第三章_数值计算方案
- 格式:pdf
- 大小:1.31 MB
- 文档页数:84
第三章 物理学中定积分的数值计算方法一、填空题1、库仑常数k 等于 9×109mV/C ,真空中的介电常数ε0等于8.85×10-12F/m 。
2、对于电量为Q 的点电荷,在距离r 处产生的电场强度为21ˆˆ()4QrE r rrrπε==。
3、已知定积分()ba f x dx ⎰,被积分函数为()f x ,积分区间为[],ab 。
将该区间N 等分,步长()/x b a N ∆=-,用曲线下的虚矩形面积和近似替代积分值,该方法称为矩形法。
积分近似计算公式为1()()N bi ai I f x dx f x x -==≈∆∑⎰。
4、毕奥—萨伐尔定律所描述的公式为034Idl rdB r μπ⨯=。
5、玻尔兹曼常数是 k=1.38×1023 J/K 。
6、麦克斯韦速率分布律公式23/22/2()4()2v kTdN f v dv v e dv N kTμμππ-==。
7、在计算物理中求解定积分的方法有 辛普森法 、 龙贝格法 、 高斯求积法等。
二、简答1、写出库仑常数、真空中的介电常数和玻尔兹曼常数的值。
答:库仑常数k= 9×109mV/C ,真空中的介电常数ε0= 8.85×10-12F/m ,玻尔兹曼常数是 k=1.38×1023 J/K 。
2、什么是矩形法?答:已知定积分()ba f x dx ⎰,被积分函数为()f x ,积分区间为[],ab 。
将该区间N 等分,步长()/x b a N ∆=-,用曲线下的虚矩形面积和近似替代积分值,该方法称为矩形法。
积分近似计算公式为1()()N bi ai I f x dx f x x -==≈∆∑⎰。
3、毕奥—萨伐尔定律和麦克斯韦速率分布律公式。
答:毕奥—萨伐尔定律所描述的公式为034Idl rdB rμπ⨯=。
麦克斯韦速率分布律公式23/22/2()4()2v kTdN f v dv v e dv N kTμμππ-==。
数值计算方法教案第一章:数值计算概述1.1 数值计算的定义与特点引言:介绍数值计算的定义和基本概念数值计算的特点:离散化、近似解、误差分析1.2 数值计算方法分类直接方法:高斯消元法、LU分解法等迭代方法:雅可比迭代、高斯-赛德尔迭代等1.3 数值计算的应用领域科学计算:物理、化学、生物学等领域工程计算:结构分析、流体力学、电路模拟等第二章:误差与稳定性分析2.1 误差的概念与来源绝对误差、相对误差和有效数字误差来源:舍入误差、截断误差等2.2 数值方法的稳定性分析线性稳定性分析:特征值分析、李雅普诺夫方法非线性稳定性分析:李模型、指数稳定性分析2.3 提高数值计算精度的方法改进算法:雅可比法、共轭梯度法等增加计算精度:闰塞法、理查森外推法等第三章:线性方程组的数值解法3.1 高斯消元法算法原理与步骤高斯消元法的优缺点3.2 LU分解法LU分解的步骤与实现LU分解法的应用与优势3.3 迭代法雅可比迭代法与高斯-赛德尔迭代法迭代法的选择与收敛性分析第四章:非线性方程和方程组的数值解法4.1 非线性方程的迭代解法牛顿法、弦截法等收敛性条件与改进方法4.2 非线性方程组的数值解法高斯-赛德尔法、共轭梯度法等方程组解的存在性与唯一性4.3 非线性最小二乘问题的数值解法最小二乘法的原理与方法非线性最小二乘问题的算法实现第五章:插值与逼近方法5.1 插值方法拉格朗日插值、牛顿插值等插值公式的构造与性质5.2 逼近方法最佳逼近问题的定义与方法最小二乘逼近、正交逼近等5.3 数值微积分数值求导与数值积分的方法数值微积分的应用与误差分析第六章:常微分方程的数值解法6.1 初值问题的数值解法欧拉法、改进的欧拉法龙格-库塔法(包括单步和多步法)6.2 边界值问题的数值解法有限差分法、有限元法谱方法与辛普森法6.3 常微分方程组与延迟微分方程的数值解法解耦与耦合方程组的处理方法延迟微分方程的特殊考虑第七章:偏微分方程的数值解法7.1 偏微分方程的弱形式介绍偏微分方程的弱形式应用实例:拉普拉斯方程、波动方程等7.2 有限差分法显式和隐式差分格式稳定性分析与收敛性7.3 有限元法离散化过程与元素形状函数数值求解与误差估计第八章:优化问题的数值方法8.1 优化问题概述引言与基本概念常见优化问题类型8.2 梯度法与共轭梯度法梯度法的基本原理共轭梯度法的实现与特点8.3 序列二次规划法与内点法序列二次规划法的步骤内点法的原理与应用第九章:数值模拟与随机数值方法9.1 蒙特卡洛方法随机数与重要性采样应用实例:黑箱模型、金融衍生品定价等9.2 有限元模拟离散化与求解过程应用实例:结构分析、热传导问题等9.3 分子动力学模拟基本原理与算法应用实例:材料科学、生物物理学等第十章:数值计算软件与应用10.1 常用数值计算软件介绍MATLAB、Python、Mathematica等软件功能与使用方法10.2 数值计算在实际应用中的案例分析工程设计中的数值分析科学研究中的数值模拟10.3 数值计算的展望与挑战高性能计算的发展趋势复杂问题与多尺度模拟的挑战重点解析本教案涵盖了数值计算方法的基本概念、误差分析、线性方程组和非线性方程组的数值解法、插值与逼近方法、常微分方程和偏微分方程的数值解法、优化问题的数值方法、数值模拟与随机数值方法以及数值计算软件与应用等多个方面。
数值分析--第三章--迭代法迭代⼀般⽅程:本⽂实例⽅程组:⼀.jacobi迭代法从第i个⽅程组解出xi。
线性⽅程组Ax=b,先给定⼀组x的初始值,如[0,0,0],第⼀次迭代,⽤x2=0,x3=0带⼊第⼀个式⼦得到x1的第⼀次迭代结果,⽤x1=0,x3=0,带⼊第⼆个式⼦得到x2的第⼀次迭代结果,⽤x1=0,x2=0带⼊第三个式⼦得到x3的第⼀次迭代结果。
得到第⼀次的x后,重复第⼀次的运算。
转化成⼀般的形式:(其中L是A的下三⾓部分,D是A的对⾓元素部分,U 是上三⾓部分)得到迭代公式:其中的矩阵B和向量f如何求得呢?其实,矩阵B的计算也很简单,就是每⾏的元素/该⾏上的对⾓元素⼆.Gauss-Seidel迭代法【收敛速度更快】这个可以和jacobi法对⽐进⾏理解,我们以第⼆次迭代为例(这⾥的第⼀次迭代结果都⽤⼀样的,懒得去换)从上表对⽐结果可以看出,Jacobi⽅法的第⼆次迭代的时候,都是从第⼀次迭代结果中,获取输⼊值。
上⼀次迭代结果[2.5,3.0,3.0],将这个结果带⼊上⾯式⼦1,得到x1=2.88,;将[2.5,3.0,3.0]替换成[2.88,3.0,3.0]带⼊第⼆个式⼦的运算,这⾥得到x2=1.95,所以把[2.88,3.0,3.0]替换成[2.88,1.95,3.0]输⼊第三个式⼦计算X3=1.0.这就完成了这⼀次的迭代,得到迭代结果[2.88,1.95,1.0],基于这个结果,开始下⼀次迭代。
特点:jacobi迭代法,需要存储,上⼀次的迭代结果,也要存储这⼀次的迭代结果,所以需要两组存储单元。
⽽Gauss-Seidel迭代法,每⼀次迭代得到的每⼀个式⼦得到的值,替换上⼀次迭代结果中的值即可。
所以只需要⼀组存储单元。
转化成⼀般式:注意:第⼆个式⼦中的是k+1次迭代的第⼀个式⼦的值,不是第k次迭代得值。
计算过程同jacobi迭代法的类似三.逐次超松弛法SOR法上⾯仅仅通过实例说明,Jacobi和Seidel迭代的运算过程。
数值计算方法教案第一章:数值计算概述1.1 数值计算的定义与意义介绍数值计算的概念解释数值计算在科学研究与工程应用中的重要性1.2 数值计算方法分类介绍数值逼近、数值积分、数值微分、数值解方程等基本方法分析各种方法的适用范围和特点1.3 误差与稳定性解释误差的概念及来源讨论数值计算中误差的控制与减小方法介绍稳定性的概念及判断方法第二章:插值与逼近2.1 插值法的基本概念介绍插值的概念及意义解释插值函数的性质和条件2.2 常用的插值方法介绍线性插值、二次插值、三次插值等方法分析各种插值方法的优缺点及适用范围2.3 逼近方法介绍切比雪夫逼近、傅里叶逼近等方法解释逼近的基本原理及应用场景第三章:数值积分与数值微分3.1 数值积分的基本概念介绍数值积分的概念及意义解释数值积分的原理和方法3.2 常用的数值积分方法介绍梯形公式、辛普森公式、柯特斯公式等方法分析各种数值积分方法的适用范围和精度3.3 数值微分的基本概念与方法介绍数值微分的概念及意义解释数值微分的原理和方法第四章:线性方程组的数值解法4.1 线性方程组数值解法的基本概念介绍线性方程组数值解法的概念及意义解释线性方程组数值解法的原理和方法4.2 常用的线性方程组数值解法介绍高斯消元法、LU分解法、迭代法等方法分析各种线性方程组数值解法的优缺点及适用范围4.3 稀疏矩阵技术解释稀疏矩阵的概念及意义介绍稀疏矩阵的存储和运算方法第五章:非线性方程和方程组的数值解法5.1 非线性方程数值解法的基本概念介绍非线性方程数值解法的概念及意义解释非线性方程数值解法的原理和方法5.2 常用的非线性方程数值解法介绍迭代法、牛顿法、弦截法等方法分析各种非线性方程数值解法的优缺点及适用范围5.3 非线性方程组数值解法介绍消元法、迭代法等方法讨论非线性方程组数值解法的特点和挑战第六章:常微分方程的数值解法6.1 常微分方程数值解法的基本概念介绍常微分方程数值解法的概念及意义解释常微分方程数值解法的原理和方法6.2 初值问题的数值解法介绍欧拉法、改进的欧拉法、龙格-库塔法等方法分析各种初值问题数值解法的适用范围和精度6.3 边界值问题的数值解法介绍有限差分法、有限元法、谱方法等方法讨论边界值问题数值解法的特点和挑战第七章:偏微分方程的数值解法7.1 偏微分方程数值解法的基本概念介绍偏微分方程数值解法的概念及意义解释偏微分方程数值解法的原理和方法7.2 偏微分方程的有限差分法介绍显式差分法、隐式差分法、交错差分法等方法分析各种有限差分法的适用范围和精度7.3 偏微分方程的有限元法介绍有限元法的原理和步骤讨论有限元法的适用范围和优势第八章:数值模拟与计算可视化8.1 数值模拟的基本概念介绍数值模拟的概念及意义解释数值模拟的原理和方法8.2 计算可视化技术介绍计算可视化的概念及意义解释计算可视化的原理和方法8.3 数值模拟与计算可视化的应用讨论数值模拟与计算可视化在科学研究与工程应用中的重要作用第九章:数值计算软件与应用9.1 数值计算软件的基本概念介绍数值计算软件的概念及意义解释数值计算软件的原理和方法9.2 常用的数值计算软件介绍MATLAB、Mathematica、Python等软件的特点和应用领域9.3 数值计算软件的应用案例分析数值计算软件在科学研究与工程应用中的典型应用案例第十章:数值计算方法的改进与新发展10.1 数值计算方法的改进讨论现有数值计算方法的局限性介绍改进数值计算方法的研究现状和发展趋势10.2 新的数值计算方法介绍近年来发展起来的新型数值计算方法分析新型数值计算方法的优势和应用前景10.3 数值计算方法的未来发展探讨数值计算方法在未来可能的发展方向和挑战重点和难点解析一、数值计算概述难点解析:对数值计算概念的理解,误差来源及控制方法的掌握。