神奇的莫比乌斯带
- 格式:doc
- 大小:20.00 KB
- 文档页数:2
人教版数学四年级上册神奇的默比乌斯带创新教案(精推3篇)〖人教版数学四年级上册神奇的默比乌斯带创新教案第【1】篇〗神奇的莫比乌斯圈活动目标:1、在动手操作中学会将长方形纸条制成一个神奇的莫比乌斯圈。
2、在莫比乌斯圈魔术般的变化中感受数学的无穷魅力,拓展数学视野。
3、进一步激发学生学习数学的兴趣,让学生获得学习成功的体验。
活动重点:让学生认识“莫比乌斯圈”,学会将长方形纸条制成莫比乌斯圈。
活动难点:引导学生通过思考操作发现并验证“莫比乌斯圈”的特征,培养学生大胆猜测、勇于探究的求索精神。
活动准备:每位学生若干张长方形纸条,剪刀,双面胶、水彩笔。
活动过程:一、导入:二、认识莫比乌斯圈的特点1、请同学们取出1号纸条,认真观察这张普通的长方形纸条,它有几条边几个面?(引导学生观察)板书:四条边两个面2、你能把它变成两条边两个面吗?板书:两条边两个面学生动手操作:围成一个圈数学上把这种有里外之分的纸圈称为双侧面纸圈。
3、现在你能再想想办法将长方形纸条变成一个面一条边吗?生动手试做。
当生遇到困难时老师拿出事先做好的纸圈,让学生用手感觉它是一条边一个面。
板书:一条边一个面4、让我们一起来动动手研究一下吧!(如果学生不能做出,教师可以适当提醒。
)由做出来的同学介绍“莫比乌斯圈”的做法:将其中的一边转180度并粘贴起来。
(学生动手操作,可小组合作完成)是不是只有一条边呢?(用手沿着其中的一条边走,能回到原点)如何验证是不是只有一个面呢?(用一笔能将整个纸条画完,回到起点)为什么只有一条边一个面呢?(生小组讨论,回答)当多数学生想要亲自感受的时候,师趁机指导每一个学生做一个单侧面的纸圈。
强调:一头不变,另一头拧180度,两头粘贴。
5、现在我们做成了一个圈,它只有一条边一个面,非常地奇怪。
(课件出示:神奇的怪圈)6、简单介绍怪圈的来历。
(课件出示:莫比乌斯圈)所以同学们平时在学好书本知识的同时,要留心观察生活,更多伟大的发明、发现还等着用你们的名字命名呢!同学们,其实莫比乌斯圈还有很多神奇的地方,下面我们就用“剪”的办法再来研究研究这个神奇而有趣的怪圈。
【日记】神奇的莫比乌斯带_650字神奇的莫比乌斯带,是一种具有奇特特性的数学结构。
它的名字来源于德国数学家莫比乌斯。
这种结构看似简单,但却蕴含着许多有趣的数学性质。
今天,我在数学课上学习了莫比乌斯带的一些基本概念。
莫比乌斯带是一种具有唯一边界的二维物体,它只有一个面和一个边。
如果我们在一根长而窄的纸条上做一个扭曲的动作,然后将两端接触在一起并粘合,就可以得到一个莫比乌斯带。
这个结构的奇特之处在于,我们可以用一笔从莫比乌斯带的某一点画到另一点,而不需要抬起笔。
莫比乌斯带的另一个有趣之处在于它的表面只有一个面。
这意味着,如果我们沿着莫比乌斯带的表面行走,最终会回到出发点,但可能会发现走过的路径和一开始并不一样。
这种特性让我想起了人生的循环,我们经历着不同的人生阶段,但最终又回到出发点。
莫比乌斯带给了我对循环和变化的新的理解。
莫比乌斯带的另一个有趣应用是在几何学中。
我们可以通过莫比乌斯带来研究一些几何学问题,比如如何将一个正方形变成一个正三角形,或者如何将一个球体变成一个圆柱体。
通过莫比乌斯带,我们可以发现一些几何学问题的独特解决方法,这让我对几何学的学习更加兴趣盎然。
莫比乌斯带还有一些与计算机科学相关的应用。
在计算机图形学中,我们可以使用莫比乌斯带来创建一些具有奇特形态的图形。
莫比乌斯带的数学特性和奇异性使得它成为计算机科学领域中的创新工具,可以用来生成各种有趣的图形和模型。
通过学习莫比乌斯带,我不仅对数学有了更深层次的理解,也开阔了我的思维。
它让我认识到数学不仅仅是一堆公式和计算,它也可以是一种思维方式和创造力的表达。
莫比乌斯带所带来的数学启发不仅仅用于纸上的计算,还可以应用于现实生活中的问题求解。
在今天的数学课上,我对莫比乌斯带有了更深入的了解。
它是一个神奇的数学结构,具有许多有趣的特性和应用。
通过学习和探索莫比乌斯带,我对数学的兴趣和热爱进一步增长,也意识到数学对我们生活的影响。
我希望能继续深入研究莫比乌斯带,并将其应用于实际问题的求解中。
人教版数学四年级上册神奇的默比乌斯带教案与反思(优选3篇)〖人教版数学四年级上册神奇的默比乌斯带教案与反思第【1】篇〗《莫比乌斯带》教学设计1、教学内容:人教版义务教育教科书四年级上册70页《神奇的莫比乌斯带》二、活动目标:1、在动手操作中学会将长方形纸条制成一个神奇的莫比乌斯圈。
2、在莫比乌斯圈魔术般的变化中感受数学的无穷魅力,拓展数学视野。
3、进一步激发学生学习数学的兴趣,让学生获得学习成功的体验。
三、活动准备:每位学生若干张长方形纸条,剪刀,固体胶(胶带纸)、水彩笔(蜡笔)四、活动过程:活动一:探究什么是莫比乌斯带活动任务让学生在认真观察的基础上自己探究,建立对莫比乌斯带的认识。
活动内容问题提出什么样的带子是莫比乌斯带?设计方案此活动中,分两步进行探究:第一步:让学生观察并猜测:把带子直接首尾相连,然后想要一次连续不断地摸到带子的两个面是不可能的。
但如果先捏着带子的一端,将另一端扭转180°,再首尾粘贴起来,就能连续不断地摸到带子的两个面了。
第三步:让学生了解有关莫比乌斯带知识。
结论验证通过认真观察,使学生知道先捏着带子的一端,将另一端扭转180°,再首尾粘贴起来的带子就是莫比乌斯带。
让学生初步体验莫比乌斯带的神奇之处,并初步培养学生的空间观念。
知识链接公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)和约翰·李斯丁发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质。
普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。
这种纸带被称为“莫比乌斯带”。
活动二:探究沿莫比乌斯带的中间剪开会是什么样活动任务让学生结合具体活动,在不断辨析的过程中,继续深入了解和认识莫比乌斯带;让学生初步感受莫比乌斯带的神奇,并初步培养学生的空间想象力。
人教版数学四年级上册《神奇的莫比乌斯带》优秀教案一. 教材分析人教版数学四年级上册《神奇的莫比乌斯带》这一课,主要让学生了解莫比乌斯带的特征,探究其性质,并通过实践活动感受莫比乌斯带的神奇。
教材通过生动有趣的故事,引发学生对莫比乌斯带的兴趣,进而引导学生进行观察、操作、思考,从而发现莫比乌斯带的特性。
二. 学情分析四年级的学生在生活中已经积累了一定的观察和操作经验,他们的思维具有可塑性,好奇心强。
但是对于莫比乌斯带这样的抽象概念,还需要通过具体的操作和实践来理解和掌握。
三. 教学目标1.让学生通过观察、操作、思考,发现莫比乌斯带的特性。
2.培养学生的观察能力、动手操作能力和抽象思维能力。
3.激发学生的好奇心,培养学生的探究精神。
四. 教学重难点1.教学重点:让学生发现莫比乌斯带的特性。
2.教学难点:理解并解释莫比乌斯带的性质。
五. 教学方法采用情境教学法、观察教学法、操作教学法和讨论教学法。
通过生动有趣的故事情境,引导学生观察、操作、思考,并在小组内进行讨论,从而发现莫比乌斯带的特性。
六. 教学准备教师准备莫比乌斯带的教具,以及用于学生操作的纸条。
七. 教学过程1.导入(5分钟)通过一个有趣的故事,引入莫比乌斯带的概念。
故事中,让学生感受到莫比乌斯带的神奇,激发学生的好奇心。
2.呈现(5分钟)教师展示莫比乌斯带的教具,让学生直观地了解莫比乌斯带的外观。
同时,教师用语言描述莫比乌斯带的特性,引导学生关注。
3.操练(10分钟)学生分组进行操作,每组用纸条制作一个莫比乌斯带。
在操作过程中,教师引导学生观察、思考,发现莫比乌斯带的特性。
4.巩固(5分钟)学生分组讨论,分享自己制作莫比乌斯带的体会和发现。
教师引导学生用语言表达莫比乌斯带的特性,加深对知识的理解。
5.拓展(5分钟)教师提出一些有关莫比乌斯带的问题,引导学生进行思考和探究。
例如:莫比乌斯带的内部和外部有什么关系?莫比乌斯带的数量与它的特性有什么关系?6.小结(5分钟)教师引导学生总结本节课所学内容,强化对莫比乌斯带特性的认识。
《神奇的莫比乌斯带》教学设计教科书第70页的内容。
1.动手操作,验证交流,经历探索和认识莫比乌斯带的过程,积累数学活动经验。
2.学会将长方形纸条制作成莫比乌斯带,初步体会莫比乌斯带的特征。
3.在数学活动中经历猜想与探索验证的过程,感受莫比乌斯带魔术般的神奇变化,感受数学的无穷魅力及探索研究的策略,进一步激发学生学习数学的兴趣和好奇心。
认识并制作莫比乌斯带,探索剪开它的简单规律。
探索剪开莫比乌斯带的简单规律。
多媒体课件、剪刀、彩笔若干、双面胶、制作莫比乌斯带的纸条若干。
一、新课导入教师出示趣味情境图:小蚂蚁沿着红色的线爬,可以吃到面包屑吗?上课之前,我们已经准备好了小纸条,现在拿出带有小蚂蚁的纸条。
1.巧设疑问,学做普通环师:(1)小蚂蚁沿直线向前爬能吃到面包屑吗?预设:可以吃到。
教学内容教学目标教学重点教学难点教学准备教学过程(2)面包屑在小蚂蚁的后面,按上面的方法能吃到面包屑吗?预设:不能。
那小蚂蚁要怎样才能吃到面包屑呢?(引导学生明确小蚂蚁和面包屑虽然在同一平面内,但面包屑却不在小蚂蚁的前方,从而启发学生做出一个普通环)出示【学习任务一】。
学生动手操作,发现当把纸条做成一个普通圆环时,小蚂蚁可以吃到面包屑。
2.制作莫比乌斯带师:如果像这样,面包屑在纸条另一端的背面,做刚才的纸环,小蚂蚁还能吃到面包屑吗?怎样做才能让小蚂蚁吃到面包屑呢?二、探究新知出示【学习任务二】。
学生动手做纸环,教师巡视指导。
捏着纸条的一端,将另一端扭转180°,再粘贴起来,形成一个环。
课件演示做莫比乌斯带的过程。
确保每个学生都能做出一个莫比乌斯带。
师:小蚂蚁沿这样的环爬行,真的能吃到面包屑吗?有什么办法能验证你的想法?引导学生画出小蚂蚁爬过的痕迹进行验证。
课件展示小蚂蚁的移动痕迹,说明小蚂蚁可以吃到面包屑。
为什么这样小蚂蚁吃不到面包屑(课件展示普通纸环),这样小蚂蚁就能吃到面包屑了?(课件展示莫比乌斯带)因为普通的纸环有2个面,莫比乌斯带只有1个面。
《神奇的莫比乌斯带》教学设计优秀2篇篇一:《神奇的莫比乌斯带》教学设计篇一一、教学内容:人教版小学数学四年级上册70页《神奇的莫比乌斯带》二、活动目标:1、知识与技能引导学生在对比探究中认识“莫比乌斯带”,并会制作“莫比乌斯带”,初步体会莫比乌斯带的特征。
2、过程与方法组织学生动手操作,验证交流,让学生经历“\\猜想—验证—结论”的过程,掌握观察、猜想、验证、归纳概括发现的数学结论等探索方法,从中获得一些数学活动的经验。
3、情感态度与价值观经历猜想与现实的冲突,感受“莫比乌斯带”的神奇变化,感受数学的无穷魅力,拓展数学视野,培养创新精神。
三、教学重难点【教学重点】经历“猜想—验证—结论”的过程,掌握观察、猜想、验证等探索方法。
【教学难点】探索、发现莫比乌斯带的特征。
四、活动准备:每位学生若干张长方形纸条,剪刀,固体胶(双面胶)、水彩笔。
五、活动过程:(一)魔术引入,激发兴趣同学们,喜欢看魔术表演吗?卢老师也会变魔术,你想看吗?看,老师手里有一张纸条和两个回形针,一会儿老师可以利用纸条变个魔术,让两个回形针手牵手,你们信吗?魔术表演确实很吸引人,今天老师让每一个同学都来当一回魔术师,好不好?1、观察:请同学们拿出手中的纸条,“今天我们变魔术的道具就是这张普通的长方形纸条,仔细观察,它有几条边,几个面?”2、思考:接下来你们来变魔术,能不能把它变成只有2条边、2个面试试看(学生自主思考,尝试)。
3、操作:引导学生将纸条首尾相连围成一个纸圈。
4、验证:教师带领学生一起验证纸圈只有2条边2个面。
自主制作,验证特征活动一:制作莫比乌斯带(验证特征)1、你能不能再变,把它变得只有1条边,1个面再试试看。
先请找到方法的学生讲解示范,然后视频播放制作方法。
请同学们用手中的纸条制作出这个只有1条边1个面的纸圈。
2、面对这样一个纸圈,你有什么疑问吗学生提出疑问:预设1:这个纸圈真的只有1条边1个面吗预设2:为什么变成1条边1个面了预设3:这个纸圈有名字吗预设4:这个图形在哪里可以用得着接下来我们就带着这些疑问来探索这个纸圈。
神奇的莫比乌斯带什么是莫比乌斯带莫比乌斯带(Moebius strip)是一种有趣而神奇的拓扑结构。
它是由德国数学家奥古斯特·莫比乌斯于19世纪提出的。
莫比乌斯带的特点在于它只有一个面和一个边。
如果你在莫比乌斯带上行走,并且一直沿着边界线走下去,你会发现自己最终回到了出发点,但是你此时可能站在原来的底面的顶部。
这种特性使得莫比乌斯带成为了许多数学问题和科学实验的对象。
如何制作莫比乌斯带制作莫比乌斯带非常简单,只需要一条长而窄的带子和一些胶水。
下面是一些步骤来演示如何制作莫比乌斯带:1.准备一条长而窄的带子,最好使用柔软的材料如纸或布。
2.将带子的一端粘合到另一端,形成一个环。
3.将带子扭动一半的圈数,然后再次将带子的两端粘合在一起。
制作完成后,你会得到一个莫比乌斯带。
你可以通过在莫比乌斯带上刻画线条或者进行一些数学实验来探索它的特性。
莫比乌斯带的应用虽然莫比乌斯带看起来像是一个玩具,但是它在许多领域都有着重要的应用。
下面是一些关于莫比乌斯带的应用示例:数学研究莫比乌斯带在数学领域中被广泛研究和应用。
它可以帮助解决许多拓扑学中的难题,如纤维丛理论、拓扑动力系统等。
计算机图形学莫比乌斯带在计算机图形学中也有一定的应用。
通过将莫比乌斯带应用于图像处理,可以创造出一些独特的效果和动画。
纳米科技在纳米科技中,莫比乌斯带被用于制造一些特殊的纳米结构体。
这种结构体可以被用于制造高效的电子器件和催化剂。
莫比乌斯带的数学原理莫比乌斯带的数学原理非常有趣。
它可以通过将一条带子的一端扭转180°来创造。
这个操作实际上是一个连续的反射和旋转过程。
在数学上,莫比乌斯带可以用一个简单的公式来描述:M = C × R,其中M为莫比乌斯带的面积,C为莫比乌斯带的周长,R为莫比乌斯带的半径。
莫比乌斯带的独特性质还可以通过一些数学实验来验证,比如将一支笔沿着莫比乌斯带的边界线画出一条封闭曲线,你会发现这条曲线的两个端点实际上是无法分离的。
神奇的“莫比乌斯带”什么是莫比乌斯带?莫比乌斯带是一种具有独特几何形状的曲面,它只有一个面和一个边。
在数学上,莫比乌斯带是二维曲面的一种特殊情况,被称为非定向曲面。
它以德国数学家奥古斯特·莫比乌斯(August Ferdinand Möbius)的名字命名,于1858年由德国数学家约瑟夫·洛斯特在其发表的论文中首次描述。
莫比乌斯带的独特之处在于,它只拥有一个连续的边,也就是说,无论你从哪个点沿曲面行走,总能回到出发点,却穿过了整个曲面的每一个点。
换句话说,如果你将一根宽带沿着一边旋转半圈再粘合起来,就得到了一个莫比乌斯带。
莫比乌斯带的结构特点要理解莫比乌斯带的结构特点,我们可以通过简单的实验来观察它。
首先,我们需要一根长而窄的纸条,将纸条的两端连接起来,形成一个环状。
接下来,取一个笔或者铅笔,将纸条的一侧都涂上墨水或者颜料。
然后,将纸条扭转一半,并且再次粘合起来。
这样,我们就得到了一个莫比乌斯带。
实验结果发现,莫比乌斯带的特点之一是,无论你从带的哪一侧开始行走,最后你总能回到起点,而且所经过的每一个点都是连续的,没有中断。
这反映了莫比乌斯带的非定向性。
另外,莫比乌斯带只有一个面,这对于曲面的研究和理解具有重要意义。
莫比乌斯带的应用莫比乌斯带的独特形态和非定向性在数学和物理学的研究中发挥了重要作用,并在一些实际应用中得到了应用。
在数学领域,莫比乌斯带被广泛用于拓扑学和几何学的研究中。
由于莫比乌斯带的结构特点,它被用作研究曲面的基本模型,以研究不同形状和拓扑性质的曲面之间的关系。
此外,莫比乌斯带还被用于解决一些拓扑学的难题,如杂乱线和全息图的展示。
在物理学领域,莫比乌斯带也有广泛的应用。
它在拓扑绝缘体和量子计算等领域中是一个重要的研究对象。
莫比乌斯带的非定向性使得电子在其上运动时具有特殊的性质,这些性质被应用于设计和制造新型的电子元件和量子通信设备。
除了在学术研究中的应用外,莫比乌斯带还在艺术和设计领域中得到了广泛的应用。
人教版数学四年级上册神奇的默比乌斯带教案与反思(推荐3篇)〖人教版数学四年级上册神奇的默比乌斯带教案与反思第【1】篇〗《神奇的莫比乌斯带》教学设计1、教学目标1、动手操作,验证交流,经历探索和认识莫比乌斯带的过程,积累数学活动经验。
2、在动手操作、对比探索中认识莫比乌斯带,学会将长方形纸条制作成莫比乌斯带,初步体会莫比乌斯带的特征。
3、在数学活动中经历猜想与探索的过程,感受莫比乌斯带魔术般的神奇变化,感受数学的无穷魅力,进一步激发学生学习数学的兴趣和好奇心。
2、学情分析部分学生在课前对莫比乌斯有初步的了解,例如名字和如何制作,但没进行过更深层次的研究。
本课带领学生由纸条到普通纸环,再到莫比乌斯带的过程中,经历由熟悉到陌生,由普通到神奇的知识积累过程。
3、重点难点重点:认识莫比乌斯带的特点。
难点:发现莫比乌斯带的奇异性质。
4、教学过程4.1第一学时4.1.1教学活动活动1【导入】魔术师:大家喜欢看魔术表演吗老师先来表演个小魔术好吗(师拿出扑克牌表演)你们知道老师是怎么变的吗(可能2张扑克牌中间有一段皮筋,才能让第三张牌跳出来。
) 师:是这样的吗(展示给学生看)你们都猜对了。
我的魔术变完了,你们喜欢我的魔术吗那你们想不想也来变魔术师:今天我们一起用纸条来变魔术,看看会有什么意想不到的事情发生,你又能不能试着弄清楚其中的道理。
(用新颖的魔术导入,充分的调动起学生想要学习的积极性,激发学生的学习兴趣。
)活动2【活动】纸条-普通纸环师:请同学们观察我手中的纸条,它是什么形状的有几条边几个面(长方形。
它有4条边,2个面。
)师:下面老师要请你们来变魔术了,你能把它变成2条边和2个面的图形吗请拿出一张纸条来试一试。
生拿出纸条来做尝试师:你们变出来了吗怎么做的(把纸条的两头粘到一起,做成一个纸环。
)师:纸环的2条边和2个面在哪同桌指一指、说一说。
(上面1条边,下面1条边。
)(外面1个面,里面1个面。
)活动3【活动】纸条-莫比乌斯带师:你们还想变魔术吗你能不能把纸条变成一个只有1条边和1个面的图形呢生继续做尝试教师巡视,观察学生的制作情况,请会做的学生到前面演示。
神奇的莫比乌斯带
一.教学目标
1. 引导学生在对比探究中认识“莫比乌斯带”,并会制作“莫比乌斯带”。
2. 组织学生动手操作,验证交流,体验“猜想—验证—探究”的数学思想方法。
3. 让学生经历猜想与现实的冲突,感受“莫比乌斯带”的神奇变化,培养探究精神。
二.教学准备
剪刀,水彩笔,长方形纸条
三.教学过程
1.魔术引入
出示图片——刘谦——用纸条将两个环形针连到一起。
活动一:认识“莫比乌斯带”。
一、制作圆形纸带。
1.观察:一张普通长方形纸片,它有几条边?几个面?
2.思考:你能把它变成两条边,两个面吗?
3.操作:学生动手,取长方形纸条,制作成圆形纸圈。
4.验证:用手摸一摸,感受两条边,两个面。
5.再思考:你能把它的边和面变更少一些,把它变成一条边,一个面吗?
二、制作“莫比乌斯带”。
1.操作:学生动手,尝试制作“一条边,一个面”的纸圈。
2.介绍做法,强调:一头不变,另一头扭转180度,两头粘贴。
3.验证:
⑴质疑:这个纸圈真的只有一条边,一个面吗?怎么验证“一条边,一个面”?
⑵教师指导验证方法,学生动手验证。
⑶交流验证结果:真的只有一条边,一个面。
⑷动态展示,加深认识。
⑸感受:用手摸一摸它的面,感受一下,只有一条边,一个面。
4.小结:
⑴介绍:这个“怪圈”是德国数学家莫比乌斯在1858年研究时发现的,所以人们把它叫做“莫比乌斯带”。
⑵出示课题:“莫比乌斯带”。
活动二:研究“莫比乌斯带”。
一、剪“莫比乌斯带”(二分之一)
1.猜一猜:如果沿着“莫比乌斯带”的中间剪下去,剪的结果会怎样?
①一分为二成两个圈。
②断开成两段。
2.剪一剪:学生动手,沿着“莫比乌斯带”中间剪。
验证猜测。
3.交流:沿着纸带中间剪下去,会变成一个两倍长的圈。
4.揭密:为什么没有一分为二变成两个圈?而是变成一个两倍长的圈?
5.质疑:这个大圈还是“莫比乌斯带”吗?学生动手验证。
二、剪“莫比乌斯带”(三分之一)
1.猜一猜:如果我们沿着三等分线剪,剪的结果又会是怎样呢?
①变成一个大圈。
②两个套在一起的圈。
2.剪一剪:取长方形纸片,再做一个“莫比乌斯带”,学生动手,验证猜测。
3.交流:发现变成一个大圈套着一个小圈。
4.揭密:和你的猜测一样吗?为什么会变成一个大圈套着一个小圈?
活动三:介绍“莫比乌斯带”在生活中的应用。
1.交流“莫比乌斯带”的理念在生活中的应用。
2.延伸:后来科学家们通过对莫比乌斯带的深入研究,就慢慢形成了一门新的学说——拓扑几何学。
活动四:自由剪“莫比乌斯带”。
如果不是旋转180度,而是更多的度数,或者沿四分之一,五分之一的宽度剪开“莫比乌斯带”,又会有什么新的发现呢?大家不妨同桌先猜猜,再动手试试,最后验证你们的猜测!
活动五:课堂小结。
这节课你学到了什么?有什么感受?上了这节课对你今后的学习有什么帮助?
四.板书设计
神奇的莫比乌斯带
4条边,2个面二分之一一个大圈
2条边,2个面三分之一一个大圈,一个小圈 1条边,1个面四分之一…。