高考物理一轮复习知识点专题讲义---圆周运动及其应用
- 格式:ppt
- 大小:5.84 MB
- 文档页数:89
高考圆周运动知识点在物理学中,我们学习了许多与运动相关的知识,而圆周运动是其中一个重要的概念。
圆周运动是指物体围绕固定点以匀速运动,形成一个圆形轨迹的运动。
在高考中,圆周运动也是一个常见的考点。
本文将介绍高考圆周运动的一些重要知识点和相关应用。
1. 圆周运动的基本概念圆周运动由物体的半径和角速度决定。
半径是指物体到固定点的距离,而角速度则是指物体单位时间内绕固定点转过的角度。
在圆周运动中,物体的速度大小是恒定的,但方向却不断改变。
这是因为物体在不断改变方向的同时,它的速度向心向外的分量也在不断改变。
2. 圆周运动的速度和加速度在圆周运动中,物体沿圆周方向的速度称为切向速度,而向心加速度则是指物体向圆心方向加速的大小。
这两者之间存在着一种关系,即向心加速度等于切向速度平方除以半径。
这也是为什么当我们在转弯时,速度越快,半径越小,感觉向心加速度越大的原因。
3. 圆周运动的力学原理圆周运动的力学原理可以由牛顿第二定律推导得出。
根据牛顿第二定律,物体的向心加速度等于合外力点对物体的向心力除以物体的质量。
在圆周运动中,合外力通常指向圆心方向的力,如重力或绳索的拉力。
根据这个原理,我们可以推导出与圆周运动相关的各种物理公式。
4. 圆周运动的应用圆周运动在现实生活中有着广泛的应用。
一个常见的例子是地球绕太阳的公转运动,这是地球四季变化的原因之一。
此外,圆周运动在机械工程、航天工程等领域也有重要的应用。
例如,卫星绕地球运动的轨道就是一个圆周运动。
5. 圆周运动的衍生知识点除了基本的圆周运动概念之外,还有一些与之相关的衍生知识点也是高考的考点之一。
例如,转动惯量和角动量等概念与圆周运动密切相关。
转动惯量是指物体对角加速度产生抵抗的能力,而角动量是物体绕固定轴旋转时的物理量。
这些概念在解题中会经常出现。
总结起来,高考圆周运动是一个重要的物理知识点,掌握其基本概念和相关公式对于解题和理解其他物理现象都有重要帮助。
理解圆周运动的力学原理、应用以及衍生知识点,可以帮助我们更好地应对考试,同时也能扩展我们对物理学的认识。
第三节 圆周运动【基础梳理】提示:线速度大小不变的 半径 相切 2πr T m/s 2πT rad/s 一圈 圈数 圆心 v 2rω2r 圆心 m v 2rmω2r 切线 远离 靠近【自我诊断】判一判(1)匀速圆周运动是匀加速曲线运动.( )(2)做匀速圆周运动的物体所受合外力是保持不变的.( ) (3)做匀速圆周运动的物体向心加速度与半径成反比.( ) (4)做匀速圆周运动的物体角速度与转速成正比.( )(5)随圆盘一起匀速转动的物体受重力、支持力和向心力的作用.( )(6)做圆周运动的物体所受合外力突然消失,物体将沿圆周切线方向做匀速直线运动.( )提示:(1)× (2)× (3)× (4)√ (5)× (6)√做一做 (2019·云南临沧一中高三模拟)如图所示为一种叫做“魔盘”的娱乐设施,当转盘转动很慢时,人会随着“魔盘”一起转动,当“魔盘”转动到一定速度时,人会“贴”在“魔盘”竖直壁上,而不会滑下.若魔盘半径为r ,人与魔盘竖直壁间的动摩擦因数为μ,在人“贴”在“魔盘”竖直壁上,随“魔盘”一起运动过程中,则下列说法正确的是()A .人随“魔盘”转动过程中受重力、弹力、摩擦力和向心力作用B .如果转速变大,人与器壁之间的摩擦力变大C .如果转速变大,人与器壁之间的弹力不变D .“魔盘”的转速一定大于12πg μr提示:选D.人随“魔盘”转动过程中受重力、弹力、摩擦力,向心力是弹力,故A 错误.人在竖直方向受到重力和摩擦力,二力平衡,则知转速变大时,人与器壁之间的摩擦力不变,故B 错误.如果转速变大,由F =mrω2,知人与器壁之间的弹力变大,故C 错误.人恰好贴在魔盘上时,有 mg ≤f ,N =mr (2πn )2,又f =μN 解得转速为n ≥12πg μr,故“魔盘”的转速一定大于12πgμr,故D 正确.圆周运动的运动学分析【知识提炼】1.圆周运动各物理量间的关系【跟进题组】1.明代出版的《天工开物》一书中就有牛力齿轮翻车的图画(如图),记录了我们祖先的劳动智慧.若A 、B 、C 三齿轮半径的大小关系如图所示,则( )A .齿轮A 的角速度比C 的大B .齿轮A 与B 角速度大小相等C .齿轮B 与C 边缘的线速度大小相等D .齿轮A 边缘的线速度比C 边缘的大 答案:D2.(多选)如图所示为某一皮带传动装置.M 是主动轮,其半径为r 1,M ′半径也为r 1,M ′和N 在同一轴上,N 和N ′的半径都为r 2.已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑.则下列说法正确的是( )A .N ′轮做的是逆时针转动B .N ′轮做的是顺时针转动C .N ′轮的转速为⎝⎛⎭⎫r 1r 22nD .N ′轮的转速为⎝⎛⎭⎫r 2r 12n解析:选BC.根据皮带传动关系可以看出,N 轮和M 轮转动方向相反,N ′轮和N 轮的转动方向相反,因此N ′轮的转动方向为顺时针,A 错误,B 正确.皮带与轮边缘接触处的速度相等,所以2πnr 1=2πn 2r 2,得N (或M ′)轮的转速为n 2=nr 1r 2,同理2πn 2r 1=2πn ′2r 2,得N ′轮转速n ′2=⎝⎛⎭⎫r 1r 22n ,C 正确,D 错误.圆周运动的动力学分析——水平面内的圆周运动【知识提炼】1.向心力的确定(1)确定圆周运动的轨道所在的平面,确定圆心的位置.(2)分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力就是向心力.3.“一、二、三、四”求解圆周运动问题【典题例析】如图所示,用一根长为l=1 m的细线,一端系一质量为m=1 kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为F T.(g取10 m/s2,结果可用根式表示)(1)若要小球离开锥面,则小球的角速度ω0至少为多大?(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大?[审题指导] (1)小球离开锥面的临界条件是小球仍沿锥面运动,支持力为零. (2)细线与竖直方向夹角为60°时,小球离开锥面,做圆锥摆运动.[解析] (1)若要小球刚好离开锥面,此时小球只受到重力和细线拉力,如图所示.小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用牛顿第二定律及向心力公式得:mg tan θ=mω20l sin θ 解得:ω20=gl cos θ 即ω0=g l cos θ=522 rad/s. (2)同理,当细线与竖直方向成60°角时,由牛顿第二定律及向心力公式:mg tan α=mω′2l sin α解得ω′2=gl cos α,即ω′=gl cos α=2 5 rad/s. [答案] (1)522 rad/s (2)2 5 rad/s【迁移题组】迁移1 车辆转弯问题1.(多选)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R =90 m 的大圆弧和r =40 m 的小圆弧,直道与弯道相切.大、小圆弧圆心O 、O ′距离L =100 m .赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍.假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动.要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g =10 m/s 2,π=3.14),则赛车( )A .在绕过小圆弧弯道后加速B .在大圆弧弯道上的速率为45 m/sC .在直道上的加速度大小为5.63 m/s 2D .通过小圆弧弯道的时间为5.58 s解析:选AB.因赛车在圆弧弯道上做匀速圆周运动,由向心力公式有F =m v 2R ,则在大小圆弧弯道上的运动速率分别为v大=FR m = 2.25mgRm=45 m/s ,v 小=Fr m= 2.25mgrm =30 m/s ,可知赛车在绕过小圆弧弯道后做加速运动,则A 、B 项正确;由几何关系得直道长度为d =L 2-(R -r )2=50 3 m ,由运动学公式v 2大-v 2小=2ad ,得赛车在直道上的加速度大小为a =6.50 m/s 2,则C 项错误;赛车在小圆弧弯道上运动时间t =2πr3v 小=2.79 s ,则D 项错误.迁移2 圆锥摆模型2. (多选)如图所示,两根长度相同的细线分别系有两个完全相同的小球,细线的上端都系于O 点,设法让两个小球均在水平面上做匀速圆周运动.已知L 1跟竖直方向的夹角为60°,L 2跟竖直方向的夹角为30°,下列说法正确的是( )A .细线L 1和细线L 2所受的拉力大小之比为 3∶1B .小球m 1和m 2的角速度大小之比为 3∶1C .小球m 1和m 2的向心力大小之比为3∶1D .小球m 1和m 2的线速度大小之比为33∶1解析:选AC.对任一小球进行研究,设细线与竖直方向的夹角为θ,竖直方向受力平衡,则T cos θ=mg ,解得T =mg cos θ,所以细线L 1和细线L 2所受的拉力大小之比为T 1T 2=cos 30°cos 60°=31,故A 正确;小球所受合力的大小为mg tan θ,根据牛顿第二定律得mg tan θ=mLω2sin θ,得ω2=g L cos θ,故两小球的角速度大小之比为ω1ω2=cos 30°cos 60°=431,故B 错误;小球所受合力提供向心力,则向心力为F =mg tan θ,小球m 1和m 2的向心力大小之比为F 1F 2=tan 60°tan 30°=3,故C 正确.两小球角速度大小之比为43∶1,由v =ωr 得线速度大小之比为 33∶1,故D 错误.迁移3 水平面内圆周运动的临界问题3.(多选) 如图所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω= kg2l是b 开始滑动的临界角速度 D .当ω=2kg3l时,a 所受摩擦力的大小为kmg 解析:选AC.小木块发生相对滑动之前,静摩擦力提供向心力,由牛顿第二定律得,f =mω2r ,显然b 受到的摩擦力较大;当木块刚要相对于盘滑动时,静摩擦力f 达到最大值f max ,由题设知f max =kmg ,所以kmg =mω2r ,由此可以求得木块刚要滑动时的临界角速度ω0= kgr,由此得a 发生相对滑动的临界角速度为 kgl,b 发生相对滑动的临界角速度为 kg2l ;若ω= 2kg 3l ,a 受到的是静摩擦力,大小为f =mω2l =23kmg .综上所述,本题正确答案为A 、C.竖直面内的圆周运动 【知识提炼】2.分析竖直平面内圆周运动临界问题的思路【典题例析】(多选)如图甲所示,轻杆一端固定在O 点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动.小球运动到最高点时,杆与小球间弹力大小为F ,小球在最高点的速度大小为v ,其F -v 2图象如图乙所示.则( )A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等[审题指导] 由于杆既可以提供支持力,又可以提供拉力,故小球通过最高点时的速度可以不同,则通过F -v 2图象,可得到小球通过最高点时杆的弹力和小球速度大小的定量关系,从而找到解题的突破口.[解析] 对小球在最高点进行受力分析,速度为零时,F -mg =0,结合图象可知a -mg =0;当F =0时,由牛顿第二定律可得mg =m v 2R ,结合图象可知mg =mb R ,联立解得g =bR ,m =aRb ,选项A 正确,B 错误;由图象可知b <c ,当v 2=c 时,根据牛顿第二定律有F +mg=mcR ,则杆对小球有向下的拉力,由牛顿第三定律可知,选项C 正确;当v 2=2b 时,由牛顿第二定律可得mg +F ′=m ·2bR,可得F ′=mg .选项D 正确. [答案] ACD【迁移题组】迁移1 汽车过拱桥模型1.一辆汽车匀速率通过一座圆弧形拱形桥后,接着又以相同速率通过一圆弧形凹形桥.设两圆弧半径相等,汽车通过拱形桥桥顶时,对桥面的压力F N1为车重的一半,汽车通过圆弧形凹形桥的最低点时,对桥面的压力为F N2,则F N1与F N2之比为( )A .3∶1B .3∶2C .1∶3D .1∶2解析:选C.汽车过圆弧形桥的最高点(或最低点)时,由重力与桥面对汽车的支持力的合力提供向心力.如图甲所示,汽车过圆弧形拱形桥的最高点时,由牛顿第三定律可知,汽车受桥面对它的支持力与它对桥面的压力大小相等,即F N1=F ′N1①所以由牛顿第二定律可得mg -F ′N1=m v 2R②同样,如图乙所示,F ′N2=F N2,汽车过圆弧形凹形桥的最低点时,有F ′N2-mg =m v 2R③ 由题意可知F N1=12mg④由①②③④式得F N2=32mg ,所以F N1∶F N2=1∶3.迁移2 轻绳模型 2.(2019·福州质检)如图所示,长均为L 的两根轻绳,一端共同系住质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间的距离也为L .重力加速度大小为g .现使小球在竖直平面内以AB 为轴做圆周运动,若小球在最高点速率为v 时,两根轻绳的拉力恰好均为零,则小球在最高点速率为2v 时,每根轻绳的拉力大小为( )A .3mgB .433mgC .3mgD .23mg解析:选A.小球在运动过程中,A 、B 两点与小球所在位置构成等边三角形,由此可知,小球圆周运动的半径R =L ·sin 60°=32L ,两绳与小球运动半径方向间的夹角为30°,由题意,小球在最高点的速率为v 时,mg =m v 2R ,当小球在最高点的速率为2v 时,应有:F +mg =m (2v )2R ,可解得:F =3mg .由2F T cos 30°=F ,可得两绳的拉力大小均为F T =3mg ,A 项正确.迁移3 轻杆模型3.(多选)长为L 的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直平面内做圆周运动,关于小球在最高点的速度v ,下列说法中正确的是( )A .当v 的值为gL 时,杆对小球的弹力为零B .当v 由gL 逐渐增大时,杆对小球的拉力逐渐增大C .当v 由gL 逐渐减小时,杆对小球的支持力逐渐减小D .当v 由零逐渐增大时,向心力也逐渐增大解析:选ABD.在最高点球对杆的作用力为0时,由牛顿第二定律得:mg =m v 2L ,v =gL ,A 对;当v >gL 时,轻杆对球有拉力,则F +mg =m v 2L ,v 增大,F 增大,B 对;当v <gL时,轻杆对球有支持力,则mg -F ′=m v 2L ,v 减小,F ′增大,C 错;由F 向=m v 2L 知,v 增大,向心力增大,D 对.圆周运动规律分析(2017·高考江苏卷)如图所示,一小物块被夹子夹紧,夹子通过轻绳悬挂在小环上,小环套在水平光滑细杆上.物块质量为M ,到小环的距离为L ,其两侧面与夹子间的最大静摩擦力均为F .小环和物块以速度v 向右匀速运动,小环碰到杆上的钉子P 后立刻停止,物块向上摆动.整个过程中,物块在夹子中没有滑动.小环和夹子的质量均不计,重力加速度为g .下列说法正确的是( )A .物块向右匀速运动时,绳中的张力等于2FB .小环碰到钉子P 时,绳中的张力大于2FC .物块上升的最大高度为2v 2gD .速度v 不能超过(2F -Mg )LM解析:选D.物块向右匀速运动时,绳中的张力等于物块的重力Mg ,因为2F 为物块与夹子间的最大静摩擦力,当物块向上摆动做圆周运动时,静摩擦力大于Mg ,说明物块做匀速运动时所受的静摩擦力小于2F ,A 项错误;当小环碰到钉子P 时,由于不计夹子的质量,因此绳中的张力等于夹子与物块间的静摩擦力,即小于或等于2F ,B 项错误;如果物块上升的最大高度不超过细杆,则根据机械能守恒可知,Mgh =12M v 2,即上升的最大高度h =v 22g ,C 项错误;当物块向上摆动的瞬时,如果物块与夹子间的静摩擦力刚好为2F ,此时的速度v 是最大速度,则2F -Mg =M v 2L,解得v =(2F -Mg )LM,D 项正确.(多选)(2019·浙江杭州五校联考)质量为m 的物体沿着半径为r 的半球形金属球壳滑到最低点时的速度大小为v ,如图所示,若物体与球壳之间的动摩擦因数为μ,则物体在最低点时的( )A .向心加速度为v 2rB .向心力为m ⎝⎛⎭⎫g +v2rC .对球壳的压力为m v 2rD .受到的摩擦力为μm ⎝⎛⎭⎫g +v2r解析:选AD.物体滑到半径为r 的半球形金属球壳最低点时,速度大小为v ,向心加速度为a 向=v 2r ,故A 正确;根据牛顿第二定律可知,物体在最低点时的向心力F n =m v 2r ,故B 错误;根据牛顿第二定律得N -mg =m v 2r ,得到金属球壳对物体的支持力N =m ⎝⎛⎭⎫g +v 2r ,由牛顿第三定律可知,物体对金属球壳的压力大小N ′=m ⎝⎛⎭⎫g +v2r ,故C 错误;物体在最低点时,受到的摩擦力为f =μN ′=μm ⎝⎛⎭⎫g +v2r ,故D 正确.(建议用时:40分钟)一、单项选择题 1. (2019·江西师大附中模拟)如图所示是自行车传动机构的示意图,其中Ⅰ是半径为r 1的大齿轮,Ⅱ是半径为r 2的小齿轮,Ⅲ是半径为r 3的后轮,假设脚踏板的转速为n r/s ,则自行车前进的速度为( )A .πnr 1r 3r 2B .πnr 2r 3r 1C .2πnr 2r 3r 1D .2πnr 1r 3r 2解析:选D.自行车前进的速度等于后轮的线速度,大小齿轮是同一条传送带相连,故线速度相等,故根据公式可得:ω1r 1=ω2r 2,解得ω2=ω1r 1r 2,小齿轮和后轮是同轴转动,所以两者的角速度相等,故线速度v =r 3ω2=2πnr 1r 3r 2,故D 正确.2. 如图所示,在竖直平面内,滑道ABC 关于B 点对称,且A 、B 、C 三点在同一水平线上.若小滑块第一次由A 滑到C ,所用的时间为t 1,第二次由C 滑到A ,所用的时间为t 2,小滑块两次的初速度大小相同且运动过程始终沿着滑道滑行,小滑块与滑道的动摩擦因数恒定,则( )A .t 1<t 2B .t 1=t 2C .t 1>t 2D .无法比较t 1、t 2的大小解析:选A.在滑道AB 段上取任意一点E ,比较从A 点到E 点的速度v 1和从C 点到E 点的速度v 2,易知,v 1>v 2.因E 点处于“凸”形轨道上,速度越大,轨道对小滑块的支持力越小,因动摩擦因数恒定,则摩擦力越小,可知由A 滑到C 比由C 滑到A 在AB 段上的摩擦力小,因摩擦造成的动能损失也小.同理,在滑道BC 段的“凹”形轨道上,小滑块速度越小,其所受支持力越小,摩擦力也越小,因摩擦造成的动能损失也越小,从C 处开始滑动时,小滑块损失的动能更大.故综上所述,从A 滑到C 比从C 滑到A 在轨道上因摩擦造成的动能损失要小,整个过程中从A 滑到C 平均速度要更大一些,故t 1<t 2.选项A 正确.3. 如图所示,一根细线下端拴一个金属小球A ,细线的上端固定在金属块B 上,B 放在带小孔的水平桌面上,小球A 在某一水平面内做匀速圆周运动.现使小球A 改到一个更低一些的水平面上做匀速圆周运动(图上未画出),金属块B 在桌面上始终保持静止,则后一种情况与原来相比较,下面的判断中正确的是( )A .金属块B 受到桌面的静摩擦力变大 B .金属块B 受到桌面的支持力减小C .细线的张力变大D .小球A 运动的角速度减小解析:选D.设A 、B 质量分别为m 、M ,A 做匀速圆周运动的向心加速度为a ,细线与竖直方向的夹角为θ,对B 研究,B 受到的静摩擦力f =T sin θ,对A ,有:T sin θ=ma ,T cos θ=mg ,解得a =g tan θ,θ变小,a 减小,则静摩擦力大小变小,故A 错误;以整体为研究对象知,B 受到桌面的支持力大小不变,应等于(M +m )g ,故B 错误;细线的拉力T =mgcos θ,θ变小,T 变小,故C 错误;设细线长为l ,则a =g tan θ=ω2l sin θ,ω=gl cos θ,θ变小,ω变小,故D 正确.4. 如图所示,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g ,当小环滑到大环的最低点时,大环对轻杆拉力的大小为 ( )A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg解析:选C.设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12m v 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =m v 2R ,所以在最低点时大环对小环的支持力F N =mg +m v 2R =5mg .根据牛顿第三定律知,小环对大环的压力F ′N =F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力T =Mg +F ′N =Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C正确,选项A 、B 、D 错误.5. (2017·高考全国卷Ⅱ)如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直.一小物块以速度v 从轨道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到轨道下端的距离与轨道半径有关,此距离最大时对应的轨道半径为(重力加速度大小为g )( )A .v 216gB .v 28gC .v 24gD .v 22g解析:选B.设轨道半径为R ,小物块从轨道上端飞出时的速度为v 1,由于轨道光滑,根据机械能守恒定律有mg ×2R =12m v 2-12m v 21,小物块从轨道上端飞出后做平抛运动,对运动分解有:x =v 1t ,2R =12gt 2,求得x =-16⎝⎛⎭⎫R -v 28g 2+v 44g2,因此当R -v 28g =0,即R =v28g 时,x 取得最大值,B 项正确,A 、C 、D 项错误.6. 如图所示,水平圆盘可绕通过圆心的竖直轴转动,盘上放两个小物体P 和Q ,它们的质量相同,与圆盘的最大静摩擦力都是f m ,两物体中间用一根细线连接,细线过圆心O ,P 离圆心距离为r 1,Q 离圆心距离为r 2,且r 1<r 2,两个物体随圆盘以角速度ω匀速转动,且两个物体始终与圆盘保持相对静止,则( )A .ω取不同值时,P 和Q 所受静摩擦力均指向圆心B .ω取不同值时,Q 所受静摩擦力始终指向圆心,而P 所受静摩擦力可能指向圆心,也可能背离圆心C .ω取不同值时,P 所受静摩擦力始终指向圆心,而Q 所受静摩擦力可能指向圆心,也可能背离圆心D .ω取不同值时,P 和Q 所受静摩擦力可能都指向圆心,也可能都背离圆心解析:选B.设P 、Q 质量均为m ,当角速度ω较小时,做圆周运动的向心力均由盘对其的静摩擦力提供,细线伸直但无张力.当mω2r =f m 即ω=f mmr时,若再增大ω,则静摩擦力不足以提供做圆周运动所需的向心力,细线中开始出现张力,不足的部分由细线中张力提供,对Q 而言有T +f m =mω2r 2,而此时对P 而言有T +f =mω2r 1;随着细线张力的增大,P 受到的指向圆心的静摩擦力会逐渐减小,当T >mω2r 1时,P 受到的静摩擦力开始背离圆心,B 项正确.7. 小球P 和Q 用不可伸长的轻绳悬挂在天花板上,P 球的质量大于Q 球的质量,悬挂P 球的绳比悬挂Q 球的绳短.将两球拉起,使两绳均被水平拉直,如图所示.将两球由静止释放.在各自轨迹的最低点 ( )A .P 球的速度一定大于Q 球的速度B .P 球的动能一定小于Q 球的动能C .P 球所受绳的拉力一定大于Q 球所受绳的拉力D .P 球的向心加速度一定小于Q 球的向心加速度解析:选C.小球从释放到最低点的过程中,只有重力做功,由机械能守恒定律可知,mgL =12m v 2,v =2gL ,绳长L 越长,小球到最低点时的速度越大,A 项错误;由于P 球的质量大于Q 球的质量,由E k =12m v 2可知,不能确定两球动能的大小关系,B 项错误;在最低点,根据牛顿第二定律可知,F -mg =m v 2L ,求得F =3mg ,由于P 球的质量大于Q 球的质量,因此C 项正确;由a =v 2L=2g 可知,两球在最低点的向心加速度相等,D 项错误.8.如图所示,放置在水平转盘上的物体A 、B 、C 能随转盘一起以角速度ω匀速转动,A 、B 、C 的质量分别为m 、2m 、3m ,它们与水平转盘间的动摩擦因数均为μ,离转盘中心的距离分别为0.5r 、r 、1.5r ,设最大静摩擦力等于滑动摩擦力,重力加速度为g ,则当物体与转盘间不发生相对运动时,转盘的角速度应满足的条件是( )A .ω≤ μgr B .ω≤ 2μg 3r C .ω≤2μgrD .μgr≤ω≤ 2μg r解析:选B.当物体与转盘间不发生相对运动,并随转盘一起转动时,转盘对物体的静摩擦力提供向心力,当转速较大时,物体转动所需要的向心力大于最大静摩擦力,物体就相对转盘滑动,即临界方程是μmg =mω2l ,所以质量为m 、离转盘中心的距离为l 的物体随转盘一起转动的条件是ω≤μgl,即ωA ≤ 2μgr,ωB ≤ μgr,ωC ≤ 2μg3r,所以要使三个物体都能随转盘转动,其角速度应满足ω≤2μg3r,选项B 正确. 二、多项选择题9.公路急转弯处通常是交通事故多发地带.如图所示,某公路急转弯处是一圆弧,当汽车行驶的速率为v 0时,汽车恰好没有向公路内外两侧滑动的趋势.则在该弯道处( )A .路面外侧高内侧低B .车速只要低于v 0,车辆便会向内侧滑动C .车速虽然高于v 0,但只要不超出某一最高限度,车辆便不会向外侧滑动D .当路面结冰时,与未结冰时相比,v 0的值变小解析:选AC.当汽车行驶的速率为v 0时,汽车恰好没有向公路内外两侧滑动的趋势,即不受静摩擦力,此时由重力和支持力的合力提供向心力,所以路面外侧高内侧低,选项A 正确;当车速低于v 0时,需要的向心力小于重力和支持力的合力,汽车有向内侧运动的趋势,但并不一定会向内侧滑动,静摩擦力向外侧,选项B 错误;当车速高于v 0时,需要的向心力大于重力和支持力的合力,汽车有向外侧运动的趋势,静摩擦力向内侧,速度越大,静摩擦力越大,只有静摩擦力达到最大以后,车辆才会向外侧滑动,选项C 正确;由mg tanθ=m v 20r可知,v 0的值只与斜面倾角和圆弧轨道的半径有关,与路面的粗糙程度无关,选项D错误.10. 如图所示,有一皮带传动装置,A 、B 、C 三点到各自转轴的距离分别为R A 、R B 、R C ,已知R B =R C =R A2,若在传动过程中,皮带不打滑,则( )A .A 点与C 点的角速度大小相等B .A 点与C 点的线速度大小相等C .B 点与C 点的角速度大小之比为2∶1D .B 点与C 点的向心加速度大小之比为1∶4解析:选BD.处理传动装置类问题时,对于同一根皮带连接的传动轮边缘的点,线速度相等;同轴转动的点,角速度相等,对于本题,显然v A =v C ,ωA =ωB ,选项B 正确;根据v A =v C 及关系式v =ωR ,可得ωA R A =ωC R C ,又R C =R A 2,所以ωA =ωC2,选项A 错误;根据ωA =ωB ,ωA =ωC 2,可得ωB =ωC2,即B 点与C 点的角速度大小之比为1∶2,选项C 错误;根据ωB =ωC 2及关系式a =ω2R ,可得a B =a C4,即B 点与C 点的向心加速度大小之比为1∶4,选项D 正确.11. 如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r =0.4 m ,最低点处有一小球(半径比r 小很多),现给小球一水平向右的初速度v 0,则要使小球不脱离圆轨道运动,v 0应当满足(g =10 m/s 2)( )A .v 0≥0B .v 0≥4 m/sC .v 0≥2 5 m/sD .v 0≤2 2 m/s解析:选CD.解决本题的关键是全面理解“小球不脱离圆轨道运动”所包含的两种情况:(1)小球通过最高点并完成圆周运动;(2)小球没有通过最高点,但小球没有脱离圆轨道.对于第(1)种情况,当v 0较大时,小球能够通过最高点,这时小球在最高点处需要满足的条件是mg ≤m v 2r ,又根据机械能守恒定律有m v 22+2mgr =m v 202,可求得v 0≥2 5 m/s ,故选项C 正确;对于第(2)种情况,当v 0较小时,小球不能通过最高点,这时对应的临界条件是小球上升到与圆心等高位置处,速度恰好减为零,根据机械能守恒定律有mgr =m v 202,可求得v 0≤2 2 m/s ,故选项D 正确.12.如图所示为赛车场的一个水平“U ”形弯道,转弯处为圆心在O 点的半圆,内外半径分别为r 和2r .一辆质量为m 的赛车通过AB 线经弯道到达A ′B ′线,有如图所示的①、②、③三条路线,其中路线③是以O ′为圆心的半圆,OO ′=r .赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max .选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则( )A .选择路线①,赛车经过的路程最短B .选择路线②,赛车的速率最小C .选择路线③,赛车所用时间最短D .①、②、③三条路线的圆弧上,赛车的向心加速度大小相等解析:选ACD.由几何关系可得,路线①、②、③赛车通过的路程分别为:(πr +2r )、(2πr +2r )和2πr ,可知路线①的路程最短,选项A 正确;圆周运动时的最大速率对应着最大静摩擦力提供向心力的情形,即μmg =m v 2R ,可得最大速率v =μgR ,则知②和③的速率相等,且大于①的速率,选项B 错误;根据t =sv ,可得①、②、③所用的时间分别为t 1=(π+2)r μgr ,t 2=2r (π+1)2μgr ,t 3=2r π2μgr ,其中t 3最小,可知路线③所用时间最短,选项C 正确;在圆弧轨道上,由牛顿第二定律可得:μmg =ma 向,a 向=μg ,可知三条路线上的向心加速度大小均为μg ,选项D 正确.13. 质量为m 的小球M 由轻绳a 和b 分别系于一轻质细杆的B 点和A 点.如图所示,当轻杆绕轴OO ′以角速度ω匀速转动时,a 绳与水平方向成θ角,b 绳在水平方向上且长为l ,下列说法正确的是( )A .a 绳的张力不可能为零B .a 绳的张力随角速度的增大而增大C .当角速度ω>g cot θl时,b 绳中存在张力 D .当b 绳突然被剪断,则a 绳的张力一定发生变化解析:选AC.小球做匀速圆周运动,在竖直方向上,受到的合力为零,受到的水平方向上的合力提供向心力,所以a 绳在竖直方向上的分力与重力大小相等,可知a 绳的张力不可。
圆周运动的规律及其应用知识点总结与典例【知识点梳理】知识点一 匀速圆周运动及描述1.匀速圆周运动(1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动。
(2)特点:加速度大小不变,方向始终指向圆心,是变加速运动。
(3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心。
2.描述圆周运动的物理量物理量 意义、方向公式、单位 线速度(v )①描述圆周运动的物体运动快慢的物理量 ②是矢量,方向和半径垂直,和圆周相切 ①v =Δs Δt =2πr T ②单位:m/s 角速度(ω)①描述物体绕圆心转动快慢的物理量 ②中学不研究其方向①ω=ΔθΔt =2πT ②单位:rad/s 周期(T )和转速(n )或频率(f )①周期是物体沿圆周运动一周的时间 ②转速是物体单位时间转过的圈数,也叫频率①T =2πrv 单位:s ②n 的单位:r/s 、r/min ,f 的单位:Hz向心加速度(a )①描述速度方向变化快慢的物理量 ②方向指向圆心①a =v 2r =rω2 ②单位:m/s 23.线速度、角速度、周期、向心加速度之间的关系 (1)v =ωr =2πT r =2πrf .(2)a n =v 2r =rω2=ωv =4π2T 2r =4π2f 2r . 知识点二 匀速圆周运动的向心力1.向心力的理解 (1)作用效果向心力产生向心加速度,只改变速度的方向,不改变速度的大小。
(2)大小F =m v 2r =mω2r =m 4π2T 2r =mωv =4π2mf 2r 。
(3)方向始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力。
(4)来源向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供。
2.离心现象(1)现象做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动。
(2)受力特点①当F n=mω2r时,物体做匀速圆周运动。