初中分式练习题
- 格式:doc
- 大小:84.00 KB
- 文档页数:2
初中数学分式的约分通分综合练习题(附答案)初中数学分式的约分通分综合练题一、单选题1.下列分式中,不论$x$取何值,一定有意义的是()frac{x-1}{x-1}\cdot\frac{x+1}{x-1}$A。
$\frac{x+1}{x}$B。
$x$C。
$\frac{x^2-1}{x}$D。
$\frac{x^2+1}{x}$2.下列代数式中,是分式的为()A。
$\frac{1}{2}$B。
$\frac{x}{3}$C。
$\frac{x}{2}-y$D。
$\frac{5}{x^3}$3.下列各式中,是分式的是()A。
$\frac{2x+1}{x(x-3)}$B。
$2$C。
$\frac{x}{\pi-2}$D。
$\frac{1}{3x^2}$4.当分式$\frac{x}{2x-1}$无意义时,$x$的值是()A。
$2$B。
$-\frac{1}{2}$C。
$0$D。
$1$5.下列各式正确的是()A。
$\frac{b+xa}{b+x}=\frac{a}{b+1}$B。
$\frac{y^2n}{n-ax}=\frac{y}{x^2}$C。
$\frac{n}{ma}=\frac{1}{a}$($a\neq 0$)D。
$m=m-a$6.下列三个分式$\frac{1}{2x^2}$,$\frac{4(m-n)}{3x}$,$\frac{2x+4x^2y}{x^2-1}$,的最简公分母是()A。
$4(m-n)x$B。
$2(m-n)x^2$C。
$\frac{1}{4}x^2(m-n)$D。
$4(m-n)x^2$7.计算$\frac{(x+y)^2-(x-y)^2}{4xy}$的结果为()A。
$1$B。
$\frac{1}{2}$C。
$\frac{1}{4}$D。
$0$8.下列分式:$\frac{3x}{-x^2}$,$\frac{x-y}{x^2+y^2}$,$\frac{x+y}{xy+x}$,$\frac{2x+4x^2y}{x^2-1}$,其中是最简分式的有()A。
分式综合练习题一 选择题1 下列运算正确的是( )A -40=1B (-3)-1=31 C (-2m-n )2=4m-n D (a+b )-1=a -1+b -12 分式28,9,12zy x xy z x x z y -+-的最简公分母是( ) A 72xyz 2 B 108xyz C 72xyz D 96xyz 23 用科学计数法表示的树-3.6×10-4写成小数是( )A 0.00036B -0.0036C -0.00036D -360004 若分式6522+--x x x 的值为0,则x 的值为( )A 2B -2C 2或-2D 2或35计算⎪⎭⎫ ⎝⎛-+÷⎪⎭⎫ ⎝⎛-+1111112x x 的结果是( ) A 1 B x+1 Cx x 1+ D 11-x 6 工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x 人挖土,其它的人运土,列方程 ①3172=-x x ②72-x=3x ③x+3x=72 ④372=-xx 上述所列方程,正确的有( )个A 1B 2C 3D 4 7 在ma y x xy x x 1,3,3,21,21,12+++π中,分式的个数是( ) A 2 B 3 C 4 D 58 若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A -1 B 0 C 1 D 29 若3,111--+=-ba ab b a b a 则的值是( ) A -2 B 2 C 3 D -3二 填空1 一组按规律排列的式子:()0,,,,41138252≠--ab a b a b a b a b ,其中第7个式子是第n 个式子是2 7m =3,7n =5,则72m-n =3 ()2312008410-+⎪⎭⎫ ⎝⎛--+-= 4 若2222,2ba b ab a b a ++-=则= 三 化简 1 ()d cd b a c ab 234322222-•-÷ 2 111122----÷-a a a a a a3 ⎪⎭⎫ ⎝⎛---÷--225262x x x x四 解下列各题1 已知b ab a b ab a b a ---+=-2232,311求 的值2 若0<x<1,且xx x x 1,61-=+求 的值五 (5)先化简代数式()()n m n m mn n m n m n m n m -+÷⎪⎪⎭⎫ ⎝⎛+---+222222,然后在取一组m,n 的值代入求值六 解方程 1 12332-=-x x 2 1412112-=-++x x x七 2008年5月12日,四川省发生8.0级地震,我校师生积极捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?分式练习题参考答案一 CACBC CBBA二 1 -()n n n ab a b 137201,--, 2 9/5, 3 2, 4 53 三 1 ac1 ,2 1-a a ,3 32+-x 四 1 提示:将所求式子的分子、分母同时除以ab 。
初中分式方程练习题初中分式方程练习题(精选3篇)数学是人类对事物的抽象结构与模式进行严格描述、推导的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。
下面是为大家整理的初中分式方程练习题,希望能帮助到大家!初中分式方程练习题(篇1)1、(20XX四川成都)要使分式有意义,则x的取值范围是( )(A)x≠1 (B)x1 (C)x1 (D)x≠-12、(20XX深圳)分式的值为0,则的取值是A. B. C. D.3、(20XX湖南郴州)函数y= 中自变量x的取值范围是( )A. x3B. x3C. x≠3D. x≠﹣34.(20XX湖南娄底,7,3分)式子有意义的x的取值范围是( )A. x≥﹣且x≠1B. x≠1C.5.(20XX贵州省黔西南州,2,4分)分式的值为零,则x的值为( )A. ﹣1B. 0C. ±1D. 16.(20XX广西钦州)当x= 时,分式无意义.7、(20XX江苏南京)使式子1? 1 x?1 有意义的x的取值范围是。
8、(20XX黑龙江省哈尔滨市)在函数中,自变量x的取值范围是 .9、 (20XX江苏扬州)已知关于的方程 =2的解是负数,则的取值范围为 .10、(20XX湖南益阳)化简: = .11、(20XX山东临沂,6,3分)化简的结果是( )A. B.C. D.12、 (20XX湖南益阳)化简: = .13、(20XX湖南郴州)化简的结果为( )A. ﹣1B. 1C.D.14、(20XX湖北省咸宁市)化简 + 的结果为 x .15、(20XX?泰安)化简分式的结果是( )A.2B.C.D.-2初中分式方程练习题(篇2)1、甲、乙两地相距19千米,某人从甲地出发出乙地,先步行7千米,然后改骑自行车,共用2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
求步行速度和骑自行车的速度。
2、甲、乙两组学生去距学校4.5千米的敬老院打扫卫生,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,结果两组学生同时到达敬老院,如果步行的速度是骑自行车的速度的,求步行和骑自行车的速度各是多少?3、为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程。
初中数学分式章节习题练习(50题)一、单选题(共27题;共54分)1.下列运算一定正确的是( )A. a2+a3=a5B. 4a-5a=-aC. 2a-2=D. a10÷a2=a5【答案】B【解析】【解答】解:A. a2和a3不是同类项,不能合并,故选项A错误;B. 4a-5a=-a,故选项B正确;C. 2a-2=,故选项C错误;D. a10÷a2=a8,故选项D错误.故答案为:B.【分析】根据合并同类项法则、负整数指数幂、同底数幂相除的法则,逐项进行判断,即可求解.2.下列各式中,是分式的是( )A. B. C. D.【答案】C【解析】【解答】解:ABD、、、是整式,不符合题意;C、是分式,符合题意.故答案为:C.【分析】分母含有字母的代数式是分式,据此定义判断即可.3.分式和的最简公分母()A. B. C. D.【答案】C【解析】【解答】解:因为,,所以分式和的最简公分母为,故答案为:C.【分析】一般取各分母的所有因式的最高次幂的积作为公分母,它叫最简公分母,据此解答即可.4.当x为任意实数时,下列分式一定有意义的是( )A. B. C. D.【答案】 D【解析】【解答】解:x、x2、|x|的值可能为0,故A、B、C不符合题意,x2+1≥1,故x2+1的值不可能为0,故D选项符合题意.故答案为:D.【分析】分式有意义的条件为分式的分母不为零,判断分式有意义,只需判断分母不可能为0即可.5.若关于x 的分式方程有增根,则m 的值为()A. m=-1B. m=0C. m=3D. m=0或m=3【答案】A【解析】【解答】解:∵∴2-(x+m)=2(x-3)2-x-m=2x-63x-8+m=0∵分式方程有增根∴将x=3代入3x-8+m=0可得m=-1故答案为:A.【分析】根据题意,将分式方程化简为整式方程,根据其有增根,可知x=3,代入方程中,即可得到m 的值。
6.若分式的值为零,则x的值为()A. -1B. 2C. -2D. 2或-2【答案】C【解析】【解答】解:∵分式的值为0∴x2-4=0且x-2≠0∴x=-2故答案为:C.【分析】根据分式为0的条件以及分式有意义的条件,综合考虑得到x的值即可。
初中数学分式的化简求值专项练习题一、解答题1.先化简,再求值: 2233111211x x x x x x --⎛⎫÷-+ ⎪-++-⎝⎭,其中x 是不等式组()5331 131922x x x x -⎧⎪⎨>+<-⎪⎩-的整数解.2.先化简,再求值: 22111121x x x x x ⎛⎫+÷ ⎪+-++⎝⎭,其中x =3.先化简,再求值: 222111x x x x x x --⎛⎫+-÷ ⎪++⎝⎭ ,其中()10132x -⎛⎫=+- ⎪⎝⎭. 4.先化简,再求值: 22214244a a a a a a a a +--⎛⎫+÷ ⎪--+⎝⎭,其中(1012a π-⎛⎫=+ ⎪⎝⎭. 5.先化简,再求值: 524223m m m m -⎛⎫+-⋅ ⎪--⎝⎭,其中12m =-. 6.先化简,再求值: 222444142x x x x x x -++⎛⎫-÷- ⎪-+⎝⎭,其中2210x x +-=. 7.先化简,再求值: 69933a a a a a a +⎛⎫⎛⎫+÷+ ⎪ ⎪--⎝⎭⎝⎭,其中3a =. 8.先化简,再求值: 2443111m m m m m -+⎛⎫÷-- ⎪--⎝⎭,其中2m =. 9.先化简再求值: 112y x y x y x y ⎛⎫-÷⎪-+-⎝⎭,其中x 、y 满足()2120x y -++= . 10.先化简,再求值: 22121x x x x x x ⎛⎫-÷ ⎪+++⎝⎭,其中x =11.先化简,再求值: 22a 1a 1(a)a a+÷-+,其中a=2. 12.化简,再求值: 22221121x x x x x x x x -⎛⎫-÷ ⎪---+⎝⎭,其中x 是不等式组13 22124x x ⎧≤-<⎪⎨⎪⎩+的整数解. 13.先化简,再求值: 2224124422a a a a a a ⎛⎫--÷ ⎪-+--⎝⎭,其中, a 是方程2310x x ++=的根. 14.先化简,再求值: 211122a a a -⎛⎫-÷ ⎪++⎝⎭,其中220a a += 15.先化简,再求值: 221111442x x x x x x -⎛⎫+⋅- ⎪++++⎝⎭,其中2x =. 16.先化简,再求值: 2211111x x x x ⎛⎫-÷ ⎪+--⎝⎭,其中12x =-. 17.先化简,再求值: 2569122x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中 5x =-.18.化简2221432a a a a a a+⋅----,并求值,其中a 与2、3构成ABC ∆的三边,且a 为整数.19.先化简,再求值: 223a 9a 3a a 3a 3a ⎛⎫+-÷ ⎪--⎝⎭,其中2a =. 20.化简: 228161212224x x x x x x x -+⎛⎫÷--- ⎪+++⎝⎭ 21.化简: 2321121x x x x x -⎛⎫--÷ ⎪--+⎝⎭22.当1a =,求211121a a a a a a+-÷--+的值. 二、计算题23.计算 532224m m m m -⎛⎫+-÷ ⎪--⎝⎭. 24.计算: 221b a a b a b ⎛⎫÷- ⎪--⎝⎭. 25.计算 532224m m m m -⎛⎫+-÷ ⎪--⎝⎭. 26.2244233x x x x x x +-+⎛⎫++÷ ⎪--⎝⎭27.化简: 21321121x x x x x x --⎛⎫-÷ ⎪++++⎝⎭28.化简: 2321121x x x x x -⎛⎫--÷ ⎪--+⎝⎭. 29.化简: 228161212224x x x x x x x -+⎛⎫÷--- ⎪+++⎝⎭30.2344311a a a a a ++⎛⎫++÷ ⎪--⎝⎭31.先化简,再求值: 2241222a a a a a ⎛⎫-⋅ ⎪--+⎝⎭其中a =32.先化简,再求值: 22224x x x x x x ⎛⎫+÷ ⎪-+-⎝⎭,其中x=﹣1. 33.计算: 222442342a a a a a a-+-÷--+ 三、填空题34.计算: 212111x x x -⎛⎫-÷ ⎪--⎝⎭ ____________.参考答案1.答案:13 解析:2.答案:原式=13221x x 解析:3.答案:1x ,13 解析:4.答案:()212a -,1解析: 5.答案:-2(m+3),-5解析:6.答案:242x x +,4 解析:7.答案:3a a +,1-解析:8.答案:22m m-+;1 解析:9.答案:1x y +,-1 解析:10.答案:x 2-1,7解析: 11.答案:3解析:12.答案:21x x +,x=2时,原式= 43. 解析: 13.答案:原式()()()()22221222a a a a a a ⎡⎤+--=+⨯⎢⎥--⎢⎥⎣⎦()221222a a a a a -+⎛⎫=+⨯ ⎪--⎝⎭()32a a += ()2132a a =+ ∵a 是方程2310x x ++=的根∴2310a a ++=∴231a a +=-原式12=-解析:14.答案:11a --,1 解析:15.答案:3解析:16.答案:4解析:17.答案:18-解析:18.答案:原式()()()212232aa a a a a a +=⋅++--- ()()11232a a a =+--- ()()1323a a a +-=-- ()()223a a a -=-- ()13a =-, ∵a 与2、3构成ABC ∆的三边,且a 为整数 ∴15a <<,即2,3,4a =当2a =或3a =时,原式没有意义则4a =时,原式1=解析:19.答案:原式=212a =解析:20.答案:()44x x -+ 解析:21.答案:22x x --+解析:22.答案:12- 解析:23.答案:2m+6解析:24.答案:原式 1a b=+解析:25.答案:2m+6 解析:26.答案:22x x +- 解析:27.答案:x+1 解析:28.答案:-x 2-x+2 解析:29.答案:()44x x -+ 解析:30.答案:2a a + 解析:31.答案:4 解析:32.答案:3x+2;-1 解析:33.答案:a-3 解析:34.答案:x+1 解析:。
分式化简求值一 、填空题(本大题共2小题)1.已知::2:3:5a b c =,则3264a b c a b c-++-= . 2.已知,则___________. 二 、解答题(本大题共10小题)3.已知4x >-,求218416x x --与的大小关系. 4.先化简再求值:2111x x x ---,其中2x = 5.先化简,再求值:532224x x x x -⎛⎫--÷ ⎪++⎝⎭,其中3x . 6.已知:(),求的值. 7.已知0x y <<,试比较11x y y x++与的大小关系. 8.已知22690x xy y -+=,求代数式2235(2)4x y x y x y +⋅+-的值. 9.已知:220x -=,求代数式222(1)11x x x x -+-+的值. 10.先化简2223352x xy x xy y -+-,再求值. 其中31,22x y =-=. 11.先化简再求值:44()()xy xy x y x y x y x y -++--+,其中1,2x y ==12.已知,,为实数,且,,,求. 234x y z ==222x y z xy yz zx ++=++2244a b ab +=0ab ≠22225369a b a b b a b a ab b a b--÷-++++a b c 13ab a b =+14bc b c =+15ca c a =+abc ab bc ca ++分式化简求值答案解析一 、填空题1.同样使用“见比设k ”方法,已知条件可变形为:令2,3,5a k b k c k ===,则所求分式变为:66301021253k k k k k k -+=+- 2.本题采用“见比设k ”思想,将已知条件变形为:,2,3,4234x y z k x k y k z k ======则,将其代入所求分式中得:222222491629612826k k k k k k ++=++ 二 、解答题3.作差法. 221841416164x x x x x --==---+,因为4x >-,所以104x >+,所以218416x x >-- 4.先讲原式化简得:211111(1)x x x x x x x --==---,再讲2x =代入1x 得12.5.先化简得:25392(2)22(3)22423x x x x x x x x x --+⎛⎫--÷=⋅=+ ⎪+++-⎝⎭,再将3x 代入2(3)x +得6.将分式化简得:2(3)53523()()a b a b b a b b a b a b a b a b a b a b a b-++--⋅-==+-++++,由已知条件可得:2(2)0a b -=,即2a b =.将2a b =代入2a b a b -+中得:412a a a a-=-+ 7.作差法. 111111()()(1)()(1)xy xy x y x y xy xy y x y x y x xy++-+-+=-=+-=+⋅,因为0x y <<,所以10,0,0xy x y xy +>-<>,,所以11x y y x+<+ 8.将分式化简得:223535(2)42x y x y x y x y x y++⋅+=--,再将已知条件整理得:2(3)0x y -=,即3x y =,将3x y =代入352x y x y +-中得:951465y y y y +=-9.先将分式化简整理得:2222(1)1111x x x x x x x -+-+=-++,由已知条件可得22x =代入化简式中得211111x x x x x +-+==++ 10.化简得:2223(3)352(2)(3)2x xy x x y x x xy y x y x y x y --==+-+-+,再将31,22x y =-=代入2x x y +中得:323312222x x y -==+-+⨯11.化简得:22222244()4()4()()()()()()()()xy xy x y xy x y xy x y x y x y x y x y x yx y x y x y x y x y x y x y -++--++-=⋅-+-++-==+-=-+-,再将1,2x y ==22x y -中得:17244-=- 12.由已知可知 ,三式相加得,, 故. 113114115a b b cc a ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩1116a b c ++=1111116abc ab bc ca ab bc ca abc a b c===++++++。