八年级数学下册16分式课题分式的基本性质 精品导学案 华东师大版8
- 格式:doc
- 大小:90.50 KB
- 文档页数:4
16.1 分式及其基本性质【学习目标】1.理解分式的概念及分式的基本性质。
2.会利用分式的基本性质进行通分和约分。
3.体会类比的思想方法并会解决实际生活中的问题。
【重点】分式的基本性质。
【难点】会利用分式的基本性质进行通分和约分。
【使用说明与学法指导】 1、认真阅读课本P2-P3,初步理解分式的概念,掌握分式的基本性质;再针对预习案二次阅读教材,解答预习案中的问题;疑惑随时记录在“我的疑惑”栏内,准备课上讨论质疑; 2、通过预习能够掌握分式的基本性质并会进行通分和约分,并能拓展和尝试总结规律。
预 习 案 一、预习自学 1、下列代数式中哪些是分式,哪些是整式? (1)x 1 (2)32b a (3)a c b + (4)23+x (5)π2 (6)1122--x x (7) y z x +-5 通过练习:你能总结并说出区分整式和分式需要注意的地方吗?2、类比分数的基本性质,请你说出分式的基本性质与其异同点。
二、我的疑惑______________________________________________________________________探 究 案探究点一:分式的概念。
例1 当x 取什么值时,下列分式有意义?(1)392+-x x ; (2)122+-x x探究点二:分式的基本性质。
例2 约分(1)2332912y x y x =____________=(2) 2)(15)(6b a b a ab ++ =____________=(3)22)(y x xyx ++ =_________=___________ (4)222)(y x y x -- =____________=____________例3 通分(1)321ab 与c b a 2252 (2)2)(21y x +与y x -2训 练 案1.下列各式中,是分式的有( )3y x - 12-x a 1+πx b a 3- y x +21 yx +21A.5个B.4个C.3个D.2个2.无论x 取何值,下列分式中总有意义的是( ) A.21x x - B. 22)2(+x x C.2+x x D.22+x x3.分式122-a a 有意义,则( )A.a=1B.a =-1C.a ≠ 1±D.a = 1±4.约分(1) x x x 3222+= ()3+x (2) 32386b b a =()33a(3) c a b ++1=()cn an + (4) ()222y x y x +-=()yx -5.通分:(1)26x ab ,29y a bc ; (2)2121aa a -++, 261a -拓展延伸(选做)1、不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数:(1)yx yx -+21131=______________ (2) b a b a -+7.05.02.0=______________2.已知: 0346x y z ==≠,求x y zx y z +--+的值.。
课题 分式的基本性质【学习目标】1.让学生理解并掌握分式的基本性质及变号法则,并能运用这些性质进行分式的恒等变形.2.让学生掌握分式约分的方法和最简分式的化简方法.【学习重点】分式的基本性质,约分和通分.【学习难点】运用分式的基本性质和变号法则进行分式的恒等变形.行为提示:创设问题情景导入,激发学生的求知欲望.行为提示:让学生阅读教材,尝试完成“自学互研”的所有内容,并适时给学生提供帮助,大部分学生完成后,进行小组交流.知识链接:化掉分式前、分子前、分母前的“-”号的方法:看“-”号的个数,以奇负偶正定号,所得符号写在分式最前面(分子与分母是多项式时,要化成带括号的形式).解题思路:判断最简分式时,对分子与分母能因式分解的一定要分解因式,这样容易发现是否含有公因式.情景导入 生成问题【旧知回顾】1.下列分数是否相等?可以进行变形的依据是什么?23,46,812,1015,1218. 答:相等,变形的依据是分数的基本性质.2.分数的基本性质是什么?怎样用式子表示?答:分数的分子、分母同乘以(或同除以)一个不为0的数,分数的值不变.用式子表示为:b a =b ·c a ·c =b ÷c a ÷c(c≠0). 自学互研 生成能力知识模块一 分式的基本性质与约分、最简分式【自主探究】1.类比分数的基本性质得出分数的基本性质:分式的分子、分母都乘以(或都除以)同一个不等于0的整式,分式的值不变.2.分式的约分:一般要约去分子和分母所有的公因式,使得结果成为最简分式.3.最简分式:分式约分后,分子与分母不再有公因式.分子与分母不再有公因式的分式称为最简分式.【合作探究】范例1:约分:(1)-20a 2bc 315ab 2c ;(2)x 2-9x 2+6x +9;(3)4x 2-8xy +4y 22x -2y. 分析:分式的约分,即要求把分子与分母的公因式约去.为此,首先要找出分子与分母的公因式.其次,分子与分母上首项的“-”号也要根据法则化去.解:(1)原式=-5abc ·4ac 25abc ·3b =-4ac 23b; (2)原式=(x +3)(x -3)(x +3)2=x -3x +3; (3)原式=4(x -y )22(x -y )=2(x -y)=2x -2y. 范例2:下列分式是最简分式的是( C )A .2ay 3axB .x 2-2x +1x -1C .a 2-b 2a 2+b 2D .a -b a 2-b 2分析:最简分式是指分子与分母没有公因式的分式,或者约分也是一样.学习笔记:约分应注意:(1)要找出分子、分母的公因式;(2)分子、分母是多项式的要先分解因式;(3)约分要彻底.通分:(1)通分的关键是确定几个分式的最简公分母;(2)通分时确定了分母乘什么,分子也必须乘什么;(3)约分与通分恰好是相反的两种变形,约分是将一个分式化简,通分则可能是将一个分式化繁,使异分母化为同分母.行为提示:教师结合各组反馈的疑难问题分配任务,各组展示过程中,教师引导其他组进行补充、纠错、释疑,然后进行总结评比.学习笔记:检测的目的在于让学生掌握分式的基本性质,并能灵活地运用性质约分、通分与分式的变形.知识模块二 通分【自主探究】1.分式的通分:即要求把几个异分母的分式分别化为与原来的分式相等的同分母的分式.2.分式通分的关键:确定几个分式的公分母,通常取各分母所有因式的最高次幂的积作为公分母(叫做最简公分母).【合作探究】范例3:通分:(1)a b ,x 2ab ;(2)x x +y ,y x -y ;(3)a 3y -3x ,bx 2-2xy +y 2. 解:(1)a b 与x 2ab 的最简公分母为2ab ,所以a b =a ·2a b ·2a =2a 22ab; (2)x x +y 与y x -y的最简公分母为(x +y)(x -y),即x 2-y 2, 所以x x +y =x ·(x -y )(x +y )(x -y )=x 2-xy x 2-y 2; y x -y =y ·(x +y )(x -y )(x +y )=xy +y 2x 2-y 2; (3)a 3y -3x 与b x 2-2xy +y2的最简公分母为3(x -y)2,即3x 2-6xy +3y 2, 所以a 3y -3x =-a ·(x -y )3(x -y )·(x -y )=-ax -ay 3x 2-6xy +3y 2; b x 2-2xy +y 2=b ·3(x -y )2·3=3b 3x 2-6xy +3y 2. 交流展示 生成新知1.将阅读教材时“生成的新问题”和通过“自主探究、合作探究”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 分式的基本性质与约分、最简分式知识模块二 通分检测反馈 达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
八年级数学下册 16 分式教案(新版)华东师大版1、知识技能:掌握分式的基本性质,能区分一个有理式是分式,还是整式,灵活运用分式的基本性质进行分式的变形,会利用分式的基本性质进行约分、通分;使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题,理解和掌握分式加减运算法则会进行简单分式的加减运算,2、引导学生小结运算方法和技巧,提高运算能力;1、理解分式方程的意义,了解解分式方程的基本思路和解法,理解解分式方程时可能无解的原因,并掌握分式方程的验根方法;使学生理解a0的意义,并掌握a0=1(a≠0),使学生理解a-n(n是正整数)的意义,并掌握a-n=(a≠0,n是正整数),使学生理解并掌握幂的运算律对于整数指数都成立,并会正确运用,熟练用科学记数法表示一个数。
2、过程与方法:通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法,通过探索分式的基本性质,积累数学活动经验,经历运用分式的基本性质进行通分的过程;经历探索分式加减运算法则的过程,理解其算理,体会转化、类比的数学思想方法;经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性;能将实际问题中的相等关系用分式方程表示,体会分式方程的模型作用,经历“实际问题----分式方程----整式方程”的过程,发展学生、分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识;使学生理解引进a0、a-n(n是正整数)规定的必要性,体会到数学的严密性和逻辑性,使学生在复习正整数指数幂的运算律时,体会到它对0指数幂、负整数整数指数幂的运算也适用,能把运算律一起记住,并会正确运用,感受用负整指数幂表示一个数的优点。
3、情感态度与价值观:通过研究解决问题的过程,培养学生合作交流意识与探究精神,进一步体会运用分式的基本性质的应用价值,培养学生自觉反思解题过程的良好习惯;在学生已有数学经验的基础上,探求新知,让学生获得成功的快乐,从而提高其学习的自信心,提高学生“用数学”意识;在活动中培养乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值;简洁的内容,在形式上尽可能做到活泼,从而培养学生之间的感情,有利于形成和发展学生的数学观念和思维方式。
分式的基本性质 教学内容16.1.2 分式的基本性质 上课时间 月 日 第 节 教具多媒体 课型 新授课 教学目标 知识与技能 掌握分式的基本性质,并会运用分式的基本性质进行通分和约分过程与方法经历探索、猜想和归纳等活动,发展学生的合情推理能力,积累数学活动的经验,加深对“分式通分与约分” 等数学思想的认识。
情感态度与价值观 让学生体验“探索,猜想”得到证实的成功喜悦和成就感,使学生养成积极思考,主动思考的好习惯,并且同时培养学生的团队合作精神。
教学重点 掌握分式的基本性质,并会运用分式的基本性质进行通分和约分教学难点 掌握分式的基本性质,约分时注意对最大公约数的理解教学内容与过程 教法学法设计 一. 复习提问,回顾知识,请看下面的问题: 把3个苹果平均分给6个小朋友,每个小朋友得到几个苹果?二. 导入课题,研究知识: 请说出你猜想的理由. 引导同学们回忆分数的基本性质”作为突破口,创设情境,引出今天的相关内容—分式的基本性质。
让学生通过对分数基本性质的经验积累猜想结果,并总结出分式的基本性质 3633÷÷=21=63解:?10452相等吗与--”相等吗?”与““”;分式”与“你认为分式“mn mn n a a 2212三.归纳知识,培养能力:讨论:为什么所乘的整式不能为零呢? 分式的基本性质: 分式的分子与分母同时乘以(或除以)同一个不等于零的整式 ,分式的值不变. 四.运用知识,分析解题: 例1 下列等式的右边是怎样从左边得到的? 下列各组中分式,能否由第一式变形为第二式? 五.课堂练习: 六.课后小结:七.课后作业:6页3、4、5题.类比分数的基本性质,得到分式的基本性质约分的基本步骤:(1)若分子﹑分母都是单项式,则约去分子、分母的公因式; (2)若分子﹑分母含有多项式,则先将多项式分解因式,然后约去分子﹑分母的公因式 约分的依据是分式的基本性质 另外还须注意: (1)把分子与分母降幂排列; (2)把最高次方项的负号移到分数线左前方; (3)把分子与分母的各项系数化为整数。
《分式》教案教学目标1、经历实际问题的解决过程,从中认识分式,并能概括分式.2、使学生能正确地判断一个代数式是否是分式.3、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想.教学重点探索分式的意义及分式的值为某一特定情况的条件.教学难点能通过回忆分数的意义,探索分式的意义.教学过程一、导入.(1)面积为2平方米的长方形一边长3米,则它的另一边长为23米; (2)面积为S 平方米的长方形的一边长为a 米,则它的另一边长为S a米; (3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是p m n -元; 在小学算术里,两个整数相除,不能整除时,可以用分数表示,且分数中的分子相当于被除数,分数中的分母相当于除数;那么,当两个整式不能整除时,它们的商怎么表示呢?二、概括. 形如A B(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.(因为零不能做除数,所以分式中的分母B 不能是零.)整式和分式统称有理式.三、例题.例1 下列各有理式中,哪些是整式?哪些是分式?(1)x 1;(2)2x ;(3)y x xy +2;(4)23x y -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式S a 中,a ≠0;在分式p m n-中,m ≠n .例2 当x 取什么值时,下列分式有意义?212123x x x x --+(),(). 解:(1)分母x -1≠0,即x ≠1.所以当x =≠1时,分式1x x -有意义. (2)分母2x +3≠0,即x ≠32-. 所以当x ≠32-时,分式223x x -+有意义. 四、随堂练习.当x 取什么值时,下列分式有意义?2811219x x --(),(). 解:(1)由分母x -1=0,得x =1.所以当x ≠1时,分式81x -有意义. (2)由分母x 2-9=0,得x =±3. 所以当 x ≠±3时,分式219x -有意义. 五、课时小结.什么是分式?什么是有理式? 形如A B(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.(因为零不能做除数,所以分式中的分母B 不能是零)整式和分式统称有理式.六、作业.教材P5第2题.。
华东师大版八年级数学下册教学设计《第16章分式16.1.2分式的基本性质》一. 教材分析华东师大版八年级数学下册第16章是关于分式的学习,而16.1.2分式的基本性质是本章的重要内容。
这部分教材主要让学生掌握分式的基本性质,理解分式在数学运算中的重要作用。
教材通过具体的例子,引导学生探究分式的基本性质,让学生在理解概念的基础上,能够熟练运用分式的基本性质进行数学运算。
二. 学情分析学生在学习这一部分内容时,已经具备了一定的代数基础,对分数的概念和运算规则有一定的了解。
但学生可能对分式运算中的符号变化和分式的化简过程理解不够深入。
因此,在教学过程中,需要帮助学生巩固已有的知识,引导学生通过观察、操作、猜测、推理、交流等活动,发现和总结分式的基本性质。
三. 教学目标1.知识与技能目标:让学生理解分式的基本性质,能够运用分式的基本性质进行数学运算。
2.过程与方法目标:通过观察、操作、猜测、推理、交流等活动,培养学生发现和总结数学规律的能力。
3.情感态度与价值观目标:让学生体验数学学习的乐趣,培养学生的数学思维。
四. 教学重难点1.教学重点:分式的基本性质及其运用。
2.教学难点:分式运算中的符号变化和分式的化简过程。
五. 教学方法1.情境教学法:通过具体的例子,引导学生探究分式的基本性质。
2.引导发现法:引导学生通过观察、操作、猜测、推理、交流等活动,发现和总结分式的基本性质。
3.实践练习法:通过大量的练习,让学生熟练掌握分式的基本性质,提高解题能力。
六. 教学准备1.教具准备:黑板、粉笔、多媒体教学设备。
2.教学素材:与分式基本性质相关的例题和练习题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,引导学生运用已有的分数知识进行分析。
通过问题解决,引出分式的基本性质,激发学生的学习兴趣。
2.呈现(10分钟)通过具体的例子,呈现分式的基本性质。
引导学生观察、操作、猜测、推理、交流,发现和总结分式的基本性质。
课题 16.1—1 分式及其基本性质
总第 1 课
课标要求:(1)、经历实际问题的解决过程,从中认识分式,并能概括分式的概念。
(2)、使学生能正确地判断一个代数式是否是分式
【导学目标】
1、知识与技能:(1)、了解分式的概念,能判断一个代数式是否为分式。
(2)、理解分式有意义的条件;在使分式有意义的条件下。
2、过程与方法:引导、启发、探索讨论
3、情感态度与价值观:通过师生共同交流、探讨,使学生在掌握知识的基础上,引导学生通过分析、归纳,培养学生用类比的方法探索新知识的能力
【导学核心点】
导学重点:分式的概念
导学难点:理解分式无意义、有意义、值为0的条件。
导学关键:分式有意义的条件;在使分式有意义的条件下,会求分式的分母中所含的字母的取值范围
教具应用:
【导学过程】。
课题 分式的基本性质
【学习目标】
1.让学生理解并掌握分式的基本性质及变号法则,并能运用这些性质进行分式的恒等变形.
2.让学生掌握分式约分的方法和最简分式的化简方法.
【学习重点】
分式的基本性质,约分和通分.
【学习难点】
运用分式的基本性质和变号法则进行分式的恒等变形.
行为提示:创设问题情景导入,激发学生的求知欲望.
行为提示:让学生阅读教材,尝试完成“自学互研”的所有内容,并适时给学生提供帮助,大部分学生完成后,进行小组交流.
知识链接:化掉分式前、分子前、分母前的“-”号的方法:看“-”号的个数,以奇负偶正定号,所得符号写在分式最前面(分子与分母是多项式时,要化成带括号的形式). 解题思路:判断最简分式时,对分子与分母能因式分解的一定要分解因式,这样容易发现是否含有公因
式.情景导入 生成问题
【旧知回顾】
1.下列分数是否相等?可以进行变形的依据是什么?
23,46,812,1015,1218
. 答:相等,变形的依据是分数的基本性质.
2.分数的基本性质是什么?怎样用式子表示?
答:分数的分子、分母同乘以(或同除以)一个不为0的数,分数的值不变.
用式子表示为:b a =b ·c a ·c =b ÷c a ÷c
(c≠0). 自学互研 生成能力
知识模块一 分式的基本性质与约分、最简分式
【自主探究】
1.类比分数的基本性质得出分数的基本性质:分式的分子、分母都乘以(或都除以)同一个不等于0的整式,分式的值不变.
2.分式的约分:一般要约去分子和分母所有的公因式,使得结果成为最简分式.
3.最简分式:分式约分后,分子与分母不再有公因式.分子与分母不再有公因式的分式称为最简分式.
【合作探究】
范例1:约分:(1)-20a 2bc 315ab 2c ;(2)x 2-9x 2+6x +9;(3)4x 2-8xy +4y 22x -2y
. 分析:分式的约分,即要求把分子与分母的公因式约去.为此,首先要找出分子与分母的公因式.其次,分子与分母上首项的“-”号也要根据法则化去.
解:(1)原式=-5abc ·4ac 25abc ·3b =-4ac 23b
;
(2)原式=(x +3)(x -3)(x +3)2=x -3x +3
; (3)原式=4(x -y )22(x -y )
=2(x -y)=2x -2y. 范例2:下列分式是最简分式的是( C )
A .2ay 3ax
B .x 2-2x +1x -1
C .a 2-b 2a 2+b 2
D .a -b a 2-b 2 分析:最简分式是指分子与分母没有公因式的分式,或者约分也是一样.
学习笔记:约分应注意:(1)要找出分子、分母的公因式;(2)分子、分母是多项式的要先分解因式;(3)约分要彻底.
通分:(1)通分的关键是确定几个分式的最简公分母;(2)通分时确定了分母乘什么,分子也必须乘什么;(3)约分与通分恰好是相反的两种变形,约分是将一个分式化简,通分则可能是将一个分式化繁,使异分母化为同分母.
行为提示:教师结合各组反馈的疑难问题分配任务,各组展示过程中,教师引导其他组进行补充、纠错、释疑,然后进行总结评比.
学习笔记:检测的目的在于让学生掌握分式的基本性质,并能灵活地运用性质约分、通分与分式的变形.知识模块二 通分
【自主探究】
1.分式的通分:即要求把几个异分母的分式分别化为与原来的分式相等的同分母的分式.
2.分式通分的关键:确定几个分式的公分母,通常取各分母所有因式的最高次幂的积作为公分母(叫做最简公分母).
【合作探究】
范例3:通分:(1)a b ,x 2ab ;(2)x x +y ,y x -y ;(3)a 3y -3x ,b x 2-2xy +y 2. 解:(1)a b 与x 2ab 的最简公分母为2ab ,所以a b =a ·2a b ·2a =2a 22ab
; (2)x x +y 与y x -y
的最简公分母为(x +y)(x -y),即x 2-y 2, 所以x x +y =x ·(x -y )(x +y )(x -y )=x 2-xy x 2-y 2; y x -y =y ·(x +y )(x -y )(x +y )=xy +y 2x 2-y 2; (3)a 3y -3x 与b x 2-2xy +y 2的最简公分母为3(x -y)2,即3x 2-6xy +3y 2, 所以a 3y -3x =-a ·(x -y )3(x -y )·(x -y )=-ax -ay 3x 2-6xy +3y 2;
b x 2
-2xy +y 2=b ·3(x -y )2·3=3b 3x 2-6xy +3y
2. 交流展示 生成新知
1.将阅读教材时“生成的新问题”和通过“自主探究、合作探究”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块一 分式的基本性质与约分、最简分式
知识模块二 通分
检测反馈 达成目标
【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.
课后反思 查漏补缺
1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________教
师个人研修总结
在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。
所以在学习上级的精神下,本期个人的研修经历如下:
1.自主学习:我积极参加网课和网上直播课程.认真完成网课要求的各项工作.教师根据自己的专业发展阶段和自身面临的专业发展问题,自主选择和确定学习书目和学习内容,认真阅读,记好读书笔记;学校每学期要向教师推荐学习书目或文章,组织教师在自学的基础上开展交流研讨,分享提高。
2.观摩研讨:以年级组、教研组为单位,围绕一定的主题,定期组织教学观摩,开展以课例为载体的“说、做、评”系列校本研修活动。
3.师徒结对:充分挖掘本校优秀教师的示范和带动作用,发挥学校名师工作室的作用,加快新教师、年轻教师向合格教师和骨干教师转化的步伐。
4.实践反思:倡导反思性教学和教育叙事研究,引导教师定期撰写教学反思、教育叙事研究报告,并通过组织论坛、优秀案例评选等活动,分享教育智慧,提升教育境界。
5.课题研究:立足自身发展实际,学校和骨干教师积极申报和参与各级教育科研课题的研究工作,认真落实研究过程,定期总结和交流阶段性研究成果,及时把研究成果转化为教师的教育教学实践,促进教育质量的提高和教师自身的成长。
6.专题讲座:结合教育教学改革的热点问题,针对学校发展中存在的共性问题和方向性问题,进行专题理论讲座。
7.校干引领:从学校领导开始,带头出示公开课、研讨课,参与本校的教学观摩活动,进行教学指导和引领。
8.网络研修:充分发挥现代信息技术,特别是网络技术的独特优势,借助教师教育博客等平台,促进自我反思、同伴互助和专家引领活动的深入、广泛开展。
我们认识到:一个学校的发展,将取决于教师观念的更新,人才的发挥和校本培训功能的提升。
多年来,我们学校始终坚持以全体师生的共同发展为本,走“科研兴校”的道路,坚持把校本培训作为推动学校建设和发展的重要力量,进而使整个学校的教育教学全面、持续、健康发展。
反思本学期的工作,还存在不少问题。
很多工作在程序上、形式上都做到了,但是如何把工作做细、做好,使之的目的性更加明确,是继续努力的方向。
另外,我校的研修工作压力较大,各学科缺少领头羊、研修氛围有待加强、师资缺乏等各类问题摆在我们面前。
缺乏专业人员的引领,各方面的工作开展得还不够规范。
相信随着课程改革的深入开展,在市教育教学研究院的领导和专家的亲临指导下,我校校本研修工作一定能得以规范而全面地展开。
“校本研修”这种可持续的、开放式的继续教育模式,一定能使我校的教育教学工作又上一个台阶。