八年级上册数学《整式的乘法与因式分解》整式乘法
- 格式:doc
- 大小:77.00 KB
- 文档页数:3
教学设计2024秋季八年级数学上册第十四章整式的乘法与因式分解《整式的乘法:整式的除法》(注:标题应为《整式的除法》,但根据要求内容仍围绕整式除法展开)一、教学目标(核心素养)1.知识与技能:学生能够理解整式除法的概念,掌握单项式除以单项式、多项式除以单项式的运算法则,并能准确进行整式的除法运算。
2.数学思维:通过整式除法的探索过程,培养学生的逻辑推理能力、代数运算能力以及问题解决能力。
3.问题解决:学会将实际问题转化为整式除法问题,运用所学知识解决简单的实际问题。
4.情感态度:激发学生对数学的兴趣,培养认真细致的学习态度和合作学习的精神。
二、教学重点•掌握单项式除以单项式、多项式除以单项式的运算法则。
•能够准确进行整式的除法运算。
三、教学难点•理解整式除法法则的推导过程及其背后的数学原理。
•灵活运用整式除法法则解决复杂问题,特别是多项式除以单项式时各项系数的处理。
四、教学资源•多媒体课件(包含整式除法示例、动态演示)•教科书及配套习题集•黑板与粉笔•学生练习本五、教学方法•讲授法:介绍整式除法的概念及运算法则。
•演示法:通过例题演示整式除法的运算过程。
•讨论法:组织学生讨论整式除法中的难点和易错点,分享解题经验。
•练习法:通过大量练习巩固学生对整式除法运算法则的理解和掌握。
六、教学过程导入新课•情境引入:通过一个实际问题(如分配苹果给班级同学,计算每人得到的苹果数)引入整式除法的概念,激发学生兴趣。
•复习旧知:回顾整式乘法、单项式、多项式等基本概念,为新课学习做铺垫。
新课教学1.单项式除以单项式•概念阐述:明确单项式除以单项式的意义。
•法则讲解:介绍运算法则(系数相除,相同字母的指数相减)。
•例题演示:通过例题展示运算过程,强调运算步骤和注意事项。
•学生练习:学生独立完成几道练习题,教师巡回指导。
2.多项式除以单项式•概念引入:通过具体例子引入多项式除以单项式的概念。
•法则推导:结合分配律和单项式除法的法则推导运算法则。
八年级数学上册“第十四章整式的乘法与因式分解”必背知识点一、整式的乘法1. 单项式乘单项式:法则:把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2. 单项式乘多项式:法则:用单项式去乘多项式的每一项,再把所得的积相加。
3. 多项式乘多项式:法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
二、乘法公式1. 平方差公式:公式:$(a+b)(a-b) = a^2 b^2$应用:两个数的和与这两个数的差的积,等于这两个数的平方差。
2. 完全平方公式:公式:$(a+b)^2 = a^2 + 2ab + b^2$$(a-b)^2 = a^2 2ab + b^2$应用:两个数的和 (或差)的平方,等于这两个数的平方和,加上(或减去)这两个数积的2倍。
三、因式分解1. 因式分解的定义:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫作分解因式。
2. 提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。
3. 公式法:利用平方差公式和完全平方公式进行因式分解。
注意:分解因式必须分解到每一个因式都不能再分解为止。
四、十字相乘法十字相乘法主要用于二次项系数为1的二次多项式的因式分解。
方法:通过观察和尝试,将常数项分解为两个因数的乘积,并使得这两个因数与一次项系数的组合满足整式的乘法规则。
五、注意事项在进行整式乘法时,要注意系数的计算、字母的指数运算以及符号的处理。
在进行因式分解时,要注意分解的彻底性,即每一个因式都不能再进一步分解。
熟练掌握乘法公式和因式分解的方法,对于提高解题效率和准确率至关重要。
掌握这些知识点,将有助于学生更好地理解和应用整式的乘法与因式分解,提高代数运算能力和解题能力。
人教版八年级上数学说课稿《第14章整式的乘法与因式分解》一. 教材分析《人教版八年级上数学》第14章整式的乘法与因式分解,是在学生掌握了有理数的运算、整式的加减、幂的运算等知识的基础上进行学习的。
这一章的内容包括整式的乘法运算、平方差公式、完全平方公式、因式分解等。
整式的乘法与因式分解在数学中占有重要的地位,它不仅在初中数学中有着广泛的应用,而且对高中数学的学习也有很大的帮助。
二. 学情分析八年级的学生已经具备了一定的数学基础,对整式的加减、幂的运算等知识有一定的了解。
但是,学生在学习这一章的内容时,可能会觉得比较困难,因为这一章的内容既有运算,又有公式的记忆,还有因式分解的方法,需要学生对知识进行深入的理解和掌握。
三. 说教学目标1.知识与技能目标:使学生掌握整式的乘法运算,理解并掌握平方差公式、完全平方公式,学会因式分解的方法。
2.过程与方法目标:通过自主学习、合作交流的方式,培养学生解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学的美。
四. 说教学重难点1.教学重点:整式的乘法运算,平方差公式、完全平方公式的记忆,因式分解的方法。
2.教学难点:平方差公式、完全平方公式的推导,因式分解的方法的灵活运用。
五. 说教学方法与手段在本节课的教学中,我将采用自主学习、合作交流、教师讲解等教学方法。
同时,利用多媒体教学手段,如PPT、网络资源等,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过复习整式的加减、幂的运算等知识,引导学生进入整式的乘法与因式分解的学习。
2.教学新课:讲解整式的乘法运算,引导学生推导平方差公式、完全平方公式,教授因式分解的方法。
3.练习巩固:布置相关的练习题,让学生进行自主练习,巩固所学知识。
4.课堂小结:对本节课的内容进行总结,帮助学生加深对知识的理解。
5.布置作业:布置适量的作业,让学生在课后进行复习和巩固。
一、整式的乘法1.几个常用公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²(a+b)(a-b)=a²-b²(a+b)³ = a³ + 3a²b + 3ab² + b³(a-b)³ = a³ - 3a²b + 3ab² - b³2.整式的乘法法则:(a+b)(c+d) = ac + ad + bc + bd加减混合运算:(a+b)(c-d) = ac - ad + bc - bd3.多项式的乘法:(a₁+a₂+...+aₙ)(b₁+b₂+...+bₙ)=a₁b₁+a₁b₂+...+a₁bₙ+a₂b₁+a₂b₂+...+a₂bₙ+...+aₙb₁+aₙb₂+...+aₙb ₙ4.整式的乘法性质:交换律:a·b=b·a结合律:(a·b)·c=a·(b·c)分配律:a·(b+c)=a·b+a·c5.整式的乘法应用:展开、计算、化简等二、因式分解1.因式分解的基本概念:将一个整式分解为两个或多个因式的乘积的过程。
2.因式分解的方法:a.公因式提取法:找出整个整式和各项中的公因式,并提取出来。
b.公式法:利用已知的一些公式对整式进行因式分解。
c.分组法:将整式中各项按一定的规则分组,然后在每组内部进行因式分解。
d.辗转相除法:若整式中存在因式公共因式,可以多次使用辗转相除法进行因式分解。
3.一些常见的因式分解公式:a.二次差平方公式:a²-b²=(a+b)(a-b)b. 平方差公式:a² + 2ab + b² = (a+b)²c. 平方和公式:a² - 2ab + b² = (a-b)²d. 三次和差公式:a³+b³ = (a+b)(a²-ab+b²)、a³-b³ = (a-b)(a²+ab+b²)e. 四次和差公式:a⁴+b⁴ = (a²+b²)(a²-ab+b²)、a⁴-b⁴ = (a+b)(a-b)(a²+b²)4.因式分解的应用:简化计算、寻找整式的根、列立方程等。
新2024秋季八年级人教版数学上册第十四章整式的乘法与因式分解《整式的乘法:整式的乘法》听课记录一、教学目标(核心素养)1.知识与技能:学生能够理解并掌握整式乘法的基本法则,包括单项式乘单项式、单项式乘多项式以及多项式乘多项式,能够准确进行整式的乘法运算。
2.过程与方法:通过具体实例的探究,引导学生经历整式乘法法则的发现过程,培养学生的观察、归纳和推理能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养严谨、细致的学习态度,以及合作学习的精神。
二、导入教师行为:•教师首先展示几个简单的整式乘法实例,如(2x+3)×4、x2×3x,让学生尝试进行计算,并请几位学生分享他们的解题思路。
•接着,教师提出问题:“同学们,你们在进行整式乘法时,有没有发现一些通用的方法和规律呢?我们能否将这些方法和规律总结出来,以便更好地解决类似的问题呢?”学生活动:•学生认真观察教师给出的例子,尝试进行计算,并思考整式乘法可能存在的规律。
•学生分享自己的解题思路,与同桌或小组内成员讨论可能的答案。
过程点评:•导入环节通过具体实例和问题的引导,有效地激发了学生的探究欲望,为学习整式乘法的基本法则做好了铺垫。
•学生积极参与讨论,初步感知了整式乘法的运算规律,为后续学习打下了基础。
三、教学过程3.1 单项式乘单项式教师行为:•明确给出单项式乘单项式的法则,即“系数相乘,字母部分按同底数幂的乘法法则进行运算”。
•通过具体例子演示法则的应用,如3a2×2a3,引导学生观察结果并验证法则的正确性。
学生活动:•认真听讲,记录单项式乘单项式的法则,并尝试理解其含义。
•跟随教师的演示,自己完成例题的计算,验证法则的正确性。
过程点评:•教师讲解清晰,通过具体例子帮助学生理解单项式乘单项式的法则及其应用。
•学生通过动手计算,加深了对法则的理解和掌握。
3.2 单项式乘多项式教师行为:•引入单项式乘多项式的概念,讲解其运算法则,即“用单项式去乘多项式的每一项,再把所得的积相加”。
第十四章整式的乘法与因式分解14.1.4 整式的乘法第3课时一、教学目标【知识与技能】1.探究同底数幂除法的性质和单项式除以单项式、多项式除以单项式的法则,并会应用法则计算.2.会进行单项式除以单项式、多项式除以单项式的运算,理解整式除法运算的原理.【过程与方法】1.经历探究整式的除法的运算性质的过程,进一步体会幂的意义,发展推理能力和有条件的表达能力.2.体会知识间逻辑关系、类比探究在研究除法问题时的价值,体会转化思想在整式除法中的作用.【情感、态度与价值观】感受数学法则、公式的简洁美、和谐美.二、课型新授课三、课时第3课时四、教学重难点【教学重点】应用整式除法法则进行计算.【教学难点】根据乘、除互逆的运算关系得出同底数幂的除法运算法则.五、课前准备教师:课件、直尺、计算器等。
学生:练习本、钢笔或圆珠笔。
六、教学过程(一)导入新课木星的质量约是1.9×1024吨,地球的质量约是5.98×1021吨,你知道木星的质量约为地球质量的多少倍吗?(出示课件2)木星的质量约为地球质量的(1.90×1024)÷(5.98×1021)倍.想一想:上面的式子该如何计算?(二)探索新知1.师生互动,探究同底数幂的除法法则教师问1:请完成下面的题目:(出示课件4)(1)25×23;(2)x6×x4;(3)2m×2n.学生回答:(1)28;(2)x10;(3)2m+n.教师问2:本题是直接利用什么乘法法则计算的?学生回答:同底数幂的乘法法则:底数不变,指数相加.教师问3:思考下面的题该如何计算?(1)( )( )×23=28 (2)x6·( )( )=x10(3)( )( )×2n=2m+n学生回答:可以把乘法法则反过来利用.教师问4:反过来就我们今天要学的同底数幂的除法,能不能先试着写成除法形式?学生讨论后解答:(1)28÷23=?;(2)x10÷x6=?;(3)2m+n÷2n=?教师问5:你是如何计算的呢?学生回答:本题逆向利用同底数幂的乘法法则计算.教师问6:能不能试着完成下列各题:计算:(1)28÷23;(2)x10÷x6;(3)2 m+n÷2n学生回答:(1) 28÷23=25;(2) x10÷x6=x4;(3) 2 m+n÷2n =2m教师问7:观察下面的等式,你能发现什么规律?(出示课件5)(1)28÷23=25=28-3;(2) x10÷x6=x4=x10-6;(3) 2 m+n÷2n =2m =2m-n学生回答:底数不变,指数相减.教师总结:同底数幂相除,底数不变,指数相减.教师问8:以上法则能用字母表示吗?学生总结:a m÷a n=a m-n.教师问9:对指数有何要求吗?学生回答:m,n都是正整数,且m>n.教师总结:a m ÷a n=a m–n(m,n都是正整数,且m>n)教师问10:如何验证其正确性呢?学生回答:验证:因为a m–n·a n=a m–n+n=a m,所以a m ÷a n=a m–n.教师问11:对于除法运算,有没有什么特殊要求呢?学生回答:对于除法运算应要求除数(或分母)不为零,所以底数不能为零.即a m÷a n=a m-n(a≠0,m,n都是正整数,并且m>n).教师问12:计算:a m÷a m学生计算a m÷a m时,可能会出现1或a0两个答案.教师顺势归纳:从除法的意义可知商为1,另一方面,如果依照同底数幂的除法计算,得a0.所以规定:a0=1(a≠0).教师问13:为什么规定a0=1(a≠0)时要说明a≠0呢?学生回答:因为当a=0时,分母或除数为0,式子无意义.总结点拨:(出示课件6)同底数幂的除法一般地,我们有a m÷a n=a m–n(a ≠0,m,n都是正整数,且m>n)即同底数幂相除,底数不变,指数相减.规定:a0=1(a ≠0)这就是说,除0以外任何数的0次幂都等于1.例1:计算:(出示课件7)(1)x8÷x2;(2) (ab)5÷(ab)2.师生共同解答如下:解:(1)x8 ÷x2=x8–2=x6;(2) (ab)5÷(ab)2=(ab)5–2=(ab)3=a3b3.总结点拨:计算同底数幂的除法时,先判断底数是否相同或变形相同,若底数为多项式,可将其看作一个整体,再根据法则计算.例2:已知a m=12,a n=2,a=3,求a m–n–1的值.(出示课件9)师生共同解答如下:解:∵a m=12,a n=2,a=3,∴a m–n–1=a m÷a n÷a=12÷2÷3=2.总结点拨:解此题的关键是逆用同底数幂的除法,对a m–n–1进行变形,再代入数值进行计算.2.复习旧知,探究单项式除以多项式的法则教师问14:计算:4a2x3·3ab2学生回答:4a2x3·3ab2=12a3b2x3教师问15:计算:12a3b2x3÷ 3ab2学生讨论回答:(出示课件11)解法1: 12a3b2x3÷ 3ab2相当于求( )·3ab2=12a3b2x3.由(1)可知括号里应填4a2x3.解法2:原式=4a2x3· 3ab2÷ 3ab2=4a2x3.理解:上面的商式4a2x3的系数4=12 ÷3;a的指数2=3–1,b的指数0=2–2,而b0=1,x的指数3=3–0.教师问15:类比上述研究过程计算以下两题.(1)-2x3÷(-x);(2)8m2n2÷2m2n.学生回答:(1)2x2;(2)4n教师问16:通过计算,你又发现什么规律?学生回答:单项式相除,把系数和同底数的幂分别相除.师生互动合作交流,得出单项式除以单项式的法则:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.总结点拨:(出示课件12)单项式除以单项式的法则:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.例3:计算:(出示课件13)(1)28x4y2÷7x3y;(2)–5a5b3c ÷15a4b.师生共同解答如下:解:(1)原式=(28 ÷7)x4–3y2–1=4xy;(2)原式=(–5÷15)a5–4b3–1c=- 1ab2c.3总结点拨:单项式除以单项式要按照法则逐项进行,不得漏项,并且要注意符号的变化.3.师生互动,学习多项式除以单项式的法则教师问17:一幅长方形油画的长为(a+b),宽为m,求它的面积.(出示课件16)学生回答:面积为(a+b)m=ma+mb.教师问18:若已知油画的面积为(ma+mb),宽为m,如何求它的长?学生回答:长为(ma+mb)÷m.教师问19:如何计算(am+bm) ÷m?(出示课件17)学生讨论后回答:计算(am+bm) ÷m就相当于求( ) ·m=am+bm,教师问20:()填什么呢?学生回答:a+b教师问21:am ÷m+bm ÷m=?学生回答:a+b教师问22:观察上边的问题,你发现了什么?学生回答:(am+bm) ÷m=am ÷m+bm ÷m教师问23:计算下列各式:(1)(ax+bx)÷x;(2)(a2+ab)÷a;(3)(4x2y+2xy2)÷2xy.学生回答:(1) a+b;(2) a+b;(3) 2x+y.教师问24:说你是怎样计算的?学生回答:多项式除以单项式,用多项式的每一项除以单项式.教师问25:它们的项数之间有什么发现吗?师生共同解答如下:在学生独立解决问题之后,及时引导学生反思自己的思维过程,并对自己计算所得的结果进行观察,总结出计算的一般方法和结果的项数特征:商式与被除式的项数相同.教师问26:你能归纳出多项式除以单项式的法则吗?(出示课件18)学生归纳,教师点拨:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.教师问27:你能把这句话写成公式的形式吗?学生回答:(am+bm)÷m=am÷m+bm÷m.关键:应用法则是把多项式除以单项式转化为单项式除以单项式.例4:计算:(12a3–6a2+3a) ÷3a. (出示课件19)师生共同解答如下:解: (12a3–6a2+3a) ÷3a=12a3÷3a+(–6a2) ÷3a+3a÷3a=4a2+(–2a)+1=4a2–2a+1.总结点拨:多项式除以单项式,实质是利用乘法的分配律,将多项式除以单项式问题转化为单项式除以单项式问题来解决.计算过程中,要注意符号问题.例5:先化简,后求值:[2x(x2y–xy2)+xy(xy–x2)]÷x2y,其中x=2015,y=2014.(出示课件21)师生共同解答如下:解:原式=[2x3y–2x2y2+x2y2–x3y]÷x2y,=x–y.把x=2015,y=2014代入上式,得原式=x–y=2015–2014=1.(三)课堂练习(出示课件24-29)1.下列说法正确的是( )A.(π–3.14)0没有意义B.任何数的0次幂都等于1C.(8×106)÷(2×109)=4×103D.若(x+4)0=1,则x≠–42.下列算式中,不正确的是( )A.(–12a5b)÷(–3ab)=4a4B.9x m y n–1÷3x m–2y n–3=3x2y2C. 4a2b3÷2ab=2ab2D.x(x–y)2÷(y–x)=x(x–y)3.已知28a3b m÷28a n b2=b2,那么m,n的取值为( )A.m=4,n=3 B.m=4,n=1C.m=1,n=3 D.m=2,n=34.一个长方形的面积为a2+2a,若一边长为a,则另一边长为_____________.5. 已知一多项式与单项式–7x5y4 的积为21x5y7–28x6y5,则这个多项式是______.6.计算: (1)6a3÷2a2;(2)24a2b3÷3ab;(3)–21a2b3c÷3ab;(4)(14m3–7m2+14m)÷7m.7. 先化简,再求值:(x+y)(x–y)–(4x3y–8xy3)÷2xy,其中x=1,y=–3.8. (1)若32•92x+1÷27x+1=81,求x的值;(2)已知5x=36,5y=2,求5x–2y的值;(3)已知2x–5y–4=0,求4x÷32y的值.参考答案:1.D2.D3.A4.a+25. –3y3+4xy6. 解:(1) 6a3÷2a2=(6÷2)(a3÷a2)=3a.(2) 24a2b3÷3ab=(24÷3)a2–1b3–1=8ab2.(3)–21a2b3c÷3ab=(–21÷3)a2–1b3–1c= –7ab2c;(4)(14m3–7m2+14m)÷7m=14m3÷7m-7m2÷7m+14m÷7m= 2m2–m+2.7. 解:原式=x2–y2–2x2+4y2=–x2+3y2.当x=1,y=–3时,原式=–12+3×(–3)2=–1+27=26.8. 解:(1)32•34x+2÷33x+3=81,即3x+1=34,解得x=3;(2)52y=(5y)2=4,5x–2y=5x÷52y=36÷4=9.(3)∵2x–5y–4=0,移项,得2x–5y=4.4x÷32y=22x÷25y=22x–5y=24=16.(四)课堂小结今天我们学了哪些内容:a m÷a n=a m-n(a≠0,m,n都是正整数,并且m>n)a0=1(a≠0)(am+bm)÷m=am÷m+bm÷m.(五)课前预习预习下节课(14.2)的相关内容。
第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1.大体运算:⑴同底数幂的乘法:m n m n a a a +⨯= ⑵幂的乘方:()n m mn a a = ⑶积的乘方:()n n n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式.⑵单项式⨯多项式:用单项式乘以多项式的每一个项后相加.⑶多项式⨯多项式:用一个多项式每一个项乘以另一个多项式每一个项后相加.3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=- ⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每一个项除以单项式后相加.⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6.因式分解方式:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:()()22a b a b a b -=+- ②完全平方公式:()2222a ab b a b ±+=± ③立方和:3322()()a b a b a ab b +=+-+ ④立方差:3322()()a b a b a ab b -=-++ ⑶十字相乘法:()()()2x p q x pq x p x q +++=++ ⑷拆项法 ⑸添项法常考例题精选1.(2021·襄阳中考)下列运算正确的是( )A.4a-a=3 ·a2=a3C.(-a3)2=a5÷a2=a32.(2021·烟台中考)下列运算中正确的是( )A.3a+2a=5a2B.(-3a3)2=9a6÷a2=a3 D.(a+2)2=a2+43.(2021·遵义中考)计算(−12ab2)3的结果是( )3 232518184.(2021·沈阳中考)下面的计算必然正确的是( ) +b3=2b6 B.(-3pq)2=-9p2q2·3y5=15y8÷b3=b35.(2021·凉山州中考)下列各式正确的是( )=(−a)2=(−a)3=|−a2|=|a3|6.(2021·长春中考)计算:7a2·5a3= .7.(2021·广州中考)分解因式:x2+xy= .8.(2021·东营中考)分解因式2a2-8b2= .9.(2021·无锡中考)分解因式:2x2-4x= .10.(2021·连云港中考)分解因式:4-x2= .11.(2021·盐城中考)分解因式a2-9= .12.(2021·长沙中考)x2+2x+1= .13.(2021·临沂中考)分解因式4x-x3= .14.(2021·安徽中考)分解因式:x2y-y= .15.(2021·潍坊中考)分解因式:(a+2)(a-2)+3a= .16.(2021·遂宁中考)为庆贺“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,依照下面的规律,摆第(n)个图案,需用火柴棒的根数为.17.(2021·潍坊中考)当n等于1,2,3,…时,由白色小正方形和黑色小正方形组成的图形别离如图所示.则第n个图形中白色小正方形和黑色小正方形的个数总和等于.(用n表示,n是正整数)18.(2021·牡丹江中考)一件商品的进价为a元,将进价提高100%后标价,再按标价打七折销售,则这件商品销售后的利润为元.19.(2021·株洲中考)先化简,再求值:(x-1)(x+1)-x(x-3),其中x=3.1.(2021·徐州)下列运算正确的是( )A.3a2-2a2=1 B.(a2)3=a5C.a2·a4=a6D.(3a)2=6a22.下列计算错误的是( )A.(5-2)0=1 B.28x4y2÷7x3=4xy2C.(4xy2-6x2y+2xy)÷2xy=2y-3x D.(a-5)(a+3)=a2-2a-153.(2021·毕节)下列因式分解正确的是( )A.a4b-6a3b+9a2b=a2b(a2-6a+9) B.x2-x+14=(x-12)2C.x2-2x+4=(x-2)2D.4x2-y2=(4x+y)(4x-y)4.将(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于( ) A.2 B.4 C.6 D.85.若m=2100,n=375,则m,n的大小关系是( )A.m>n B.m<n C.m=n D.无法肯定6.已知a+b=3,ab=2,则a2+b2的值为( )A.3 B.4 C.5 D.67.计算:(a-b+3)(a+b-3)=( )A.a2+b2-9 B.a2-b2-6b-9C.a2-b2+6b-9 D.a2+b2-2ab+6a+6b+98.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部份拼成一个长方形(如图乙),按照两个图形中阴影部份的面积相等,可以验证( )A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b29.若x2+mx-15=(x-3)(x+n),则m,n的值别离是( )A.4,3 B.3,4 C.5,2 D.2,510.(2021·日照)观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是( )A.36 B.45 C.55 D.6611.计算:(x-y)(x2+xy+y2)=.12.(2021·孝感)分解因式:(a-b)2-4b2=.13.若(2x+1)0=(3x-6)0,则x的取值范围是.14.已知a m=3,a n=2,则a2m-3n=.15.若一个正方形的面积为a 2+a +14,则此正方形的周长为 .16.已知实数a ,b 知足a 2-b 2=10,则(a +b)3·(a -b)3的值是 .17.已知△ABC 的三边长为整数a ,b ,c ,且知足a 2+b 2-6a -4b +13=0,则c 为 .18.观察下列各式,探索发现规律:22-1=1×3;32-1=2×4;42-1=3×5;52-1=4×6;….按此规律,第n 个等式为 .19.计算:(1)(2021·重庆)y(2x -y)+(x +y)2; (2)(-2a 2b 3)÷(-6ab 2)·(-4a 2b).20.用乘方公式计算:(1)982; (2)899×901+1.21.分解因式:(1)18a 3-2a ; (2)ab(ab -6)+9; (3)m 2-n 2+2m -2n.22.先化简,再求值:(1)(2021·随州)(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 2;(2)[(x+2y)(x-2y)-(x+4y)2]÷4y,其中x=-5,y=2.23.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,计划部门计划将阴影部份进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.24.学习了分解因式的知识后,老师提出了这样一个问题:设n为整数,则(n+7)2-(n-3)2的值必然能被20整除吗?若能,请说明理由;若不能,请举出一个反例.25.阅读材料并回答问题:讲义中多项式与多项式相乘是利用平面几何图形中的面积来表示的,例如:(2a +b)(a +b)=2a 2+3ab +b 2就可以够用如图①②所示的图形的面积来表示.(1)请写出如图③所示的图形的面积表示的代数恒等式;(2)试画出一个几何图形,使它的面积能表示为(a +b)(a +3b)=a 2+4ab +3b 2;(3)请仿照上述方式另写一个含有a ,b 的代数恒等式,并画出与之对应的几何图形.26. 概念2a b a b *=-,则(12)3**= .。
初中数学整式的乘除与因式分解知识点归纳一、整式的乘法:1.普通整式相乘:将每一项的系数相乘,同时将每一项的指数相加。
2.平方整式相乘:先将每一项平方,再将每一项相乘得到结果。
3.完全平方的平方差公式:(a-b)(a+b)=a²-b²。
4. 公式展开:通过公式展开可求两个或多个整式的乘积,例如(a+b)²=a²+2ab+b²。
二、整式的除法:1.整式相除的概念:整式A除以整式B,若存在整式C,使得B×C=A,那么C称为A除以B的商式。
2.用辗转相除法进行整式的除法计算。
三、因式分解:1.抽象公因式法:将多项式中的每一项提取出公因式,然后将剩下的部分合并。
2.公式法:运用一些常用的公式,如平方差公式、完全平方公式等进行因式分解。
3.分组法:将多项式中的项进行分组,使每一组都有一个公因式,然后进行合并。
4. 二次三项式的因式分解:对于二次三项式a²+2ab+b²或a²-2ab+b²,可以因式分解为(a±b)²。
5.因式定理和余式定理:若(x-a)是多项式P(x)的因式,则P(a)=0。
根据这一定理可以找到多项式的因式。
四、常见整式的因式分解:1.平方差公式:a²-b²=(a+b)(a-b)。
2. 完全平方公式:a²+2ab+b²=(a+b)²,a²-2ab+b²=(a-b)²。
3. 符号"相反"公式:a²-2ab+b²=(b-a)²。
4. 三项平方公式:a³+b³=(a+b)(a²-ab+b²),a³-b³=(a-b)(a²+ab+b²)。
5. 公因式公式:a²+ab=a(a+b)。
整式的乘法与因式分解整式是由字母或字母与常数的乘积所组成的代数式。
在代数中,整式的乘法和因式分解是非常重要的运算。
本文将详细介绍整式的乘法与因式分解。
一、整式的乘法整式的乘法是指利用分配律将两个或多个整式相乘的过程。
整式的乘法规则如下:1. 当两个整式相乘时,先将系数相乘,再将字母相乘,最后将结果相加。
例如,计算 (2x + 3)(4x + 5) 的结果:(2x + 3)(4x + 5) = 2x * 4x + 2x * 5 + 3 * 4x + 3 * 5= 8x^2 + 10x + 12x + 15= 8x^2 + 22x + 152. 当整式中含有多个字母时,需要将对应字母的项相乘,并按照指数的规则进行运算。
例如,计算 (2xy + 3xz)(4xy - 5xz) 的结果:(2xy + 3xz)(4xy - 5xz) = 2xy * 4xy + 2xy * (-5xz) + 3xz * 4xy + 3xz * (-5xz)= 8x^2y^2 - 10x^2z^2 + 12x^2yz - 15xz^2整式的乘法在代数中非常常见,掌握好整式的乘法规则可以方便进行复杂的代数运算。
二、因式分解因式分解是指将一个整式表示为几个整式乘积的形式。
因式分解在解方程、求极限、计算函数值等方面都有广泛的应用。
下面介绍两种常见的因式分解方法。
1. 公因式提取法公因式提取法是指将整式中的公因式提取出来,并将整式分解为公因式与其他部分的乘积。
例如,对于整式 4x^2 + 8x,可以提取公因式 4x,得到 4x(x + 2)。
2. 完全平方公式完全平方公式是指将一个二次多项式表示为两个一次多项式的平方差形式。
例如,对于整式 x^2 + 12x + 36,可以通过完全平方公式将其分解为 (x + 6)^2。
通过因式分解,可以简化复杂的整式,方便进行进一步的计算和问题求解。
综上所述,整式的乘法和因式分解是代数中重要的运算。
整式的乘法与因式分解全章教案第一章:整式的乘法1.1 单项式乘以单项式教学目标:了解单项式乘以单项式的运算法则。
掌握单项式乘以单项式的计算方法。
教学重点:单项式乘以单项式的运算法则。
教学难点:如何正确计算单项式乘以单项式。
教学准备:教材、黑板、投影仪。
教学过程:导入:回顾整数乘法的运算法则。
讲解:讲解单项式乘以单项式的运算法则,举例说明。
练习:学生独立完成练习题,教师批改并讲解。
1.2 单项式乘以多项式教学目标:了解单项式乘以多项式的运算法则。
掌握单项式乘以多项式的计算方法。
教学重点:单项式乘以多项式的运算法则。
教学难点:如何正确计算单项式乘以多项式。
教学准备:教材、黑板、投影仪。
教学过程:导入:回顾整数乘法的运算法则。
讲解:讲解单项式乘以多项式的运算法则,举例说明。
练习:学生独立完成练习题,教师批改并讲解。
第二章:因式分解2.1 提公因式法教学目标:了解提公因式法的概念。
掌握提公因式法的运用。
教学重点:提公因式法的概念和运用。
教学难点:如何正确运用提公因式法进行因式分解。
教学准备:教材、黑板、投影仪。
教学过程:导入:回顾整式的乘法。
讲解:讲解提公因式法的概念和运用,举例说明。
练习:学生独立完成练习题,教师批改并讲解。
2.2 公式法教学目标:了解公式法的概念。
掌握公式法的运用。
教学重点:公式法的概念和运用。
教学难点:如何正确运用公式法进行因式分解。
教学准备:教材、黑板、投影仪。
教学过程:导入:回顾整式的乘法。
讲解:讲解公式法的概念和运用,举例说明。
练习:学生独立完成练习题,教师批改并讲解。
第六章:十字相乘法6.1 十字相乘法的原理教学目标:理解十字相乘法的原理。
掌握十字相乘法的步骤。
教学重点:十字相乘法的原理和步骤。
如何正确运用十字相乘法分解因式。
教学准备:教材、黑板、投影仪。
教学过程:导入:回顾提公因式法和公式法。
讲解:讲解十字相乘法的原理和步骤,举例说明。
练习:学生独立完成练习题,教师批改并讲解。
八年级整式的乘法与因式分解一、整式的乘法。
(一)同底数幂的乘法。
1. 法则。
- 同底数幂相乘,底数不变,指数相加。
即a^m· a^n = a^m + n(a≠0,m,n 都是正整数)。
2. 示例。
- 计算2^3×2^4,根据法则,底数a = 2,m = 3,n = 4,则2^3×2^4=2^3 + 4=2^7 = 128。
(二)幂的乘方。
1. 法则。
- 幂的乘方,底数不变,指数相乘。
即(a^m)^n=a^mn(a≠0,m,n都是正整数)。
2. 示例。
- 计算(3^2)^3,这里a = 3,m = 2,n = 3,根据法则(3^2)^3 = 3^2×3=3^6 = 729。
(三)积的乘方。
1. 法则。
- 积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。
即(ab)^n=a^n b^n(n是正整数)。
2. 示例。
- 计算(2×3)^2,根据法则(2×3)^2 = 2^2×3^2=4×9 = 36。
(四)单项式与单项式相乘。
1. 法则。
- 单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
2. 示例。
- 计算3x^2y·(-2xy^3)。
- 系数相乘:3×(-2)= - 6。
- 同底数幂相乘:x^2· x=x^2 + 1=x^3,y· y^3=y^1+3=y^4。
- 所以3x^2y·(-2xy^3)=-6x^3y^4。
(五)单项式与多项式相乘。
1. 法则。
- 单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
即m(a + b + c)=ma+mb + mc。
2. 示例。
- 计算2x(x^2 - 3x+1)。
- 2x· x^2=2x^3,2x·(-3x)=-6x^2,2x·1 = 2x。
八年级上册第十四章《整式的乘法与因式分解》简介新人教版八年级数学上册第14章是《整式的乘法与因式分解》,本章主要包括整式的乘法、乘法公式以及因式分解等知识。
整式的乘法运算和因式分解是基本而重要的代数初步知识,这些知识是以后进一步学习分式和根式运算、函数等知识的基础,在后续的数学学习中具有重要意义。
同时,这些知识也是学习物理、化学等学科及其他科学技术不可缺少的数学基础知识.本章共安排了3个小节,教学时间约需19课时(供参考):14.1 整式的乘法9课时14.2 乘法公式4课时14.3 因式分解4课时数学活动小结2课时一、教科书内容和本章学习目标1.本章知识结构本章知识结构如下图所示:2.教科书内容本章共包括3节14.1 整式的乘法整式的乘法是整式四则运算的重要组成部分。
本节分为四个小节,主要内容是整式的乘法,这些内容是在学生掌握了有理数运算、整式加减运算等知识的基础上学习的。
其中,幂的运算性质,即同底数幂的乘法、幂的乘方和积的乘方是整式乘法的基础,教科书把它们依次安排在前三个小节中,教学中应适当复习幂、指数、底数等概念,特别要弄清正整数指数幂的意义。
在学生掌握了幂的运算性质后,作为它们的一个直接应用,教科书在第四小节安排一般整式乘法的教学内容。
首先是单项式与单项式相乘,由于进行单项式与多项式、多项式与多项式相乘的前提是熟练地进行单项式与单项式相乘,因此,对于单项式与单项式相乘的教学应该予以充分重视。
在学生掌握了单项式与单项式相乘的基础上,教科书利用分配律等进一步引入单项式与多项式相乘、多项式与多项式相乘,这样使整式乘法运算的教学从简到繁,由易到难,层层递进。
整式的除法也是整式四则运算的重要组成部分,是今后学习(因式分解、整数指数幂、分式运算)必须的内容。
考虑到课标没有单列条目,因此不单独成节。
在讲完整式乘法后,从逆运算角度介绍同底数幂的除法、单项式除以单项式,多项式除以单项式等必须内容。
对于同底数幂除法,这里只先讨论所得商仍是整式的情形,对于所得商是分式的情形将在后续内容引入负整数指数幂的概念以后再讨论。
整式的乘法
有疑问的题目请发在“51加速度学习网”上,让我们来为你解答
51加速度学习网整理一、本节学习指导
整式的乘法是整数运算的主要内容,是进一步学习因式分解、分式、方程以及其它数学内容的基础,学习过程中只要能理解并运用数学常用方法“整体代入”便可学好本节,本节同学们要多做练习,达到很多整式乘法都能口算为止。
本节有配套免费学习视频。
二、知识要点
1、单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
注意:①积的系数等于各因式系数积,先确定符号,再计算绝对值。
这时容易出现的错误的是,将系数相乘与指数相加混淆;
②相同字母相乘,运用同底数的乘法法则;
③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;
④单项式乘法法则对于三个以上的单项式相乘同样适用;
⑤单项式乘以单项式,结果仍是一个单项式。
加速度学习网我的学习也要加速
加速度学习网 我的学习也要加速
2、单项式与多项式相乘
单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
注意:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;
②运算时要注意积的符号,多项式的每一项都包括它前面的符号; ③在混合运算时,要注意运算顺序。
3、多项式与多项式相乘
多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
注意:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;
②多项式相乘的结果应注意合并同类项;
③对含有同一个字母的一次项系数是1的两个一次
二项式相乘
2
()()()x a x b x a b x ab ++=+++,其二次项系数为1,一次项系数等于两个因式中常数
项的和,常数项是两个因式中常数项的积。
对于一次项系数不为1的两个一次二项式(mx+a )和(nx+b )相乘可以得2
()()()m x a nx b m nx m b m a x ab ++=+++
三、经验之谈:
其实本节的难度并不大,很多同学出错是因为粗心,做一章节题目时我们一定要把眼睛放大看准了,数学是唯一能全方位训练人体大脑的学科。
同学们从今往后也要做一个细心的人哦!很多同学可能会说:“我天生就粗心”,其实粗心和细心之间区别就在于“心”而不在于“先天、后天”。
有个笑话:刘备妈妈问刘备为什么没有考好,刘备答:我笨。
刘备妈妈就问:“笨是先天的呢还是后天的?刘备顿时醒悟,然则考上北大,当然帝王。
有疑问的题目请发在“51加速度学习网”上,让我们来为你解答
51加速度学习网整理
加速度学习网我的学习也要加速。