(),所以sinα>.因为0≤α≤2π,所以α>0的解集为(,).故选D.6.A当0≤x<2时,f(x)=2x-x2=1-(x-1)2,可得f(x)的极大值点a1=1,极大值b1=1,当2≤x<4,即0≤x-2<2时,可得f(x)=3f(x-2)=3[1-(x-3)2],可得a2=3,b2=3,当4≤x<6,即0≤x-4<2时,可得f(x)=9f(x-4)=9[1-(x-5)2],可得a3=5,b3=9,…,即有a20=39,b20=319.记S20=a1b1+a2b2+…+a20b20,则S20=1×1+3×3+5×9+…+39×319①,3S20=1×3+3×9+5×27+…+39×320②,①-②得-2S20=1+2×(3+9+27+…+319)-39×320=1+2×-39×320,化简可得S20=19×320+1,故选A.7.C当点P为短轴上的顶点时,∠F1PF2最大,要使·>0恒成立,则∠F1PF2为锐角,即∠F1PO<45°(O为坐标原点),即tan∠F1PO=<1,所以c29,所以93或m,M(xM,yM),N(xN,yN),因为=4,所以(2,-t)=4(1-xM,-yM),所以解得因为MN为过抛物线焦点的弦,由焦点弦的常用结论(详见主书P215【规律总结】)可得xM·xN==1,所以xN=2,所以xM+xN=.由抛物线的定义,得|MN|=xM+xN+p=+2=,故选C.解法二设准线l与x轴交于点E,点N在第一象限,如图D1-1所示,作MM''⊥l于点M'',NN''⊥l于点N'',则由抛物线的定义知,|MM''|=|MF|,|NN''|=|NF|.因为=4,所以|PF|∶|PM|=4∶3.因为△PFE∽△PMM'',所以,即,解得|MF|=,所以|PF|=6.又△PFE∽△PNN'',所以,即,解得|NF|=3,所以|MN|=|MF|+|NF|=+3=,故选 C.9.D由题意知,AD⊥PD,MC⊥PC.因为∠APD=∠CPM,所以Rt△PDA∽Rt△PCM.又M为BC的中点,所以=2,即PD=2PC,即PD2=4PC2.在平面DCC1D1中,以DC的中点为坐标原点,以DC所在直线为x轴,DC的垂直平分线为y轴,以的方向为x轴的正方向,的方向为y轴的正方向建立平面直角坐标系,则D(-,0),C(,0).设P(x'',y'')(-≤x''≤,0≤y''≤t),则(x''+)2+(y'')2=4(x''-)2+4(y'')2,整理得(y'')2=-(x'')2+5x''-,易知当x''=时,y''取得最大值.若0,则(S△PCD)max=.又A1到平面PCD的距离为3,所以V(t)=所以V(t)为非奇非偶函数,故A错误;函数V(t)在(0,+∞)上不是单调函数,故B错误;V(2)=,故C错误;V(3)=,故D正确.故选D.10.C解法一不妨设M在第一象限,M(x0,y0),因为△ABM是等腰三角形,所以结合图形可知,只能|AB|=|BM|=2a.令∠MAB=θ,则∠AMB=θ,∠ABM=π-2θ,∠MBx=2θ,在△MAB中,由正弦定理可得=2×a,所以sinθ=,则cos2θ=1-2sin2θ=,sin2θ=,则x0=a+2acos2θ=,y0=2asin2θ=,即M(,).又点M在双曲线上,所以·=1,解得=2,则e2=1+=3,则e=,故选C.解法二不妨设M在第一象限,因为△ABM是等腰三角形,所以结合图形可知,只能|AB|=|BM|=2a.令∠MAB=θ,则∠AMB=θ,∠ABM=π-2θ,∠MBx=2θ,由正弦定理可得=2×a,所以sinθ=,则cosθ=,tanθ=,即kMA=,cos2θ=1-2sin2θ=,则sin2θ=,tan2θ==2,即kMB=2,根据kMA·kMB=2=,得e2=1+=3,则e=,故选C.11.C∵m=λn(λ≠0),∴m∥n,∴(a-b)(sinA+sinB)=sinC(c-b),由正弦定理得(a-b)(a+b)=c(c-b),整理得a2=b2+c2-bc,由余弦定理得cosA=.∵A∈(0,),∴A=,又C∈(0,),∴,∴tanC=tanC.∵△ABC是锐角三角形,且A=,∴解得,∴tanC=tanC≥+2,当且仅当tanC,即tanC=2时等号成立,故tanC的最小值为,选C.图D1-212.-3如图D1-2,以A为原点建系,AC的斜率为2,设AB的倾斜角为θ,则AC的倾斜角为θ+,则tan(θ+)=2.kAB=tanθ=tan(θ+)=,则kAD=-=-3.所以正方形的两条邻边所在直线的斜率分别为和-3.13.设An(x0,y0),可得.双曲线En:x2-y2=(n∈N,n≤2019)的渐近线方程为x-y=0,x+y=0.已知点An在En的两条渐近线上的射影分别为Bn,Cn,不妨设Bn在第一象限内,可得|AnBn|=,|AnCn|=,易知双曲线En的两条渐近线互相垂直,可得AnBn⊥AnCn,则△AnBnCn的面积an=|AnBn|·|AnCn|=··,则a1+a2+a3+…+a2019=×2019×2020=.14.C由题意可得,该溶液的pH为-lg10-6=6.故选C.15.B设游船的实际速度为v,v1与河流南岸上游的夹角为α,v1=,v2=.以AD,AC为邻边作平行四边形如图D1-3所示,要使得游船正好航行到B处,则|v1|cosα=|v2|,即cosα=.又θ=π-α,所以cosθ=cos(π-α)=-cosα=-,故选B.16.B作出示意图,如图D1-4所示,设图中重力为G,两只胳膊的拉力分别为F1,F2,F1与F2的合力为F'',则|G|=|F''|.由余弦定理得|F''|2=4002+4002-2×400×400×cos=3×4002(N2),解得|F''|=400N.所以|G|=400N.所以该学生的体重约为≈69(kg).故选B.图D1-517.B过球心O,点A以及晷针的轴截面如图D1-5所示,其中CD为晷面,GF为晷针所在直线,EF为点A处的水平面,GF⊥CD,CD∥OB,∠AOB=40°,∠OAE=∠OAF=90°,所以∠GFA=∠CAO=∠AOB=40°.故选B.18.C由题意知,可分为两种,且仅有两种情况.第一种情况,球碰撞CD与AB边内沿后进入角落C的球袋中,如图D1-6所示.根据台球碰撞障碍物后也遵从反射定律知,AE=EF=FC,于是根据图形的对称性知E,F分别为CD与AB的三等分点,则DE=DC=AD,所以tanα=tan∠AED=.第二种情况,球碰撞BC与AD边内沿后进入角落C的球袋中,如图D1-7所示.同理,由第一种情况的解法知M,N分别为BC,AD的三等分点,所以BM=BC=AB=AB,所以tanα=.综上可知,选C.图D1-6图D1-719.C对于A,因为C(1)=,C(2)=,不满足C(k)≤,故A不正确;对于B,因为C(1)=,不满足C(k)≤,故B不正确;对于C,因为C(1)=,C(2)==0,C(3)==0,C(4)=,满足C(k)≤,故C正确;对于D,因为C(1)=,不满足C(k)≤,故D不正确.综上所述,故选C.20.C42H24因为表格中所给的稠环芳烃的分子式中C的下标分别是10,14,18,…,H的下标分别是8,10,12,…,所以表格中所给的稠环芳烃的分子式中C的下标构成等差数列,设为{am},则首项a1=10,公差为4,所以其通项公式为am=10+(m-1)·4=4m+6,表格中所给的稠环芳烃的分子式中H的下标构成等差数列,设为{bm},首项b1=8,公差为2,所以其通项公式为bm=8+(m-1)·2=2m+6.易知m=n-1,所以并n苯的分子式为C4n+2H2n+4(n≥4,n∈N),所以并十苯的分子式为C42H24.第8页共8页。
高中数学计算练习题一、集合与函数1. 计算下列集合的交集和并集:A = {x | x² 3x + 2 = 0},B = {x | x² 4x + 3 = 0}2. 已知函数f(x) = 2x + 3,求f(2)和f(1)的值。
3. 设函数g(x) = x² 5x + 6,求g(x)在区间[1, 3]上的最大值和最小值。
4. 计算下列函数的定义域:h(x) = √(4 x²)5. 已知函数f(x) = (x 1) / (x + 2),求f(x)的值域。
二、三角函数与解三角形6. 已知sinα = 3/5,α为第二象限角,求cosα和tanα的值。
7. 计算sin(π/6 + π/4)的值。
8. 在△ABC中,a = 5, b = 8, C = 120°,求c的长度。
9. 已知tanA = 1/2,求sinA和cosA的值。
10. 计算下列各式的值:(1) cos²30° sin²30°(2) sin(45° + 30°) cos(45° 30°)三、数列11. 已知数列{an}的通项公式为an = 2n 1,求前10项的和。
12. 计算等差数列5, 8, 11, 14, 的第10项。
13. 已知等比数列的首项为3,公比为2,求前5项的和。
14. 设数列{bn}的通项公式为bn = 3n + 1,求证数列{bn}为递增数列。
15. 计算数列1, 1/2, 1/4, 1/8, 的前n项和。
四、平面向量与复数16. 已知向量a = (2, 3),求向量a的模。
17. 计算向量b = (4, 1)与向量c = (2, 3)的夹角。
18. 已知向量d = (m, 2),向量e = (3, m),且向量d与向量e共线,求m的值。
19. 计算复数(1 + i)²的值。
20. 已知复数z = 3 + 4i,求z的模和辐角。