第2讲 质数与合数
- 格式:pptx
- 大小:2.69 MB
- 文档页数:24
课程二质数与合数1.质数的特性(1)判断质数的方法 (2)分解质因数 2.合数的特性质数和合数的定义。
(1)自然数中,除1和他本身外,没有其它约数的数叫质数,又称为 素数。
(2)一个自然数如果除1与他本身外,还有其他的约数,这个数就叫 做合数。
(1)2是最小的质数,也是唯一的一个偶质数。
(2)1既不是质数,也不是合数。
(3)合数可以写成几个质数相乘的形式。
(4)质数有无穷多个。
假设质数有N 个,这N 个质数可记成P 1,P 2,P 3,…,P n ,那么取一 个数a= P 1×P 2× …×P n+1,于是P 1,P 2,P 3,…,P n 都不能整除a 还有 别的质因数。
这就是说假定质数有N 个错了,就会有无限多个质数。
甲、乙、丙三人打靶,每人打三枪,三人各自中靶的环数之积都是60, 按个人中靶的总环数由高到低排,依次是甲、乙、丙。
靶子上4环的那一枪 是谁打的?(环数是不超过10的自然数)如果一个比1大的自然数只有两个约数:1和本身,那么这个自然数就 叫质数。
(质数也叫素数)43=1×43。
43只有1和43两个约数,所以43是质数。
100以内的质数 极为常用,它们是:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,学习目标重 点总 结引 入基础知识61,67,71,73,79,83,89,97。
在自然数中,如果除了1和本身两个约数外,还有其它的约数,这个自然数就叫做合数。
6的约数有1,2,3,6,那么6是合数。
应特别注意:1既不是质数也不是合数,这样,自然数在按约数个数分类,可以分成:质数、合数和1。
偶数中只有2是质数,而且是所有质数中最小的一个。
除2以外所有的偶数都是合数,除2以外所有的质数都是奇数。
每个合数都可以写成几个质数相乘的形成,这几个质数就叫做这个合数的质因子,例如,因为70=2×5×7,所以2,5,7是70的质因子。
第二讲质数与合数【前言】自然数按照能被多少个不同的自然数整除可以分为三类:第一类:只能被一个自然数整除的自然数,这类数只有一个,就是1。
第二类:只能被两个不同的自然数整除的自然数.因为任何自然数都能被1和它本身整除,所以这类自然数的特征是大于1,且只能被1和它本身整除。
这类自然数叫质数(或素数)。
例如,2,3,5,7,…第三类:能被两个以上的自然数整除的自然数。
这类自然数的特征是大于1,除了能被1和它本身整除外,还能被其它一些自然数整除.这类自然数叫合数.例如,4,6,8,9,15,…上面的分类方法将自然数分为质数、合数和1,1既不是质数也不是合数,是自然数最基本的单位。
【专项练习】问题一 1~100这100个自然数中有哪些是质数?试一试1、现有1,3,5,7四个数字。
(1)用它们可以组成哪些两位数的质数(数字可以重复使用)?(2)用它们可以组成哪些各位数字不相同的三位质数?试一试2、在三张纸片上分别写上三个最小的连续奇质数,如果随意从其中至少取出一张组成一个数,其中有几个质数,将它们写出来。
试一试3、50以内的最大质数与最小自然数的和是多少?问题二两个质数的和是39,这两个质数的积是多少?试一试1、从小到大写出5个质数,使后面的数都比前面的数大12。
试一试2、有一个质数,它加上10是质数,加上14也是质数,这个质数最小是几?试一试3、一个质数的3倍与另一个质数的2倍之和为100,这两个质数的乘积是多少?问题三判断269是合数还是质数?试一试1、判断437是合数还是质数?试一试2、11111是质数还是合数?试一试3、判断1111112111111是质数还是合数?问题四 A是一个质数,而且A+6,A+8,A+12,A+14都是质数。
试求出所有满足要求的质数A。
试一试1、a,b,c都是质数,a>b>c,且a×b+c=88,求a,b,c。
试一试2、9个连续的自然数,它们都大于80,那么其中质数最多有多少个?试一试3、两个连续自然数的积加上11,其和是一个合数,这两个自然数的和最小是多少?很多数学问题与质数有关,我们要理解质数的意义,记住100以内有哪些质数。
【导语】学⽣是数学学习的主⼈,是数学课堂上主动求知、主动探索的主体。
教师是数学学习的组织者、引导者和合作者。
⽆忧考准备了以下内容,希望对你有帮助!【篇⼀】⼈教版五年级下册数学第⼆单元《质数和合数》教案 ⼀、学情分析: 《质数和合数》这⼀课内容⽐较抽象,很难结合⽣活实例或具体情境来教学,学⽣理解起来有⼀定的难度。
另外,到本节课为⽌,已经出现了因数、倍数、奇数、偶数、质数、合数等概念,有些概念学⽣容易混淆,如学⽣往往把质数和奇数,合数和偶数的概念弄混,教学时应注意让学⽣辨析这些概念。
⼆、教学⽬标: 1、理解质数和合数的概念。
2、能熟练判断质数与合数,能够找出100以内的质数。
3、培养学⽣分析问题的能⼒和应⽤数学的意识;体验从特殊到⼀般的认识发展过程,进⼀步完善学⽣对⾃然数的分类⽅法的掌握,培养学⽣思维的灵活性。
三、教学重难点: 重点:理解质数、合数的含义,能正确快速地判断⼀个数是质数还是合数。
难点:能运⽤⼀定的⽅法,从不同的⾓度判断、感悟质数合数。
四、教学过程: (⼀)导⼊新课。
找出1~20各数的因数。
你发现了什么? (学⽣可能回答:1只有1个因数,其余的数都有2个以上因数;2,3,5,7,11,13,17,19这些数的因数都只有1和它本⾝;……) 今天我们学习的内容就与⼀个数因数的个数有关。
[设计意图说明:让学⽣⽤⾃⼰的话描述1~20各数因数的特点,通过观察学⽣虽然没有质数与合数的概念,但对这些数已经有了⾃⼰的分类与认识,为之后的分类与概念的学习打下基础。
] (⼆)新授 探究⼀:认识质数和合数 师:请同学们按照因数的个数,将这些数分分类。
(学⽣可能回答:将1,2,3,5,7,11,13,17,19分为⼀类,它们的因数都是1和它⾃⼰本⾝,其余的数分为⼀类;将1,4,9,16分为⼀类,它们的因数个数都是奇数个,其余的分为⼀类,它们的因数个数都是偶数个;……) 师:同学们都说得⾮常好,请打开课本翻到第14页,请你按照它的⽅法分⼀分。
辅导讲义➢知识点回顾:1.一个正整数,如果只有____ _和____ _两个因数,这样的数叫做素数,也叫做____ _;如果___________________________,这样的数叫做合数。
2.___________既不是素数也不是合数。
3.每个合数都可以写成几个____ _相乘的形式,其中每个____ _都是这个合数的____ _,叫做这个合数的____ _。
4.把一个合数用____ _相乘的形式表示出来,叫做分解素因数。
5.既是奇数又是合数的最小的正整数是________,最小的奇数素数是____ _;既是偶数又是素数的数________;最小的偶合数是____ _;➢案例1:下面有一首诗:美少年华朋会友,幼长相亲同切磋;杯赛联谊欢声响,念一笑慰来者多;九天九霄志凌云,九七共庆手相握;聚起华夏中兴力,同唱移山壮丽歌.请你将诗中56个字第1行左边第一字起逐行逐字编为1-56号,再将号码中的素数由小到大找出来,将它们对应的字依次排成一行,组成一句话,请写出这句话.➢案例2:关于素数的猜想:由于人们对素数的着迷,所以自古以来提出了各种各样的猜想,其中最著名的是哥德巴赫猜想:1742年6月7日哥德巴赫提出下列猜想:“所有大于2的偶数都可以写成两个素数之和。
”用如下形式表示:4=2+2;6=3+3;8=3+5;10=3+7=5+5;12=5+7;14=3+11=7+7;关于这个猜想至今270多年还没有人给出严格的证明!请写成两个素数的和为100的素数对。
知识点1、质数与合数概率质数(素数):一个数除了1和它本身,不再有别的因数,这个数叫做质数,也叫素数。
如:2、3、5、7、11、13、17、19等。
合数:一个数除了1和它本身,还有别的约数,这个数叫做合数。
如:4、6、8、9、10等。
注:(1)1不是质数也不是合数,2是最小的质数。
(2)正整数又可以分为1、素数和合数三类。
100以内的素数表:2 3 5 7 11 13 17 19 23 29 31 37 4143 47 53 59 61 67 71 73 79 83 89 97【例题1】(1)两个素数的和是39,这两个素数的差是多少?(2)三个互不相同的素数相加,和为40,这三个素数分别是多少?(3)有四个数,一个是最小的奇素数,一个是最小的偶素数,一个是小于30的最大素数,另一个是大于70的最小素数,求他们的和。
第2讲 质数、合数与分解质因数一、质数与合数一个数除了1和它本身,没有其他的约数,这样的数叫做质数(也叫做素数). 一个数除了1和它本身,还有其他的约数,这样的数叫做合数. 注意:0和1既不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;2是唯一的偶质数. 除了2和5,多位质数的个位数字只能是1、3、7、9.二、质因数与分解质因数质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数. 分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数. (通常相同质因数要写成乘方的形式)三、部分特殊数的分解293=101是质数 201551331=××299311=× 100171113=×× 522016237=×× 3999337=× 1000173137=×2017是质数 10101371337=×××201821009=×1111141271=×20193673=×2202025101××(2000后,年份为质数的有2003、2011、2017、2027)四、判断一个数是否为质数找一个大于且接近这个数的完全平方数2k ,若小于k 的所有质数都不是这个数的约数,可判定此数为质数. 例如:判断113是否为质数,找大于113的完全平方数,214412=,试小于12的质数:2、3、5、7、11,它们都不是113的约数,所以113是质数.【例题1】 (1)a b c 、、都是质数,且25a b +=,54b c +=,求a 与c 的乘积. (2)a b 、都是质数,且3531a b +=,求a 与b 的和.【例题2】 用1、2、3、4、5、6、7、8、9这个9个数字组成质数,要求每个数字都要用到并且只能用一次,那么最多能组成多少个质数?≠,且ab、ba都是质数,【例题3】小蘑菇搬新家了,发现新家的门牌号是形如abba的四位数,其中a b具有这种形式的四位数有多少个?【例题4】小蘑菇通过2、0、1、9这四个数字构成了一个数列(不断地将2、0、1、9这四个数字按照这个顺序加在数后面):2、20、201、2019、20192、201920、2019201、20192019、201920192、……、这个数列中,质数有多少个?【例题5】请将下面各数中的合数分解质因数:72、133、252、264、1428【例题6】四个小朋友的年龄恰好是四个连续的自然数,他们的年龄之积是5040.这四个小朋友的年龄分别是多少岁?【例题7】 已知201920242029+=+=+迎新年,且6384××=迎新年, 那么迎×新+新×年=_________.【例题8】 (1)两个正整数的乘积为100,这两个正整数都不含有数字0,则这两个正整数之和是多少?(2)四个互不相同的正整数的乘积是231,则这四个数的和是多少?×××计算结果的末尾有多少个连续的0?【例题9】(1)算式9758672380(2)302!的计算结果的末尾有多少个连续的0?【例题10】如果一个整数具备以下性质:①这个数与1的差为质数;②这个数除以2所得的商也是质数;③这个数除以9的余数为5.则称这个整数为幸运数,那么在两位数中,最大的幸运数是多少?【例题11】桌子上有0~9这十张数字卡片,甲、乙、丙三人每人各取了其中的三张,并将自己拿到的三张数字卡片组成的所有不同的三位数求和,结果甲、乙、丙的答案分别是1554,1688,4662,剩下的那张数字卡片是多少?(注:卡片不能颠倒)【例题12】一个三位数各位数字的乘积是18,满足条件的所有三位数的总和是多少?第2讲 质数、合数与分解质因数【例题1】【分析】 (1)62;(2)7或9【例题2】 【分析】 6【例题3】 【分析】 8【例题4】 【分析】 1【例题5】【分析】 327223=×,133719=×,22252237=××,32642311××,2142823717×××【例题6】【分析】 7、8、9、10【例题7】 【分析】 722【例题8】【分析】 (1)29;(2)22【例题9】【分析】 (1)3;(2)74【例题10】 【分析】 14【例题11】 【分析】 9。
知识图谱-100以内的质数100以内质数表偶质数性质与基本应用质数与合数的应用提高数论第02讲_100以内的质数错题回顾100以内的质数知识精讲一.质数与合数的概念1.只有1和它本身两个因数的数,称为质数。
2.除了1和它本身,还有其他因数的数,称为合数。
0和1既不是质数,与不是合数。
二.100以内的质数表1~100中的质数是:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97。
1~100中有25个质数,74个合数,其中1既不是质数与不是合数。
质数中有且仅有一个偶数,那就是2。
三点剖析重难点:熟悉100以内的25个质数,并且灵活应用奇偶性,解决偶质数的相关应用。
题模精讲题模一100以内质数表例1.1、只能被1和它本身整除的自然数叫做质数,如:2、3、5、7,等.那么,比40大并且比50小的质数是___________,小于100的最大的质数是___________.答案:41、43、47;97解析:本题考查100以内的常见质数.例1.2、爸爸和儿子岁数之和是一个两位数,这个两位数是一个质数,且数字之和为13,又已知爸爸比儿子大27岁,则儿子是________岁.答案:20解析:,只有67为质数,故年龄和为67.由和差问题易知儿子20岁.例1.3、五个连续自然数,每个数都是合数且都不超过60,则这五个连续自然数的和最大是().A、170B、250C、280D、285答案:解析:小于60的质数有59、53、47、43、41、……,所以连续的五个自然数且都是合数,最大的是58、57、56、55、54,它们的和是.例1.4、已知为50以内的一个两位质数,且也是质数,则满足条件的所有的和是________.答案:104解析:50以内的两位质数是11、13、17、19、23、29、31、37、41、43、47,满足条件的有11、23、29、41,和为.例1.5、有一类最简真分数满足以下条件:(1)分子与分母都是两位数的质数;(2)分母正好是分子这个质数逆序排列所成的质数.如就是满足上述条件的一个分数.那么满足这两个条件的最简真分数有__________个,其中最大的一个是__________.答案:解析:满足自身与其逆序数均为两位质数的有11;13、31;17、71;37、73;79、97.符合条件的最简真分数有有4个,最大的是.题模二偶质数性质与基本应用例2.1、Let a、b are prime numbers and the sum of these primes is 49.Then ().A、B、C、D、答案:B解析:根据奇偶性及2是质数中唯一的偶数易知两个质数分别为2和47,.例2.2、(1)两个质数的和是1999,那么这两个质数是多少?(2)若两个质数的差是35,那么它们的积是多少?答案:(1)1997(2)74解析:(1)通过奇偶分析易知两个质数必为一奇一偶,即一个为2,另一个为.(2)通过奇偶分析易知两个质数必为一奇一偶,即一个为2,另一个为,它们的积是.例2.3、三个互不相同的质数相加,和为52,这三个质数可能是多少?答案:可能为(2,3,47)(2,43,7)(2,37,13)(2,31,19)解析:小于50的质数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、发现只有一个偶数2,所以一定包含2,另外两个为奇数,且和为50,、.例2.4、若两个不同的质数m、n满足,那么__________.答案:7或8解析:满足条件的有,或,,所以.例2.5、若三个不同的质数的和是53,则这样的三个质数有__________组.答案:11解析:三个不同的质数的和是53,所以三个质数都必须是奇数.从最小的奇质数枚举如下:.共11组.例2.6、三个数p,p + 3 ,p + 5 都是质数,它们的倒数之和是 ____ .答案:解析:可知p一定是2,.例2.7、有6个数字a、b、c、d、p、q,满足,c和d的奇偶性相同,且p、q、都是质数,则最大是多少?答案:解析:c和d的奇偶性相同,故为偶数,p、q、中必有偶数,只能是,进而易得,.将问题转化为竖式,易知最大是9846.例2.8、已知p、q为质数,并且存在两个正整数m、n,使得,,则_________.答案:解析:因为且为质数,所以中有一个为1.不妨设,则,.又因为p、q为质数,故.代入得原式值为.题模三质数与合数的应用提高例3.1、在1到100这100个正整数中,不能被2、3、5、7中任何一个数整除的数有__________个.答案:解析:数论问题,不能被这些数整除的一定都是质数,1-100的质数去掉1、2、3、5、7还有22个.例3.2、将正整数1,2,3,4,5,6,…,10000排成一行.若一个数不能表示成两个合数的和,则将此数划去.例如要划去1,但是因为,8就不能划去.根据上面规定划掉所有能划掉的数之后,将剩下的数由小到大排列.这时从左数第2013个数是_______.答案:2022解析:从8开始往后的偶数可以拆成两个偶合数的和;从13开始的奇数可以拆成9+2n的形式(n大于等于2),而1、2、3、4、5、6、7、9、11要划去,所以剩下的数列为8、10、12、13、14、15……,第2013项即为2022.例3.3、小红、小明二人在讨论年龄,小红说:“我比你小,当你像我这么大时,我的年龄是个质数.”小明说:“当你长到我这么大时,我的年龄也是个质数.”小红说:“我发现现在咱俩的年龄和是个质数的平方.”那么小明今年____________岁.(小明今年年龄小于31岁,且年龄均为整数岁)答案:16解析:设小红岁,年龄差,则小明岁.由题意知为质数①,为质数②,为质数③的平方即年龄和,年龄和可能为4,9,25,49.经验证,年龄差为7,小红今年9岁,小明今年16岁.例3.4、四个小三角形的顶点处有六个圆圈,如果在这些圆圈中分别填上六个质数,它们的和是20,而且每个小三角形顶点上的数之和相等.问这六个质数的积是多少?答案:900解析:设每个小三角形顶点上的数之和为,当计算题4个小三角形顶点上的数之和时,中间三个圆圈算了三次,减去两次后得到六个质数之和20,,三个质数和为10,则这三个质数为2、3、5.六个圆圈分别填两个2、3、5.它们的积为900.随堂练习随练1.1、最小的质数是________,最小的自然数是________.答案:2;0解析:最小的质数是2,最小的自然数是0.随练1.2、在31、37、51、57、71、77、91、97这8个数中,有几个合数?A、2个B、3个C、4个D、5个答案:C解析:在这8个数中,31、37、71、97是质数,51、57、77、91是合数,即一共有4个合数.正确答案是C.随练1.3、三个连续自然数,每个数都是合数,则这三个连续自然数的和最小是().A、6B、27C、45D、720答案:B解析:列举可知,最小的三个数为8、9、10,所以这三个连续自然数的和最小是.随练1.4、在20以内的质数中,加上2以后结果还是质数的,一共有()个.A、8B、6C、4D、2答案:C解析:3、5、11、17符合要求,共4个.随练1.5、两个质数的和是45,这两个质数的积是_______.答案:86解析:两质数必为一奇一偶,故一定有2,另一个为,两数之积为86.随练1.6、从20以内的质数中选出6个,写在一个正方体的六个面上,使得两个向对面的和都相等,所选的6个数是________.答案:5、7、11、13、17、19解析:首先2不能入选,否则会出现有的和为奇数,有的和为偶数的情况,那么还剩下3、5、7、11、13、17、19这7个数,从中选择6个相当于剔除一个,由于这7个数的和为75,是3 的倍数,而选出的6个数的和也是3的倍数,所以被剔除的那个数应该也是3的倍数,只能是3,所以选出的6个数分别是5、7、11、13、17、19.随练1.7、三个互不相同的质数相加,和为30,这三个质数的乘积最大是__________.答案:374解析:三个数的和是偶数,可以是三个偶数,或者一偶两奇.考虑质数中只有2是偶数,可知一定是一偶两奇,且偶数是2.另外两个奇数是5和23或11和17.所以这三个质数的乘积是或,乘积最大是374.随练1.8、一个两位质数的两个数字交换位置后,仍然是一个质数,请写出所有这样的质数.答案:11、13、17、31、37、71、73、79、97解析:列出备选的两位质数,十位数字是2、4、5、6、8的就不用罗列了.观察这些数,只有19颠倒过来后是合数:,排除19,剩下的质数都满足要求.自我总结课后作业作业1、1~100这100个自然数中质数有25个,合数有________个.答案:74解析:1~100中,25个质数之外的75个数中,只有1不是合数,其他的都是.所以有74个合数.作业2、a是100以内最大的质数,b是100以内最小的质数,那么__________.答案:99解析:,,所以.作业3、五个连续的自然数,每个数都是合数,这五个连续自然数的和最小是__________.答案:130解析:最小的连续五个合数是24、25、26、27、28,所以这五个连续自然数的和最小是130.作业4、在横线上填入三个不同的质数,使等式成立________+________+________=60,则共有________种不同的填法.答案:3解析:由奇偶性分析易知这三个质数必为2奇1偶,即必有2,只需将58表示为2个质数之和即可.,共3种填法.作业5、有一个质数是两位数,这两位上的数字相差6,则这个两位数的质数是.答案:17或71解析:各位必为偶数.分别试验1、7和3、9,17或71满足要求.作业6、两个质数的和是19,则这两个质数的积是______.答案:34解析:由奇偶性可知必有2,另一个为,两数乘积为34.作业7、当和+5都是质数时,_______.答案:37解析:当和+5奇偶性不同,而且都为质数,那么较小的数必须为2,所以37.作业8、已知正整数p、q都是质数,并且与也都是质数,求p、q的值.答案:或解析:若p、q均为奇数则为大于2的偶数,与其为质数矛盾,故p、q必有偶数,即为2.当时,q、、均为质数,且讨论得此三数被3除的余数各不相同,因此q只能为3,此时另两个均为17,满足条件;当时,p、、均为质数,同理可得p也只能为3,此时另两个数分别为23和17,满足要求.综上,或.作业9、张中中小朋友手中有四张卡片,分别写有1、2、3、4;张右右小朋友手中也有四张卡片,分别写着5、6、7、9,两位小朋友将卡片放在一起适当组合恰好形成四个不同的两位质数(卡片不重复使用,也不得有剩余),请将四个质数的和求出.答:_________答案:190解析:2只能和9配,为29.4只能和7配,为47.进而另两个为61、53,总和为190.作业10、(1)两个质数的和是39,这两个质数的差是多少?(2)三个互不相同的质数相加,和为40,这三个质数分别是多少?答案:(1)35(2)2、7、31解析:(1).偶质数是2,所以奇质数是.这两个质数的差是(2)40是偶数,如果写成三个数相加的形式则有两种情况,,或,第一种情况显然是不可能的(质数中只有2是偶数).所以可以确定出三个质数中有一个一定是2,剩下两个奇质数的和是38.通过简单的枚举可得,只有符合题意.所以这三个质数分别是:2,7,31.作业11、有一种数,是以法国数学家梅森的名字命名的,它们就是形如(n为质数)的梅森数,当梅森数是质数时就叫梅森质数,是合数时就叫梅森合数.例如:就是第一个梅森质数.第一个梅森合数是().A、4B、15C、127D、2047答案:D解析:可依次写出梅森数:,第一个梅森质数;,第二个梅森质数;,第三个梅森质数;,第四个梅森质数;,第一个梅森合数.所以答案为D.也可以用排除法,梅森数一定为奇数,A选项排除.,4为合数,所以15不是梅森数,B选项排除.,127为质数,所以127为梅森质数,C选项排除.检验可知,D选项为梅森合数,所以答案为D.作业12、在小于30的质数中,加3以后是4的倍数的是____________.答案:5,13,17,29解析:通过枚举法可得,5、13、17、29.作业13、已知a,b,c只3个彼此不同的质数,若,则最大是___________.答案:32解析:.作业14、有些三位数,它的各位数字的乘积是质数,这样的三位数最大的为A,最小的为B.则__________.答案:599解析:由质数定义可知,质数只能写成1乘本身的形式,则说明三位数的三个数位上的数字有2个1,另一个为质数.则这样的三位数最大为711,最小为112,则.作业15、从1、2、3、4、5、6、7、8、9中选出8个数排成一个圆圈,使得相邻的两数之和都是质数.排好后可以从任意两个数字之间切开,按顺时针方向读这些八位数,其中可能读的最大的数是________________.答案:98567432解析:设首位为9,旁边可为8,下一位最大为5……这样进行下去,最大为98567432.。
数学竞赛班讲义班级______姓名______学号______第二讲质数与合数知识点归纳一、正整数的一种分类:质数、合数、1。
二、质数的定义:如果一个大于1的正整数,只能被1和它本身整除,那么这个正整数叫做质数(质数也称素数)。
三、合数的定义:一个正整数除了能被1和本身整除外,还能被其他的正整数整除,这样的正整数叫做合数。
四、质数的性质:(1)质数只有1和本身两个正约数;(2)质数中只有一个偶数2;(3)如果两个质数的和或差是奇数那么其中必有一个是2;(4)如果两个质数的积是偶数那么其中也必有一个是2;(5)任何合数都可以分解为几个质数的积。
能写成几个质数的积的正整数就是合数。
例题与分析1.用1,2,3三个数码(可以重复)可以组成的最大两位质数是多少?2.用1,2,3,4四个数字中的三个可以组成的三位最大质数是多少?3.在所有两位以上的质数中,在个位数上不可能出现的数字共有多少个?4. 设xy 是小于50的质数,且)(|2y x +,则满足条件的数共有多少个?5. 已知三个质数30=++z y x ,则xyz 最小为多少?6. 图中的每个圆圈内的数都是质数,且大三角形每条边上三个数的和与其中小三角形上三个顶点的和都相等,则这个和最小是多少?7. 如果P 是质数,且42+P ,43+P 仍是质数,那么P 最小是多少?8. 请在下式的方框内填入6个50以内的不同质数.2×□+□×□+□×□×□=20029. 三个质数的积恰为它们和的7倍,则这三个数是多少?10. 将50写成10个质数之和,则其中最大的一个不会超过多少?11. 已知P ,5)4(2-+P 都为质数,求)4)(3)(2)(1(++++P P P P 的值.12. 已知两个质数a 和b ,它们的积加上7后恰好为三个不同质数的乘积,这三个质数均不超过30,求a 的最小值.练习与巩固1. 最小的质数与最小的合数之和为____________.2. 两个合数的和为质数,则这两个数最小为__________,___________.3. 20以内的质数共有__________个,最大的一个为___________.4. 下列五个数15、23、39、41、51中,_________和_________为质数.5. 已知两个质数a 和b 的和是奇数,则它们的积为___________(填“奇数”或偶数).6. 两个质数的和为43,则这两个质数较大数比较小数大____________.7. 正整数A 和B 都是质数,且6723=+B A ,且B A >,则__________=+B A .8. 有一个质数加上10或12后,仍为质数,则这个数最小为__________.9. 试写出5个由小到大的连续正整数,它们都是合数,其中最小数的最小值为__________.10. 有一类两位质数,将十位数字与个位数字对换后仍为质数,则所有这些数之和为_____.11. 分别判断117和373是质数还是合数.12. 已知x 、y 、z 为三个质数,且24=+y x ,66=+z y ,z y x <<,求x 、y 、z 的值.。
人教版数学五下第二单元《质数和合数》教案一、教学目标1.了解质数和合数的定义和性质。
2.掌握如何判断一个数是质数还是合数。
3.能够进行质数和合数的运算及应用。
二、教学重点1.质数和合数的概念和区别。
2.判断一个数是质数还是合数的方法。
3.质数和合数的运算。
三、教学内容1. 质数和合数的概念•质数:只能被1和自身整除的数。
•合数:除了1和自身外还能被其他数整除的数。
2. 区分质数和合数•判断质数的方法:除了1和本身外,不能被其他数整除即为质数。
•判断合数的方法:除了1和本身外,能被其他数整除即为合数。
3. 质数和合数的运算•质数与质数相乘得到质数。
•质数与合数相乘得到合数。
•合数与合数相乘得到合数。
四、教学过程1. 导入•通过举例引入质数和合数的概念,让学生感受到质数和合数的存在。
2. 学习质数和合数的定义及区分•介绍质数和合数的定义,引导学生通过实际例子判断一个数是质数还是合数。
3. 进行质数和合数的运算•给学生一些练习题,让他们通过计算加深对质数和合数运算规律的理解。
4. 总结•结合学生练习的结果,总结质数和合数的性质和运算规律,强化学生对知识点的掌握。
五、课堂练习1.判断下列数是质数还是合数:13、20、37、42。
2.计算以下数的乘积:5×7、11×10、15×25。
六、课后作业1.完成《质数和合数》一节的课后习题。
2.查阅资料,了解质数和合数的应用领域。
七、教学反馈•收集学生课后作业,及时纠正错误,巩固学生对质数和合数的理解。
以上就是本节课《质数和合数》的教学教案,请同学们认真学习,做到理论联系实际,提高数学运用能力。