随机事件和概率习题
- 格式:doc
- 大小:100.50 KB
- 文档页数:3
第一章随机事件及其概率习题一 、填空题当A , B 互不相容时,P (A U B)=亠卩(AB )= 0_^ 当 B A 时,P(A+B = _;_RAB = 若 P(A) ,P(B) ,P(AB) , P(A B) 1P(A B)= 119 9.事件 A,B,C 两两独立,满足 ABC , P (A) P (B) P (C)-,且 P ( A+B+C )=—216则 P(A)=??10.已知随机事件 A 的概率P(A) 0.5,随机事件 B 的概率P(B) 0.6,及条件概率P(B | A) 0.8,则和事件 A B 的概率P(A B)1.设样本空间 {x|0x 2}, 事件A {x|l1x 1}, B {x|-4{x|0 x ^} U{x|-4 2x 2},- 1 AB{x|-4x 1} U{x|1 x 2.连续射击一目标,A i 表示第i 次射中,直到射中为止的试验样本空间,则=A ; A I A 2; L ; A 1 A 2 L A n 1A n ; L.3.—部四卷的文集,按任意次序放在书架上,各卷自左向右,或自右向左顺序恰好为 1、2、3、4概率为 — 124. 一批(N 个)产品中有M 个次品、从这批产品中任取n 个,其中恰有个m 个次品的概 率是 c m c nm /c N5.某地铁车站,每5分钟有一趟列车到站, 乘客到达车站的时刻是任意的, 则乘客侯 车时间不超过3分钟的概率为 6•在区间(0, 1 )中随机地取两个数,则事件“两数之和小于 6”的概率为57. 已知 RA)= P(B)=(1) ;P(AB)12.假设一批产品中一、二、三等品各占60% 30% 10%从中随机取一件结果不是三等品,则取到一等品的概率为13. 已知 P(A) a,P (B|A) b,则卩(AB )14. 一批产品共10个正品,2个次品,任取两次,每次取一件(取后不放回),则第2次抽取为次品的概率162 1 215.甲、乙、丙三人入学考试合格的概率分别是 -,1,-,三人中恰好有两人合格的概3 2 5率为2/5 .16. 一次试验中事件 A 发生的概率为 p ,现进行n 次独立试验,则A 至少发生一次的概率为 1 (1 p)n; A 至多发生一次的概率为17.甲、乙两人独立地对同一目标射击一次,其命中率分别为和,现已知目标被击中,则它是甲中的概率为二、选择题3.如果事件A, B 有B A,则下述结论正确的是(C ).产品不全是合格品”,则下述结论正确的是(B ).5. 若二事件A 和B 同时出现的概率 P( AB )=0则(C ).(C ) AB 未必是不可能事件;(D ) P( A )=0或P( B )=0.a ab .(1 P)n np(1 p)n 11.以A 表示事件“甲种产品畅销,乙种产品滞销” 则其对立事件 A 为(D ).(A ) “甲种产品畅销,乙种产品滞销” (B ) “甲、乙两种产品均畅销” (C ) “甲种产品滞销”(D ) “甲种产品滞销或乙种产品畅销”2.对于任意二事件 A 和 B,与A BB 不等价的是(D ).(A) A B;(B) B A;(C) AB(D) AB(A ) A 与B 同时发生; (B) A 发生,B 必发生; (C) A 不发生B 必不发生; (D B 不发生A 必不发生.4. A 表示“五个产品全是合格品”,B 表示“五个产品恰有一个废品”,C 表示“五个(A) A B;(B) A C;(C) B C;(D) A B C.(A ) A 和B 不相容;(B ) AB 是不可能事件;6.对于任意二事件A和B有P(A B) (C ).(D) P(A) P (B) P(B) P(AB).8.设A , B 是任意两个概率不为 0的不相容的事件,则下列事件肯定正确的(D ).(A) A 与 B 不相容;(B) A 与 B 相容;(C) P( AB = P( A )P( B); (D) P( A-护P( A ). 9.当事件A B 同时发生时,事件C 必发生则(B ).(C) 事件A 和 B 互不独立;13 .设A, B 是任意二事件,且P(B) 0, P(A|B) 1 ,则必有(C ).(A) P(A B) P(A); (B) P(A B) P(B); (C) P(A B) P(A);(D)P(AB) P(B).14. 袋中有 5个球,其中2个白球和 3个黑球,又有5个人依次从袋中任取一球,取后不放回,则第二人取到白球的概率为(D .(C ) P (A) P( AB); (A) P(C) P(A) P(B) 1;(C) P(C) P(AB);(B) P(C) P(A) P(B) 1; (D) P(C) P(A B).10.设A,B 为两随机事件,且 A ,则下列式子正确的是 (A ).(A ) P(A B) P(A);(B) P(AB) P(A); (C) P(B|A) P(B);(D)P(B A) P(B) P(A).11.设A 、B 、C 是二随机事件,且 P(C) 0,则下列等式成立的是 (B).(A) P(A|C) P(A|C) (C) P(A|C) P(A|C)1; 1;(B) P(AUB|C) P(A|C) P(B|C) P (AB|C); (D) P(AUB|C) P(A|C) P(B|C).12.设A, B 是任意两事件B,P(B) 0,则下列选项必然成立的是(B ).(A) P (A) P(A|B); (C) P(A) P(A|B);(B) P(A) P(A|B); (D) P(A) P(A| B). 1(A)1;(B) |;4(C) 1;(D) I515.设 0 P(A) 1, 0 P(B) 1, P(A|B) P(A|B) 1,则(D ).(A) 事件A 和 B 互不相容;(B)事件A 和B 互相对立;事件A 和B 相互独立.p (0 p 1),则此人第4 (D)16.某人向同一目标重复射击,每次射击命中目标的概率为次射击恰好第2次命中目标的概率为(C).三、解答题1.写出下列随机实验样本空间:(1)同时掷出三颗骰子,记录三只骰子总数之和;(2) 10只产品中有3次产品,每次从中取一只(取出后不放回) ,直到将3只次品都取 出,记录抽取的次数;⑶对某工厂出厂的产品进行检查,合格的盖上“正品” ,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
人教版九年级数学第二十五章《随机事件与概率》课时练习题(含答案)一、单选题1.在一个不透明的盒子中装有8个白球和m个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球为黄球的概率是13,则m的值为()A.16 B.12 C.8 D.42.将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为()A.12B.13C.25D.353.分别向如图所示的四个区域投掷一个小球,小球落在阴影部分的概率最小的是()A.B.C.D.4.一名运动员连续打靶100次,其中5次命中10环,5次命中9环,90次命中8环.根据这几次打靶记录,如果再让他打靶1次,那么下列说法正确的是()A.命中10环的可能性最大B.命中9环的可能性最大C.命中8环的可能性最大D.以上3种可能性一样大5.不透明袋中装有除颜色外完全相同的a个白球、b个红球,则任意摸出一个球是红球的概率是()A.ba b+B.baC.aa b+D.ab6.在某市组织的物理实验操作考试中,考试所用实验室共有24个测试位,分成6组,同组4个测试位各有一道相同试题,各组的试题不同,分别标记为A,B,C,D,E,F,考生从中随机抽取一道试题,则某个考生抽到试题A的概率为()A.23B.14C.16D.1247.如图,一张圆桌共有3个座位,甲、乙,丙3人随机坐到这3个座位上,则甲和乙相邻的概率为()A.13B.12C.23D.18.以下转盘分别被分成2个、4个、5个、6个面积相等的扇形,任意转动这4个转盘各1次.已知某转盘停止转动时,指针落在阴影区域的概率是13,则对应的转盘是()A.B.C.D.二、填空题9.如图,在边长为1的小正方形组成的3×3网格中,A,B两点均在格点上,若在格点上任意放置点C,恰好使得△ABC的面积为12的概率为_________.10.一个小球在如图所示的地面上自由滚动,并随机地停留在某块方砖上,则小球停留在黑色区域的概率是_________________.11.如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等,则小球从E出口落出的概率是________.12.如图,一块飞镖游戏板由大小相等的小等边三角形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),则击中黑色区域的概率是____________.13.某同学投掷一枚硬币,如果连续4次都是正面朝上,则他第5次抛掷硬币的结果是正面朝上的概率是________.14.如图,小华在5×4的地板砖上行走,并随机停留在某一块方砖上,则他停留在阴影方砖上的概率是________.三、解决问题15.一个不透明的口袋中装有6个红球,9个黄球,3个白球,这些球除颜色外其他均相同,从中任意摸出一个球.(1)摸到的球是白球的概率;摸到红球的概率为;摸到白球的概率为;(2)如果要使摸到白球的概率为14,需要在这个口袋中再放入多少个白球?16.一只口袋里放着4个红球、8个黑球和若干个白球,这三种球除颜色外没有任何区别,并搅匀.()1取出红球的概率为1,白球有多少个?5()2取出黑球的概率是多少?()3再在原来的袋中放进多少个红球,能使取出红球的概率达到1317.为了提高学生阅读能力,某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)本次调查的学生有________人;请将条形统计图补充完整;(2)扇形统计图中,求出“1.5小时”部分所对的扇形圆心角度数;(3)若该校八年级共有500人,现从中随机抽取一名学生,你认为“抽到周末阅读时间为1.5小时的学生”与“抽到周末阅读时间不高于1小时的学生”的可能性哪个大?________.(直接写出结果)18.如图,△ABC的顶点在边长为1的正方形网格的格点上.(1)在网格内作△DEF,使它与△ABC关于直线l对称(D、E、F分别是点A、B、C的对应点).(2)如果在6×5的网格内任意找一点,这个点在△ABC和△DEF外的概率是多少?19.在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球,其中红球3个,白球5个,黑球若干个,若从中任意摸出一个白球的概率是13.(1)求盒子中黑球的个数;(2)求任意摸出一个球是黑球的概率;(3)从口袋里取走x个黑球后,再放入x个白球,并充分摇匀,若随机摸出白球的概率不小于35,至少需取走多少个黑球?20.一个小球在如图所示的方格上任意滚动,并随机停留在某个方格上,每个方格的大小完全相同.(1)小球停留在黑色区域的概率为_____________.(2)现要从其余白色小方格中任选出一个也涂成黑色,求涂完后图中的黑色方格部分构成轴对称图形的概率,并用数字①、②、③……在图中将符合要求的白色方格位置标出来。
11. 将8本书任意放到书架上,求其中3本数学书恰排在一起的概率。
12. 某人买了大小相同的新鲜鸭蛋,其中有a只青壳的,b只白壳的,他准备将青壳蛋加工成咸蛋,故将鸭蛋一只只从箱中摸出进行分类,求第k次摸出的是青壳蛋的概率。
13. 某油漆公司发出17桶油漆,其中白漆10桶,黑漆4桶,红漆3桶,在搬运中所有标签脱落,交货人随意将这些油漆发给顾客。
问一个订货为4桶白漆、3桶黑漆,2桶红漆的顾客,能按所定颜色如数得到订货的概率是多少?14. 将12名新技工随机地平均分配到三个车间去,其中3名女技工,求:(1)每个车间各分配到一名女技工的概率;(2)3名女技工分配到同一车间的概率。
15.从6双不同的手套中任取4只,求其中恰有两只配对的概率。
16.从0,1,2,......,9十个数中随机地有放回的接连取三个数字,并按其出现的先后排成一列,求下列事件的概率:(1)三个数字排成一奇数;(2)三个数字中0至多出现一次;(3)三个数字中8至少出现一次;(4)三个数字之和等于6。
(利用事件的关系求随机事件的概率)17. 在1~1000的整数中随机地取一个数,问取到的整数既不能被4整除,又不能被6整除的概率是多少?18. 甲、乙两人先后从52张牌中各抽取13张,(1)若甲抽后将牌放回乙再抽,问甲或乙拿到四张A的概率;(2)若甲抽后不放回乙再抽,问甲或乙拿到四张A的概率。
19. 在某城市中发行三种报纸A,B,C,经调查,订阅A报的有45%,订阅B报的有35%,订阅C报的有30%,同时订阅A及B的有10%,同时订阅A及C的有8%,同时订阅B及C的有5%,同时订阅A,B,C 的有3%。
试求下列事件的概率:(1)只订A报的;(2)只订A及B报的;(3)恰好订两种报纸。
20.某人外出旅游两天,据预报,第一天下雨的概率为0.6,第二天下雨的概率为0.3,两天都下雨的概率为0.1,试求:(1)至少有一天下雨的概率;(2)两天都不下雨的概率;(3)至少有一天不下雨的概率。
第1章随机事件与概率练习题1、同时掷两颗均匀的骰子,试求:(1)两颗骰子点数之和不超过8点的概率;(2)两颗骰子点数之差的绝对值不超过2点的概率。
(参考答案:(1)13 / 18 ;(2)2 / 3 )2、设A、B 为任意两个随机事件,求P ( ( A + B ) (⎺A + B) ( A +⎺B ) (⎺A +⎺B ) ) 。
(0 )3、设A、B 为两个互斥的随机事件,且P(A) = p,P(B) = q,求P( A + B ),P(AB),P( A - B ),P ( A +⎺B ),P (⎺A⎺B ) 。
(p + q ;0 ;p ;1 - q ;1 - p - q )4、事件A、B及A∪B 的概率分别为p、q、r,求P(AB);P ( A⎺B );P (⎺AB );P (⎺A⎺B ) 。
(p + q - r ;r - q ;r - p ;1 - r )5、已知随机事件A、B 相互独立,且P( B) = 2 P(A) ,若P( A∪B ) = 0.28,试求P(A) 的值。
(0.1 )6、设A、B、C 为随机事件,且P(A) = P(B) = P(C) = 1 / 4,P(AB) = P(BC) = 0,P(AC) = 1 / 8,求A、B、C 至少出现一个的概率。
( 5 / 8 )7、设A、B 是两个相互独立的随机事件,且A 和B 都不发生的概率是1 / 9 ,A 发生B 不发生的概率与 B 发生 A 不发生的概率相等。
试求事件 A 发生的概率。
( 2 / 3 )8、设A、B 为两个随机事件,P(A) = 0.9,P ( B |⎺A ) = 0.4,求P (⎺A B ) 和P ( A + B ) 。
(0.04 ;0.94 )9、设A、B 是两个事件,且P(A) = 0.92,P( B) = 0.9,P ( B |⎺A ) = 0.85,求P(A+B),P(AB),P(A|B),P (⎺A +⎺B ) ,P ( A |⎺B ) ,P ( A ⎢A ∪⎺B ) 。
第一章 随机事件及其概率 练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。
(B ) (2)事件的对立与互不相容是等价的。
(B ) (3)若()0,P A = 则A =∅。
(B )(4)()0.4,()0.5,()0.2P A P B P AB ===若则。
(B )(5)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (6)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P {}1=3两个女孩。
(B ) (7)若P(A)P(B)≤,则⊂A B 。
(B )(8)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。
(B )(9)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。
(A )2. 选择题(1)设A, B 两事件满足P(AB)=0,则CA. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C )A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB)(3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D) A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A ) A. P(A ∪B)=P(A) B. P(AB)=P(A)C. P(B|A)=P(B)D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B )A.()a c c + B . 1a c +-C. a b c +-D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D )A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。
高考数学概率计算与随机事件选择题1. 某班级共有50名学生,其中有20名女生和30名男生。
随机抽取一名学生,抽到女生的概率是多少?2. 一个袋子里有5个红球和6个蓝球,随机取出一个球,取出红球的概率是多少?3. 抛掷一枚公平的六面骰子,得到偶数的概率是多少?4. 在一次抽奖活动中,共有100个奖品,其中有20个一等奖,30个二等奖,50个三等奖。
随机抽取一个奖品,抽到一等奖的概率是多少?5. 某班级共有40名学生,其中有25名喜欢数学,20名喜欢物理。
随机抽取一名学生,抽到喜欢数学或喜欢物理的概率是多少?6. 一个盒子里有5个苹果和3个橙子,随机取出一个水果,取出苹果的概率是多少?7. 抛掷两枚公平的六面骰子,两个骰子点数之和为5的概率是多少?8. 某班级共有30名学生,其中有15名参加了数学竞赛,10名参加了物理竞赛。
随机抽取一名学生,抽到参加了数学竞赛或参加了物理竞赛的概率是多少?9. 某班级共有50名学生,其中有25名男生和25名女生。
随机抽取一名学生,抽到男生的概率是多少?10. 一个袋子里有7个红球和8个蓝球,随机取出一个球,取出蓝球的概率是多少?11. 抛掷一枚公平的六面骰子,得到一个素数的概率是多少?12. 在一次抽奖活动中,共有150个奖品,其中有30个一等奖,50个二等奖,70个三等奖。
随机抽取一个奖品,抽到二等奖的概率是多少?13. 某班级共有40名学生,其中有20名参加了数学竞赛,15名参加了物理竞赛。
随机抽取一名学生,抽到参加了数学竞赛或参加了物理竞赛的概率是多少?14. 一个盒子里有4个苹果和6个橙子,随机取出一个水果,取15. 抛掷两枚公平的六面骰子,两个骰子点数之和为6的概率是多少?16. 某班级共有30名学生,其中有10名喜欢数学,15名喜欢物理。
随机抽取一名学生,抽到喜欢数学或喜欢物理的概率是多少?17. 某班级共有50名学生,其中有25名男生和25名女生。
随机抽取一名学生,抽到女生的概率是多少?18. 一个袋子里有6个红球和4个蓝球,随机取出一个球,取出红球的概率是多少?19. 抛掷一枚公平的六面骰子,得到一个质数的概率是多少?20. 在一次抽奖活动中,共有200个奖品,其中有40个一等奖,60个二等奖,100个三等奖。
第十二章 随机事件与概率一、填空题1. 将C 、C 、E 、E 、I 、N 、S 等七个字母随机地排成一行,那么,恰好排成英文单词SCIENCE 的概率为 .2. 一批产品共有10件正品和2件次品,任意抽取两次,每次抽一件,抽出后不放回,则第二次抽出的是次品的概率为 .3. 随机地向半圆220x ax y -<<(a 为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x 轴的夹角小于4π的概率为 .4. 若在区间()1,0内任取两个数,则事件“两数之和小于56”的概率为 .5. 在区间()1,0中随机地取两个数,则这两个数之差的绝对值小于21的概率为 .6. ()()3.0,7.0=-=B A P A P ,则()=AB P .7. 设A 、B 为两相互独立的事件,()()4.0,6.0==A P B A P ,则()=B P .8. 已知A 、B 为两个事件,满足条件()()B A P AB P =且()p A P =,则()=B P . 9. 设随机事件A 、B 及其和事件B A 的概率分别是4.0、3.0和6.0,若B 表示B 的对立事件,那么积事件B A 的概率()=B A P .10. 设对于事件A 、B 、C ,有()()()41===C P B P A P ,()()0==BC P AB P ,()81=AC P ,则A 、B 、C 三个事件中至少出现一个的概率为 .11. 设()()7.0,4.0=+=B A P A P ,若事件A 与B 互斥,则()=B P ;若事件A 与B 独立,则()=B P .12. 设两两相互独立的三事件A 、B 和C 满足条件:Φ=ABC ,()()()21<==C P B P A P ,且已知()169=C B A P ,则()=A P .13. 设A 、B 是任意两个随机事件,则()()()(){}=++++B A B A B A B A P .14. 设两个相互独立的事件A 和B 都不发生的概率为91,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则()=A P .15. 三人独立破译一密码,他们单独译出的概率分别为41,31,51,则此密码被破译的概率为 .16. 假设一批产品中一、二、三等品各占%10%,30%,60,从中随意取一件,结果不是三等品,则取到产品是一等品的概率为 . 17. 已知随机事件A 的概率()5.0=A P ,随机事件B 的概率为()6.0=B P 及条件概率()8.0=A B P ,则()=B A P .18. 设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率为 .19. 设工厂A 和工厂B 的产品的次品率分别为%1和%2,现从由A 和B 的产品分别占%60和%40的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是 .20. 袋中有50个乒乓球,其中30个是黄球,20个是白球.今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是 .21. 甲乙两人独立地对同一目标射击一次,其命中率分别为6.0和5.0,现已知目标被命中,则它是甲射中的概率是 .22. 某射手在三次射击中至少命中一次的概率为875.0,则这射手在一次射击中命中的概率为 .23. 电路由元件A 与两个并联的元件B 、C 串联而成,若A 、B 、C 损坏与否相互独立,且它们损坏的概率依次为1.0,2.0,3.0,则电路断路的概率为 .24. 设在一次试验中,事件A 发生的概率为p ,现进行n 次独立试验,则A 至少发生一次的概率为 ;而事件A 至多发生一次的概率为 .25. 有两个箱子,第1个箱子有3个白球,2个红球;第2个箱子有4个白球,4个红球.现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子取出1个球,此球是白球的概率为 .已知上述从第2个箱子取出的球是白球,则从第1个箱子中取出球是白球的概率为 .26. 设在三次独立试验中,事件A 出现的概率相等.若已知A 至少出现一次的概率等于2719,则事件A 在一次试验中出现的概率是 .27. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8180,则该射手的命中率为 .二、单项选择题1. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( ). ()A “甲种产品滞销,乙种产品畅销” ()B “甲、乙两种产品均畅销”()C “甲种产品滞销” ()D “甲种产品滞销或乙种产品畅销”2. 对于任意二事件A 和B ,与B B A = 不等价的是( ). ()AB A ⊂()BA B ⊂()CΦ=B A()D Φ=B A3. 设()()()c B A P b B P a A P === ,,,则()B A P 为( ).()A b a -()B b c -()C ()b a -1()Da b -4. 设事件A 与事件B 互不相容,则( ).()A ()0=B A P()B ()()()B P A P AB P = ()C ()()B P A P -=1()D ()1=B A P 5. 设A 、B 是任意两个概率不为0的不相容事件,则下列肯定正确的是( ).()A A 与B 不相容()B A 与B 相容()C ()()()B P A P AB P =()D ()()A P B A P =-6. 设A 、B 为两随机事件,且A B ⊂,则下列式子正确的是( ). ()A ()()A P B A P =+ ()B ()()A P AB P =()C ()()B P A B P = ()D ()()()A P B P A B P -=- 7. 对任意事件A 、B ,则()B A P -是( ).()A ()()B P A P - ()B ()()()AB P B P A P +- ()C ()()AB P A P -()D ()()()B A P B P A P -+8. 设A 、B 为两事件且()0=AB P ,则( ).()A A 与B 互斥()B AB 是不可能事件 ()C AB 未必是不可能事件()D ()0=A P 或()0=B P9. 设()()()()1,10,10=+<<<<B A P B A P B P A P ,则( ).()A A 与B 互不相容()B A 、B 相互对立 ()CA 、B 不独立()D A 、B 相互独立 10. 设事件A 、B 满足()1=A B P ,则( ).()AA 是必然事件()B ()0=B A P ()CB A ⊃()DB A ⊂11. 设()()()8.0,7.0,8.0===B A P B P A P ,则下列结论正确的是( ).()A A 、B 相互独立()B A 、B 互斥 ()CB A ⊂()D ()()()B P A P B A P +=+ 12. 设A 、B 为两个随机事件,且有()1|=AB C P ,则下列结论正确是( ). ()A ()()()1-+≤B P A P C P ()B ()()()1-+≥B P A P C P ()C ()()AB P C P = ()D ()()B A P C P =13. 设A 、B 为两个互斥事件,且()0)(,0>>B P A P ,则( ). ()A ()0|>A B P ()B ())(|A P B A P = ()C 0)|(=B A P ()D )()()(B P A P AB P =14. 已知()10<<B P 且()[]()()B A P B A P B A A P 2121+=+,则下列选项成立的是( ). ()A ()[]()()B A P B A P B A A P 2121+=+ ()B ()()()B A P B A P B A B A P 2121+=+ ()C ()()()B A P B A P A A P 2121+=+()D ()()()()()2211A B P A P A B P A P B P += 15. 设A 、B 为任意两事件且()0,>⊂B P B A ,则下列选项必然成立的是( ).()A ()()B A P A P < ()B ()()B A P A P ≤ ()C ()()B A P A P >()D ()()B A P A P ≥16. 设A 、B 为随机事件,且()0>B P ,()1=B A P ,则必有( ).()A ()()A P B A P > ()B ()()B P B A P > ()C ()()A P B A P =()D ()()B P B A P =17.设A 、B 、C 是三个相互独立的随机事件,且()10<<C P ,则下列给定四对事件中不相互独立的是( ).()AC B A 与+ ()B C AC 与 ()C C B A 与- ()D C AB 与 18. 设A 、B 、C 三个事件两两独立,则A 、B 、C 相互独立的充分必要条件是( ). ()A A 与BC 独立 ()B AB 与C A 独立 ()C AB 与AC 独立 ()D B A 与C A 独立19. 将一枚硬币独立地掷两次,引进事件:{}掷第一次出现正面=1A ,{}掷第二次出现正面=2A ,{}正、反面各出现一次=3A ,{}正面出现两次=4A ,则事件( ).()A 321,,A A A 相互独立()B 432,,A A A 相互独立 ()C321,,A A A 两两独立()D 432,,A A A 两两独立20. 对任意事件A 和B ,( ). ()A 若Φ≠AB ,则A 、B 一定独立 ()B 若Φ≠AB ,则A 、B 有可能独立 ()C 若Φ=AB ,则A 、B 一定独立()D 若Φ=AB ,则A 、B 一定不独立21.某人向同一目标独立重复射击,每次射击命中目标的概率为()10<<p p ,则此人第4次射击恰好第2次命中目标的概率为( ).()A ()213p p -()B ()216p p -()C ()2213p p -()D ()2216p p -三、解答题1. 把10本书随机放在书架上,求其中指定5本书放在一起的概率?2. 从9,,1,0 这十个数字中任取三个不同的数字,试求下列事件的概率: =1A {三个数字中不含0和5}; =2A {三个数字中含0但不含5}.3. 箱中装有α个白球及β个黑球.⑴从其中任取b a +个,试求所取的球恰含有a 个白球和b 个黑球的概率(βα≤≤b a ,);⑵从其中任意地接连取出()βα+≤++11k k 个球,如果每球取出后不放回,试求最后取出的球是白球的概率?4. 从5双不同尺码的鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少?5. 从1到100这100个整数中,任取一数,已知取出的数是不大于50的数,求它是2或3的倍数的概率是多少?6. 考虑一元二次方程02=++C Bx x ,其中B 、C 分别是一枚骰子接连掷两次先后出现的点数,求该方程有实根的概率p 和有重根的概率q .7. 设两箱内装有同种零件,第一箱装50件,有10件一等品,第二箱装30件,有18件一等品,先从两箱中任挑一箱,再从此箱中先后不放回地任取两个零件,求:⑴先取出的零件是一等品的概率p ;⑵在先取的是一等品的条件下,后取的仍是一等品的条件概率q .8. 假设一厂家生产的每台仪器,以概率7.0可以直接出厂;以概率3.0需进一步调试,经调试后以概率8.0可以出厂;以概率2.0定为不合格品不能出厂.现该厂新生产了()2≥n n 台仪器(假设各台仪器的生产过程相互独立).求:⑴全部能出厂的概率α;⑵其中恰有两台不能出厂的概率β;⑶其中至少有两台不能出厂的概率θ.9. 一本500页的书,共500个错字,每个错字等可能出现在每一页上,求在给定的一页上至少有三个错字的概率?10. 设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机地取一个地区的报名表,从中先后抽出两份.⑴求先抽到的一份是女生表的概率p ;⑵已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q .11. 设A 、B 为任意二事件,其中A 的概率不等于0和1,证明,()()A B P A B P =是事件A 与B 独立的充分必要条件.12. 设玻璃杯整箱出售,每箱20只,各箱含210,,只残次品的概率分别为1.0,1.0,8.0,一顾客欲购买一箱玻璃杯,由售货员任取一箱,经顾客开箱察看4只,若无残次品,则买此箱玻璃杯,否则不买.求:⑴顾客买此箱玻璃杯的概率α;⑵在顾客买的此箱玻璃杯中,确实没有残次品的概率β.13.。
第一章 随机事件及其概率习题一一、填空题1.设样本空间}20|{≤≤=Ωx x ,事件}2341|{ },121|{<≤=≤<=x x B x x A ,则B A Y 13{|0}{|2}42x x x x =≤<≤≤U , B A 113{|}{|1}422x x x x =≤≤<<U . 2. 连续射击一目标,i A 表示第i 次射中,直到射中为止的试验样本空间Ω,则Ω={}112121 n n A A A A A A A -L L L ;;;;. 3.一部四卷的文集,按任意次序放在书架上,各卷自左向右,或自右向左顺序恰好为1、2、3、4概率为 121 . 4.一批(N 个)产品中有M 个次品、从这批产品中任取n 个,其中恰有个m 个次品的概率是 n N m n M n m M C C C /-- .5.某地铁车站, 每5分钟有一趟列车到站,乘客到达车站的时刻是任意的,则乘客侯车时间不超过3分钟的概率为 .6.在区间(0, 1)中随机地取两个数,则事件“两数之和小于56 ”的概率为 . 7.已知P (A )=, P(B )=,(1) 当A ,B 互不相容时, P (A ∪B )= ; P(AB )= 0 .(2) 当B A 时, P(A+B )= ; P (AB )= ;8. 若γ=β=α=)(,)(,)(AB P B P A P ,=+)(B A P 1γ-;=)(B A P βγ-; )(B A P +=1αγ-+.9. 事件C B A ,,两两独立, 满足21)()()(<===C P B P A P ABC ,φ,且P (A+B+C )=169, )(A P 则= . 10.已知随机事件A 的概率5.0)(=A P ,随机事件的概率6.0)(=B P ,及条件概率8.0)|(=A B P ,则和事件B A +的概率=+)(B A P .12.假设一批产品中一、二、三等品各占60%、30%、10%,从中随机取一件结果不是三等品,则取到一等品的概率为 23 . 13. 已知===)(则B A P b A B P a A P ,)|(,)( ab a - . 14. 一批产品共10个正品,2个次品,任取两次,每次取一件(取后不放回),则第2次抽取为次品的概率 61 . 15. 甲、乙、丙三人入学考试合格的概率分别是52 ,21 ,32,三人中恰好有两人合格的概率为 2/5 . 16. 一次试验中事件A 发生的概率为p , 现进行n 次独立试验, 则A 至少发生一次的概率为11n p --();A 至多发生一次的概率为 11(1)n n p np p --+-() .17. 甲、乙两人独立地对同一目标射击一次,其命中率分别为和,现已知目标被击中,则它是甲中的概率为 .二、选择题1.以A 表示事件“甲种产品畅销,乙种产品滞销”则其对立事件A 为(D ).(A )“甲种产品畅销,乙种产品滞销”; (B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”.2. 对于任意二事件不等价的是与和B B A B A =Y ,(D ).() ; () ; () ; () .A A B B B A C AB D AB ⊂⊂=Φ=Φ3. 如果事件A ,B 有B A ,则下述结论正确的是(C ).(A ) A 与B 同时发生; (B )A 发生,B 必发生;(C ) A 不发生B 必不发生; (D )B 不发生A 必不发生.4. A 表示“五个产品全是合格品”,B 表示“五个产品恰有一个废品”,C 表示“五个产品不全是合格品”,则下述结论正确的是(B ).() ; () ; () ; .A AB B AC C B CD A B C ====-() 5. 若二事件A 和B 同时出现的概率P(AB )=0则(C ).(A )A 和B 不相容; (B )AB 是不可能事件;(C )AB 未必是不可能事件; (D )P(A )=0或P(B )=0.6. 对于任意二事件A 和有=-)(B A P (C ).(A) )()(B P A P -; (B ))()()(AB P B P A P +-;(C ))()(AB P A P -; (D ))()()()(B A P B P B P A P -++.8. 设A , B 是任意两个概率不为0的不相容的事件,则下列事件肯定正确的(D ). (A) B A 与不相容; (B)B A 与相容; (C) P(AB )=P(A )P(B ); (D) P(A −B )=P(A ).9. 当事件A 、B 同时发生时,事件C 必发生则(B ).(A)()()()1;(B)()()()1;(C)()(); (D)()().P C P A P B P C P A P B P C P AB P C P A B ≤+-≥+-==+ 10. 设B A ,为两随机事件,且A B ⊂ ,则下列式子正确的是 (A ).(A ))()(A P B A P =+; (B) )()(A P AB P =;(C) )()|(B P A B P =; (D) )()()(A P B P A B P -=-.11. 设则下列等式成立的是是三随机事件,且、、,0)(>C P C B A ( B).() (|)(|)1; () (|)(|)(|)(|);() (|)(|)1; () (|)(|)(|).A P A C P A CB P A BC P A C P B C P AB C C P A C P A CD P A B C P A C P B C +==+-+==U U 12. 设B A ,是任意两事件, 且0)(,>⊂B P B A , 则下列选项必然成立的是(B ). ()()(|); ()()(|);()()(|); ()()(|).A P A P AB B P A P A BC P A P A BD P A P A B <≤>≥ 13.设B A ,是任意二事件,且()0P B >,(|)1P A B =,则必有( C ).(A) ()()P A B P A +>; (B) ()()P A B P B +>;(C) ()()P A B P A +=; (D) ()()P A B P B +=.14. 袋中有5个球,其中2个白球和3个黑球,又有5个人依次从袋中任取一球,取后不放回,则第二人取到白球的概率为(D ).1212() ; () ; () ; () .4455A B C D15. 设则,1)|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P (D ).(A) 事件B A 和互不相容; (B) 事件B A 和互相对立;(C) 事件B A 和互不独立; (D) 事件B A 和相互独立.16. 某人向同一目标重复射击,每次射击命中目标的概率为)10(<<p p ,则此人第4次射击恰好第2次命中目标的概率为(C ).222222(A)3(1); (B)6(1);(C)3(1); (D)6(1).p p p p p p p p ----三、解答题1.写出下列随机实验样本空间:(1) 同时掷出三颗骰子,记录三只骰子总数之和; (2) 10只产品中有3次产品,每次从中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数;(3) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
第一章随机事件及其概率典型例题分析例1填空题(1)若事件A,B互斥,且,则____________。
(2)若事件A,B相互独立,且,则_____________。
(3)一个工人生产了3个零件,以事件表示他生产的第i个零件是合格品i=1, 2, 3,试用,i=1, 2, 3来表示下列事件:只有第1个零件是合格品_____________;3个零件中只有1个合格品_______________;3个零件中最多只有2个合格品______________;3个零件都是次品________________;第1个是合格品,但后两个零件中至少有1个次品_________________;3个零件中最多有1个次品________________________________________________。
(4)设,则___________;_________________;_______________________________。
(5)设A,B为两事件,且,,则___________。
解(1) 0.6。
因为A与B互斥,有。
(2) 0.125。
因为A与B独立时,有。
(3) ;;法一:考虑逆事件为“3个均为合格品”,故为,法二:直接考虑“3个零件中至少有1件次品”为;;;。
(4) ;;。
因为所以;。
而,所以。
(5) 。
由于,又且,故。
例2单选题(1) 已知且,则正确的是( )A.B.C.D.(2) 已知以及,则= ( )A. ;B. ;C. ;D.(3) 甲乙两人独立的同时对同一目标射击一次,其命中率分别为0.6和0.5,现在已知目标被命中,则它是甲射中的概率是( )A. 0.8;B. 0.65;C. 0.75;D. 0.25(4) 如果事件A与B同时发生的概率为0,即,则下列情况成立的是( )A. A与B互斥;B. AB为不可能事件;C. 或;D. AB未必为不可能事件。
解(1) B。
因为;而,故B为正确答案。
第一章 随机事件与概率习题1.1 P92. 在抛三枚硬币的试验中写出下列事件的集合表示:A=”至少出现一个正面”; B=”最多出现一个正面”; C=”恰好出现一个正面”; D=”出现三面相同”.5. 设X 为随机变量,其样本空间为},20{≤≤=ΩX 记事件}15.0{≤<=X A , }5.125.0{<≤=X B ,写出下列各事件:(1)B A ,(2)B A ,(3)AB ,(4)B A .6. 对飞机进行两次射击,每次射一弹,设A={恰有一弹击中飞机},B={至少有一弹击中飞机},C={两面三刀弹都击中飞机},D={两面三刀弹都没击中飞机}.又设随机变量X 为击中飞机的次数,试用X 表示事件A,B,C,D 中哪些是互不相容的事件?哪些是对立的事件?9. 请叙述下列事件的对立事件: (1) A=”掷两枚硬币,皆为正面”; (2) B=”射击三次,皆命中目标”;(3) C=”加工四个零件,至少有一个合格品”.习题1.2 P283. 任取两个正整数,求它们的和为偶数的概率.11. 口袋中有10个球,分别标有号码1至10,现从中不返回地任取3个,记下取出球的号码,试求: (1) 最小号码为5的概率; (2) 最大号码为5的概率.12. 掷三颗骰子,求以下事件的概率: (1)所得的最大点数小于等于5; (2)所得的最大点数等于5.15. 5个人在第一层进入十一层楼的电梯,假如每个人以相同的概率走出任一层(从第二层开始),求此5个人在不同楼层走出的概率.20. 将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率各为多少?22. 将n 个完全相同的球(这时也称球是不可辨的)随机地放入N 个盒子中,试求:(1) 某个指定的盒子中恰好有k 个球的概率; (2) 恰好有m 个空盒的概率;(3) 某指定的m 个盒子中恰好有j 个球的概率.23. 在区间(0,1)中随机地取两个数,求事件”两数之和小于6/5”的概率.24. 甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是等可能的. 如果甲船的停泊时间是一小时,乙船的停泊时间是两小时,求它们中任何一艘都不需要等候码头空出的概率是多少?27. 设一个质点落在xoy 平面上由x 轴y 轴及直线x+y=1所围成的三角形内,而落在这三角形内各点处的可能性相等,即落在这三角形内任何区域上的概率与这区域的面积成正比,试求此质点落在直线x=1/3的左边的概率是多少?习题1.3 P364. 从0,1,2,…,9等十个数字中任意选出三个不同的数字,试求下列事件的概率: (1)};50{1和三个数字中不含=A (2)};50{2或三个数字中不含=A (3)}.50{3但不含三个数字中含=A8. 从数字1,2,…,9中可重复地任取n 次, 求n 次所取数字的乘积能被10整除的概率.10. 甲掷硬币n+1次, 乙掷n 次. 求甲掷出的正面数比乙掷出的正面数多的概率.14. 某班n 个战士各有1支归个人保管使用的枪, 这些枪的外形完全一样, 在一次夜间紧急集合中, 每人随机地取了1支枪, 求至少有1人拿到自己的枪的概率. 18.设2/1)()(==B P A P , 试证)()(,B A P AB P =19. 对任意的事件A, B, C, 证明: (1));()()()(A P BC P AC P AB P ≤-+ (2))()()(BC P AC P AB P ++1)()()(-++≥C P B P A P22. 证明:(1);1)()()(-+≥B P A P AB P (2)≥)(21n A A A P )1()()()(21--+++n A P A P A P n习题1.4 P484. 设某种动物由出生活到10岁的概率为0.8, 而活到15岁的概率为0.4. 问现年为10岁的这种动物能活到15岁的概率是多少?6. 设n 件产品中有m 件不合格品, 从中任取两件, 已知两件中有一件是不合格品, 求另一件也是不合格品的概率 .9. 已知,3.0)(=A P ,4.0)(=B P 5.0)(=B A P ,求)|(B A B P13. 甲口袋有a 个黑球,b 个白球, 乙口袋有n 个黑球,m 个白球.(1) 从甲口袋任取1个球放入乙口袋, 然后再从乙口袋任取1个球,试求最后从乙口袋取出的是黑球的概率.(2) 从甲口袋任取2个球放入乙口袋, 然后再从乙口袋任取1个球, 试求最后从乙口袋取出的是黑球的概率.16. 钥匙掉了, 掉在宿舍里,掉在教室里,掉在路上的概率分别是40%,35%和25%,而掉在上述三处地方被找到的概率分别是0.8,0.3和0.1, 试求找到钥匙的概率.18. 有两箱零件, 第一箱装50件, 其中10件是一等品; 第二箱装30件, 其中18件是一等品, 现从两箱中随意挑出一箱,然而从该箱中先后任取两个零件,(1) 第一次取出的零件是一等品的概率;(2) 在第一次取出的是一等品的条件下,第二次取出的零件仍然是一等品的概率.19. 学生在做一道有4个选项的单项选择题时,如果他不知道总是的正确答案时,就作随机猜测. 现从卷面上看题是答对了, 试在以下情况下求学生确实知道正确答案的概率.(1) 学生知道正确答案和胡乱猜测的概率是1/2. (2) 学生知道正确答案的概率是0.2.27. 设P(A)>0, 试证)()(1)|(A P B P A B P -≥28. 若事件A 与B 互不相容, 且0)(≠B P , 证明:)(1)()|(B P A P B A P -=31. 设ε-==1)(,)(B P p A P , 证明:εεε-≤≤--1)|(1pB A P p习题1.5 P553. 甲乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.7,现已知目标被击中,求它是甲射中的概率.5. 在一小时内甲,乙,丙三台机床需维修的概率分别是0.9,0.8和0.85,求一小时内(1) 没有一台机床需要维修的概率; (2) 至少有一台机床不需要维修的概率; (3) 至多只有一台机床需要维修的概率.6. 设321,,A A A 相互独立,且3/1)(=i A P ,I=1,2,3. 试求321,,A A A 中 (1) 至少出现一个的概率; (2) 恰好出现一个的概率; (3) 最多出现一个的概率.8. 假设7.0)(,4.0)(==B A P A P , 在以下情况下求)(B P : (1) A, B 不相容; (2) A, B 独立;(3) B A ⊂.14. 每次射击命中率为0.2, 试求:射击多少次才能使至少击中一次的概率不小于0.9?22. 设A,B,C 三事件相互独立, 试证A-B 与C 独立.23. 设0<P(B)<1, 试证事件A 与B 独立的充要条件是)|()|(B A P B A P =第二章 随机变量及其分布习题2.1 P732. 一颗骰子抛两次,以X 表示两次中所得的最小点数.(1) 试求X 的分布列;(2) 写出X 的分布函数, 并作图.4. 有3个盒子,第一个盒子装有1个白球,4个黑球; 第二个盒子装有2个白球,3个黑球; 第三个盒子装有3个白球,2个黑球. 现任取一个盒子,从中任取3个球. 以X 表示所取到的白球数. (1) 试求X 的概率分布列;(2) 取到的白球数不少于2个的概率是多少?6. 设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤<=.6,1;63,2/1;31,3/1;10,4/1;0,0)(x x x x x x F试求X 的概率分布列及P(X<3),P(X ≤3),P(X>1),P(X≥1).11. 如果X 的密度函数为⎪⎩⎪⎨⎧<≤-<≤=其他,021,210,)(x x x x x p试求P(X ≤1.5).13. 设连续随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(2x x Ax x x F试求(1) 系数A;(2) X 落在区间(0.3,0.7)内的概率; (3) X 的密度函数.15. 设随机变量X 和Y 同分布,X 的密度函数为⎪⎩⎪⎨⎧<<=.,0;20,83)(2其他x x x p 已知事件A={X>a}和B={Y>a 独立, 且P(A ∪B)=3/4,求常数a.16. 设连续随机变量X 的密度函数p(x)是一个偶函数,F(x)为X 的分布函数, 求证对任意实数a>0, 有 (1);)(5.0)(1)(0⎰-=-=-adx x p a F a F(2);1)(2)|(|-=<a F a X P (3))].(1[2)|(|a F a X P -=>习题2.2 P81试求E(X)和E(3X+5).5. 用天平称某种物品的质量(砝码仅允许放在一个盘中), 现有三组砝码(甲)1,2,2.5,10(g); (乙)1,2,3,4,10(g); (丙)1,1,2,5,10(g), 称重时只能使用一组砝码. 问:当物品的质量为1g, 2g, …, 10g 的概率是相同的, 用哪一组砝码称重所用的平均砝码数最少?7. 对一批产品进行检查, 如查到第a 件全为合格品, 就认为这批产品合格;若在前a 件中发现不合格品即停止检查,且认为这批产品不合格. 设产品的数量很大, 可认为每次查到不合格品的概率都是p, 问每批产品平均要查多少件?11. 设随机变量X 的分布函数如下, 试求E(X).⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<≤<=--.1,211;10,21;0,2)()1(21x e x x e x F x x12. 某工程队完成某项工程的时间X(单位:月)是一个随机变量,它的分布列为(1) 试求该工程队完成此项工程的平均月数;(2) 设该工程队所获利润为Y=50(13-X),单位为万元. 试求工程队的平均利润;(3) 若该工程队高速安排,完成该项工程的时间1X (单位:月)的分布为则其平均利润可增加多少?13. 设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤≤=.,0;0,2cos 21)(其他πx x x p 对X 独立重复观察4次,Y 表示观察值大于π/3的次数,求Y 2的数学期望.习题2.3 P884. 设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<≤<=--,1,211;10,21;0,2)()1(21x ex x e x F x x试求Var(X).5. 设随机变量X 的密度函数为⎪⎩⎪⎨⎧≤<-≤<-+=,,0;10,1;01,1)(其他x x x x x p试求Var(3X+2).7. 设随机变量X 仅在区间[a,b]上取值,试证.)2()(,)(2a b X Var b X E a -≤≤≤9. 设g(x)为随机变量X 取值的集合上的非负不减函数,且E(g(X))存在,证明:对任意的ε>0,有.)())(()(εεg X g E X P ≤>11. 已知正常成人男性每升血液中的白细胞数平均是7.3×109,标准差是0.7×109. 试利用切比雪夫不等式估计每升血液中的白细胞数在5.2×109至9.4×109之间的概率的下界. 习题2.4 P1013. 某优秀射手命中10环的概率为0.7, 命中9环的概率为0.3. 试求该射手三次射击所是的环数不少于29环的概率.5. 设随机变量X~b(n,p),已知E(X)=2.4, Var(X)=1.44, 求两个参数n 与p 各为多少?7. 一批产品的不合格品率为0.02, 现从中任取40件进行检查,若发现两件或两件以上不合格品就拒收这批产品. 分别用以下方法求拒收的概率:(1)用二项分布作精确计算;(2)用泊松分布作近似计算.9. 已知某商场一天来的顾客数X 服从参数为λ的泊松分布,而每个来到商场的顾客购物的概率为p,证明:此商场一天内购物的顾客数服从参数为λp 的泊松分布.12. 设随机变量X 的密度函数为⎩⎨⎧<<=.,0;10,2)(其他x x x p 以Y 表示对X 的三次独立重复观察中事件{X ≤1/2}出现的次数,试求P(Y=2).13. 某产品的不合格品率为0.1,每次随机抽取10件进行检验,若发现其中不合格品数多于1, 就去调整设备.若检验员每天检验4次,试问每天平均要高速几次设备.习题2.5 P1153. 设K 服从(1,6)上的均匀分布,求方程012=++Kx x 有实根的概率.6. 设某种商品每周的需求量X 服从区间(10,30)上均匀分布,而商店进货数为区间(10,30)中的某一整数,商店每销售1单位商品可获利500元;若供大于求则削价处理,每处理1单位商品亏损100元;若供不应求,则可从外部调剂供应,此时每1单位商品仅获利300元.为使商店所获利润期望值不少于9280元,试确定最少进货量.10. 某种设备的使用寿命X(以年讲)服从指数分布,其平均寿命为4年.制造此种设备的厂家规定,若设备在使用一年之内损坏,则可以予以调换.如果设备制造厂每售出一台设备可赢利100元,而调换一台设备制造厂需花费300元.试求每台设备的平均利润.11. 设顾客在某银行的窗口等待服务的时间X(以min 计)服从指数分布,其密度函数为⎪⎩⎪⎨⎧>=-.,0;0,51)(5其他x e x p x某顾客在窗口等待服务,若超过10min,他就离开,他一个月要到银行5次,以Y 表示一个月内他未等到服务而离开窗口的次数,试求P(Y ≥1).13. 设随机变量X 的密度函数为⎩⎨⎧≤>=-.0,0;0,)(x x e x p x λλ(λ>0)20. 设X~N(3,22),(1)求P(2<X≤5);(2)求P(|X|>2);(3)确定c合得P(X>c)=P(X<c).23. 从甲地飞往乙地的航班,每天上午10:10起飞,飞行时间X服从均值是4h,标准差是20min的正态分布.(1)该机在下午2:30以后到达乙地的概率是多少?(2)该机在下午2:20以前到达乙地的枝率是多少?(3)该机在下午1:50至2:30之间到达乙地的概率是多少?24. 某单位招聘员工,共有10000人报考.假设考试以下有1151人.现按考试成绩从高分到低分依次录用2500人,试问被录用者最低分为多少?30. 设随机变量X~N(μ,σ2),求E|X-μ|.习题2.6 P123试求Y=X与Z=|X|的分布列.3. 设随机变量X服从(-1,2)上的均匀分布,记⎩⎨⎧<-≥=.0,1;0,1XXY试求Y的分布列.7. 设随时机变量X服从区间(1,2)上的均匀分布,试求XeY2=的密度函数.8. 设随机变量X服从区间(0,2)上的均匀分布,(1)求Y=X 2的密度函数.(2)P(Y<2).13. 设),(~2σμN X ,求Xe Y =的数学期望与方差.15. 设随机变量X 的密度函数为⎩⎨⎧≤>=-.0,0;0,)(x x e x p x 若若试求以下Y 的密度函数(1) Y=2X+1; (2)Xe Y =; (3)2X Y =.17.设),(~2σμLN X ,试证:).,(~ln 2σμN X Y =第三章 多维随机变量及其分布习题3.1 1432. 100件产品中有50件一等品,30件二等品,20件三等品.从中不放回地抽取5件,以X,Y 分别表示取出的5件中一等品,二等品的件数,求(X,Y)的联合分布列.5. 设随机变量(X,Y)的联合密度函数为⎩⎨⎧<<<<--=.,0;42,20),6(),(其他y x y x k y x p 试求(1) 常数k;(2) P(X<1,Y<3); (3) P(X<1.5); (4) P(X+Y ≤.6. 设随机变量(X,Y)的联合密度函数为⎩⎨⎧>>=+-.,0;0,0,,()43(其他y x ke yP x p y x 试求(1) 常数k;(2) (X,Y)的联合分布函数F(x,y); (3) P(0<X ≤1,0<Y ≤2).11. 设二维随时机变量(X,Y)的联合密度函数为⎪⎩⎪⎨⎧<<<<+=.,0;20,10,3),(2其他y x xyx y x p 求P(X+Y ≥1).13. 设二维随时机变量(X,Y)的联合密度函数为⎪⎩⎪⎨⎧<<<<=.,0;20,10,21),(其他y x y x p 求X 与Y 中至少有一个小于0.5的概率.习题3.2 P1534.设平面区域D 由曲线及直线y=1/x 及直线y=0,x=1,x=e2所围成,二维随机变量(X.,Y)在区域D 上服从均匀分布,试求X 的边际密度函数.6. 设二维随机变量(X,Y)的联合密度函数为⎩⎨⎧<<<<=.,0;10,6),(2其他x y x y x p试求边际密度函数).()(y p x p Y X 和12. 设X 与Y 是两个相互独立的随机变量, X~U(0,1), Y~Exp(1). 试求(1)X 与Y 的联合密度函数; (2)P(Y ≤X); (3)P(X+Y ≤1).14. 设随机变量(X,Y)的联合密度函数为⎩⎨⎧<<<=.,0;10,||,1),(其他y y x y x p 试求(1)边际密度函数)()(y p x p Y X 和;(2)X 与Y 是否独立?16. 设二维随机变量(X,Y)的联合密度函数为p(x,y). 证明:X 与Y 相互独立的充要条件是p(x,y)可分离变量,即p(x,y)=h(x)g(y). 又问h(x),g(y)与边际密度函数有什么关系?习题3.3 P163试分别求U=max(X,Y)和V=min(X,Y)的分布列.已知P(XY=0)=1,试求Z=max(X,Y)的分布列.5. 设X 和Y 为两个随机变量,且.74)0()0(,73)0,0(=≥=≥=≥≥Y P X P Y X P 试求).0),(max(≥Y X P6. 设X 与Y 的联合密度函数为⎩⎨⎧>>=+-.,0;0,0,),()(其他y x e y x p y x试求以下随机变量的密度函数(1)Z=(X+Y)/2;(2)Z=Y-X.8. 某种商品一周的需要量是一个随机变量,其密度函数为⎩⎨⎧≤>=-.0,0;0,)(1t t te t p t 设各周的需要量是相互独立的,试求 (1) 两周需要量的密度函数)(2x p ; (2) 三周需要量的密度函数).(3x p10. 设二维随机变量(X,Y)在矩形}10,20|),{(≤≤≤≤=y x y x G上服从均匀分布,试求边长分别为X 和Y 的矩形面积Z 的密度函数. 16. 设随机变量n X X X ,,,21 相互独立,且)(~i i Exp X λ,试证:nin i X X X X P λλλλ+++== 2121)),,,min((18. 设随机变量X 与Y 独立同分布,其密度函数为⎩⎨⎧≤>=-.0,0;0,)(x x e x p x (1) 求)/(Y X X V Y X U +=+=与的联合密度函数);,(,v u p V U (2) 以上的U 与V 独立吗?19. 设随机变量X 与Y 相互独立,且).,(~),,(~21λαλαGa Y Ga X 试证:U=X+Y 与C=X/Y 相互独立.习题3.4 P1812. 求掷n 颗骰子出现点数之和的数学期望与方差.3. 从数字0,1,…,n 中任取两个不同的数字,求这两个数字之差的绝对值的数学期望.5. 盒中有n 个不同的球,其上分别写有数字1,2,…,n.每次随机抽出一个,记下其号码,放回去再抽.直到抽到有两个不同的数字为止.求平均抽球次数.9. 设521,,X X X 是独立同分布的随机变量,其共同密度函数为⎩⎨⎧<<=其他,0;10,2)(x x x p使求),,,max(521X X X Y =的密度函数、数学期望和方差。
第一章 随机事件和概率习题
1. 设Ω={1,2,…,10},A ={2,3,4},B={3,4,5},C ={5,6,7},具体写出下列各等式。
(1)A B (2)B A ⋃ (3)B A (4)BC A (5))(C B A ⋃
2.设A 、B 、C 表示三个随机事件,试将下列事件用A 、B 、C 表示出来。
(1)A 发生,B 、C 不发生;
(2)A 、B 都发生,而C 不发生;
(3)所有三个事件都发生;
(4)三个事件都不发生;
(5)三个事件中恰有一个发生;
(6)三个事件中至少有一个发生;
(7)三个事件中至少有两个发生;
(8)不多于一个事件发生。
3.抽查4件产品,设A 表示“至少有一件次品”,B 表示“次品不少于两件”,问A B 各表示件?
4.甲乙两炮同时向一架飞机射击,已知甲炮击中的概率为0.6,乙炮击中的概率为0.5,甲乙两炮都击中的概率为0.3,求飞机被击中的概率是什么?
5.把事件B A ⋃与C B A ⋃⋃分别写成互不相容事件和的形式。
6.指出下列命题中哪些成立,哪些不成立?
(1)B B A B A Y Y =;(2)C B A C B A I I Y =)(;(3)φ=)B A )(AB (;(4)若B A ⊂,
则 A B A =;(5)若φ=AB 且A C ⊂,则φ=BC 。
7.设}2x 0|x {S ≤≤=,1}21|
{≤<=x x A ,}x x B 2341|{<≤=。
具体写出下列各事件:
(1)B A ; (2)B A ⋃; (3)B A ⋂ (4)AB
8.有三个班级,每班在一个星期的六天中安排到某游泳池游泳一次,如果游泳日可以随机安排,求三个班在不同三天游泳的概率。
9.10个零件中有3个次品,7个合格品,从中任取一个不放回,求第三次才取得合格品的概率是多少?
10.将一枚骰子重复掷n 次,试求掷出的最大点数为5的概率。
11.从5双不同的鞋中任取4只,求这4只鞋子中至少有两只能配成一双的概率。
12.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率。
13.把长为l 的棒任意折成3段,求此三段能构成一个三角形的概率。
14. 在矩形}11,21:),{(≤≤-≤≤b a b a 中任取一点,求使方程0=+b ax 的解大于4
1的概率.
15.设事件A 与B 同时发生时,事件C 必发生,则正确的结论是_____
(1)1)B (P )A (P )C (P -+≤ (2)1)B (P )A (P )C (P -+≥
(3))AB (P )C (P = (4))B A (P )C (P ⋃=
16.设31)A (P =,2
1)B (P =。
在下列三种情况下求)A B (P 的值: (1)φ=AB ; (2)B A ⊂; (3)81)AB (P = 17.设A 、B 为两个事件且P(A)=0.6,P(B)=0.7.问(1)在什么条件下P(AB)取最大值,最大值是多少?(2)在什么条件下P(AB)取最小值,最小值是多少?
18.设A 1、A 2为两个事件,证明
(1)P(A 1A 2)= 1-P(1A )-P(2A )+P(1A 2A )
(2)1-P(1A )-P(2A ) ≤ P(A 1A 2) ≤ P(A 1⋃A 2) ≤ P(A 1) +P(A 2)
19设A 、B 为两个事件,P(B)=0.5,P(A-B)=0.3。
求P(B A I ).
20.A 、B 为两个事件且P(A)=1/2,P(B)=1/2,证明P(AB)=P(B A I ).。
21.已知,5.0)(,4.0)(,3.0)(===B A P B P A P 求)|(B A B P Y
22.设A ,B 是两个事件,6
1)|(,31)()(===B A P B P A P ,求)|(B A P 23. 掷3颗骰子,若已知出现的点数没有两个相同,求至少有一颗骰子是一点的概率。
24.袋中有3个白球和一个红球,逐次从袋中摸球,每次摸出一球,如是红球则把它放回,并再放入一只红球,如是白球,则不放回,求第3次摸球时摸到红球的概率?
25.设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球。
今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?
26.袋中装有5枚正品硬币、3枚次品硬币(次品硬币两面均印有国徽)。
从袋中任取一枚硬币,将它投掷3次,已知每次均出现国徽,问这枚硬币是正品硬币的概率是多少?
27.有甲、乙、丙三门火炮同时独立地向某目标射击,命中率分别为0.2,0.3,0.5,求(1)至少有一门火炮命中目标的概率;(2)恰有一门火炮命中目标的概率。
28盒中有10个合格品,3个次品,从盒中一件一件的抽取产品检验,每件检验后不再放回盒中,以X 表示直到取到第一件合格品为止所需检验次数,求X 的分布律,并求概率}3{<X P 。
29.盒中有10个合格品,3个次品,从盒中一件一件的抽取产品检验,每件检验后不再放回盒中,以X 表示直到取到第一件合格品为止所需检验次数,求X 的分布律,并求概率}3{<X P 。
30.袋中装有编上号码1,2,…,9的九个性质相同的球,从袋中任取5个球,以X 表示所取的5个球中偶数号球的个数,求X 的分布律,并求其中至少有两个偶数号球的概率。
31.射手对目标独立射击5发,单发命中概率为0.6,求(1)恰好命中两发的概率;(2)至多命中3发
的概率;(3)至少命中一发的概率.。