基于电火花线切割加工变频进给的研究教学案例
- 格式:ppt
- 大小:266.50 KB
- 文档页数:14
电火花线切割实训课课程思政探索与实践
贺声阳;王迪;郑耀辉
【期刊名称】《黑龙江教育:理论与实践》
【年(卷),期】2022()12
【摘要】实训教学过程中要始终坚持把立德树人作为中心环节,把思想政治工作贯穿教育教学全过程。
文章结合电火花线切割实训课程的特点,深入挖掘课程思政元素,适时融入课程思政内容,形成教学内容与爱国主义教育、人生观价值观塑造、职业素养培养、科创精神培养、实干精神塑造、劳动素养培养相结合的研究与实践体系,将全方位育人与实训环节有机结合,达到预期的课程思政育人成效。
【总页数】3页(P71-73)
【作者】贺声阳;王迪;郑耀辉
【作者单位】沈阳航空航天大学工程训练中心;沈阳航空航天大学
【正文语种】中文
【中图分类】G641
【相关文献】
1.ERP沙盘实训课程思政的探索与实践——博弈论视角下河套学院ERP沙盘实训课程教学对大学生契约精神培养
2.基于"课程思政"的实训教学实践与探索——以《商务英语笔译实训》为例
3.公安院校实训课“课程思政”建设的探索与实践——以新疆警察学院“警务实战训练”课程为例
4.高校电子类实训课程思政的探索与实践——以《电子产品工艺实训》课程为例
5.基于“三教”的课程思政实施实践探索--以“数控电火花线切割加工”课程为例
因版权原因,仅展示原文概要,查看原文内容请购买。
《电火花成形与线切割加工》实验报告1、线切割加工一、机床的结构及工作原理结构体:1654327 图1 线切割机床结构图1图2 线切割机床结构图2 1-绝缘底板2-工件3-钼丝4-导向轮5-脉冲电源6-支架7-贮丝筒8-送丝机构9-切削液控制机构工作原则:与传统的切削方法不同,电火花加工是一种利用刀具电极与工件两极之间的脉冲放电产生的电腐蚀现象来加工工件尺寸的加工方法。
电偶腐蚀现象最简单的例子之一是电气开关触点的电偶腐蚀,这是由触点打开和关闭时产生的火花引起的,逐渐损坏触点。
火花腐蚀的主要原因是:火花放电时,火花通道内瞬间产生高温热源,使局部金属熔化汽化并腐蚀。
但这种简单的电蚀还不能构成实用的电火花加工。
线切割机加工的基本原理是用移动的金属丝(直径0.02~0.3mm的钼丝或黄铜丝)作为工具电极,在金属丝和工件之间施加脉冲电流产生放电腐蚀。
切割工件。
工件接高频脉冲电源正极,电极丝接负极,即采用正极性处理。
工作流体介质浇注在工件之间。
当电频脉冲电源通电时,随着工作流体的电离和击穿,形成放电通道,电子高速跑向正极,正离子跑向负极,所以电能转化为动能,粒子相互碰撞。
反过来,材料的冲击将动能转化为热能。
在放电通道中,正极和负极表面分别成为瞬间热源,达到极高的温度,使工作流体介质汽化、热裂和分图3 电火花线切割机床铭牌8 9解,使金属熔化、沸腾、汽化材料。
在热膨胀、局部微爆、电动力学、流体动力学等综合作用下,被腐蚀的金属颗粒随着电极丝和工作液的运动和冲刷被甩出放电区,形成凹坑。
在金属表面。
在脉冲间隔期间,工作流体的介质被去离子,放电通道中的带电粒子重新结合成中性粒子,恢复了工作流体的绝缘性能。
由于加工过程是连续的,由控制系统控制步进电机,使工作台在水平面内沿两个坐标方向运动,使工件逐渐切削成各种形状。
二、机床界面及主要功能介绍(操作流程及功能)零:设置加工坐标的原点。
起点:使加工起点回到设定的坐标原点。
中心:自动移动到工件的中心。
【教学课题】电火花加工的原理、特点及分类【教学目的】:1)、重点掌握电火花加工的物理本质;2)、掌握电火花线切割、成形加工的异同点。
3)、熟悉电火花加工的特点及其适用范围;【教学重点及难点】:电火花加工中一次放电现象所经过的过程【教学方法】:讲授、多媒体辅助教学等【教学准备】:多媒体课件【教学过程设想】:1、导入新课:通过电火花产品演示导入(提高学生学习的主动性、积极性及好奇心)2、讲授新课:讲授电火花的基本原理和基本工作过程后,播放电火花工作的全过程,进一步熟悉电火花加工的原理。
同时可使静态、抽象的概念动态、具体、直观化,进一步提高学生的学习兴趣。
3、突破难点:电火花加工中一次放电现象所经过的过程是本节的重点,通过多媒体播放,ppt课件展示讲解让学生掌握电火花加工的工作过程和原理。
4、知识拓展:课前布置学生查阅资料了解电火花加工及其应用领域,了解目前制造业的最新加工手段。
让学生以小组为单位查阅资料,课堂分享。
一次培养学生的自主学习能力,查阅资料能力,协作工作能力。
【教学时间】:1课时【教学过程】1.请一个小组展示收集的电火花加工零件,并做简单介绍。
引出问题:什么是电火花加工?2.新课讲授电火花加工(Electrical Discharge Machining,简称EDM)是通过工件和工具电极间的放电而有控制地去除工件材料,以及使材料变形、改变性能的特种加工。
其中成形加工适用于各种孔、槽模具,还可刻字、表面强化等;切割加工适用于各种冲模、粉末冶金模及工件,各种样板、磁钢及硅钢片的冲片,钼、钨、半导体或贵重金属。
(ppt课件)播放电火花加工视频(完整的加工过程,)基本原理一次电火花放电所经历的过程:电离—放电—热膨胀—抛金属—消电离图1-11—工件;2—脉冲电源;3—自动进给装置4—工具电极;5—工作液;6—过滤器;7—泵(ppt课件)电火花放电动画演示(ppt课件)电火花加工的物理本质电火花加工基于电火花腐蚀原理,是在工具电极与工件电极相互靠近时,极间形成脉冲性火花放电,在电火花通道中产生瞬时高温,使金属局部熔化,甚至气化,从而将金属蚀除下来。
线切割加工范例全文共四篇示例,供读者参考第一篇示例:线切割加工是一种常见的金属加工方式,它通过使用高压水流或电火花,将金属材料切割成所需的形状和尺寸。
在现代工业生产中,线切割加工被广泛应用于各种领域,包括汽车制造、航空航天、电子设备等。
本文将介绍线切割加工的工作原理、设备以及一些实际应用范例,希望能为您对线切割加工有更深入的了解。
一、工作原理线切割加工的工作原理主要分为两种,即高压水流切割和电火花切割。
1. 高压水流切割:高压水流切割是利用高达数千甚至数万psi的水流,通过喷嘴喷射出来,对金属材料进行切割。
水流在经过特殊设计的喷嘴后,形成高速的射流,对金属材料产生强烈冲击力,从而将其切割开。
高压水流切割具有切割速度快、精度高、无热变形等优点,适用于各种硬度的金属材料。
2. 电火花切割:电火花切割是通过在两个金属板之间产生电火花,将金属材料熔化并蒸发,从而实现切割。
电火花切割具有切口干净、精度高、适用于复杂形状的金属件等优点,但是切割速度较慢,适用于需要高精度的切割工艺。
二、设备1. 高压水切割机:高压水切割机主要由高压泵、控制系统、切割头等部件组成。
高压泵能将水流压力提升到数千psi以上,控制系统可以精确控制切割头的运动轨迹,从而实现高精度的切割。
2. 电火花切割机:电火花切割机主要由控制系统、电极、工件、电解液等部件组成。
通过在工件表面产生电火花,将金属材料熔化并蒸发,实现切割。
控制系统可以控制电火花的位置和强度,从而实现精确切割。
三、应用范例线切割加工在各种领域中都有广泛的应用,下面将介绍一些实际应用范例。
1. 汽车制造:汽车是线切割加工的重要应用领域之一。
通过线切割加工,可以对汽车零部件进行精确切割,如车身、发动机零件、底盘等,从而提高汽车的质量和性能。
2. 航空航天:航空航天是对精度要求较高的行业,线切割加工在航空航天中具有重要的应用价值。
通过线切割加工,可以制造出各种复杂形状的航空零部件,如飞机机身、发动机零件、附件等。
TC4钛合金电火花线切割加工技术研究摘要:本文针对TC4钛合金在电火花线切割加工中的问题,在深入分析钛合金物理化学性质和电火花线切割加工原理的基础上,进行了实验研究和工艺优化。
通过对研究结果的分析,得出了一系列的结论和建议。
研究表明,使用硬质合金导电丝作为线切割的导电线,可以达到高效的切割效果。
在加工过程中,应控制电缆电荷和放电电压的大小,选择合适的工作液和切割参数,对提高切割加工精度和效率有重要作用。
在实验过程中发现,TC4钛合金的切割面在切割后呈现出一定的毛刺和烧损现象,通过添加能量均匀分布剂和提高大气穴道的压力,可以改善这些问题。
整篇文章系统阐述了TC4钛合金电火花线切割加工技术研究的过程和方法,为这种新型材料的切割加工提供了有益的借鉴经验。
关键词:TC4钛合金;电火花线切割;硬质合金导电丝;工作液;切割参数;能量均匀分布剂;大气穴道。
Abstract:In view of the problems in the electrical discharge wire cutting of TC4 titanium alloy, this paper conducted experimental research and processoptimization on the basis of in-depth analysis of the physical and chemical properties of titanium alloy and the principle of electrical discharge wire cutting. A series of conclusions and suggestions were obtained through the analysis of the research results. The results showed that the use of hard alloy conductive wire as the cutting wire could achieve efficient cutting effect. During the processing, it is important to control the size of cable charge and discharge voltage, choose suitable working fluid and cutting parameters, which can improve the cutting accuracy and efficiency. During the experiment, it was found that the cutting surface of TC4 titanium alloy showed some burrs and burn, and the addition of energy uniform distribution agent and the increase of atmospheric pressure could improve these problems. The whole article systematically expounds the process and method of TC4 titanium alloy electrical discharge wirecutting technology research, and provides valuable reference experience for the cutting and processing of this new type of material.Keywords: TC4 titanium alloy; electrical discharge wire cutting; hard alloy conductive wire; working fluid; cutting parameters; energy uniform distribution agent; atmospheric channelIn the study of TC4 titanium alloy electrical discharge wire cutting technology, the researchers found that the use of hard alloy conductive wire and appropriate working fluid can significantly improve the cutting efficiency and quality of TC4 titanium alloy. In addition, the optimization of cutting parameters also plays a vital role in improving the cutting efficiency and reducing the surface roughness of the workpiece.To further enhance the cutting performance of TC4 titanium alloy, the researchers proposed the use of an energy uniform distribution agent. The agent can effectively improve the material removal rate and reduce the wire electrode wear during the cutting process. Moreover, the agent can also reduce the occurrence of surface defects such as cracks and adhesion, which is critical for the production ofhigh-quality workpieces.Furthermore, the researchers also explored the impact of atmospheric channel on the electrical discharge wire cutting of TC4 titanium alloy. They found that a decrease in atmospheric pressure can effectively reduce the discharge energy and improve the cutting efficiency and quality. This finding provides a new perspective for the optimization of electricaldischarge wire cutting parameters of TC4 titanium alloy.In summary, the study of TC4 titanium alloy electrical discharge wire cutting technology is of great significance for the development of advanced manufacturing and processing. The research results can provide valuable reference experience for the cutting and processing of TC4 titanium alloy and other new materials in the futureFurthermore, the application of electrical discharge wire cutting technology in the aerospace industry has led to significant improvements in manufacturing efficiency and component quality. The ability to precisely cut titanium alloys allows for theproduction of complex and intricate parts needed for modern aerospace technologies.However, challenges still remain in the electrical discharge wire cutting of titanium alloys. For example, the process can be time-consuming, and the wire electrode can wear quickly when cutting dense materials. Moreover, the production of fine andintricate parts using this technology requires high levels of expertise and experience.To overcome these challenges, researchers are continuously exploring new cutting parameters and optimizing existing techniques. For instance, some studies suggest that the use of cryogenic cooling can enhance the efficiency and quality of electrical discharge wire cutting by reducing wire wear and improving surface finish. The use of advanced optimization techniques such as artificial intelligence and machine learning is also being explored to further enhance process efficiency and reduce waste.In conclusion, the study of TC4 titanium alloy electrical discharge wire cutting technology has significant implications for the manufacturing and processing of advanced materials in the aerospace industry. As technology continues to evolve, it is expected that further advancements in cutting parameters and optimization techniques will emerge, leading to even greater efficiency, precision, and qualityFurthermore, the application of electrical discharge wire cutting technology is not limited to the aerospace industry. It can be applied to other industries, such as medical, automotive, and electronics, to produce high-precision and complexcomponents from challenging materials.Moreover, the integration of electrical discharge wire cutting technology with other advanced manufacturing techniques, such as additive manufacturing and hot isostatic pressing, has the potential to revolutionize the production of complex components with enhanced mechanical properties.However, the adoption of advanced manufacturing techniques such as electrical discharge wire cutting technology requires a highly skilled workforce and substantial investment in equipment and infrastructure. Therefore, industry and academia should collaborate more closely to provide technical training and support to the manufacturing workforce, as well as develop new business models to facilitate the adoption of advanced manufacturing techniques.In conclusion, the use of electrical discharge wire cutting technology for the machining of titaniumalloys has enabled the production of high-precisionand complex components with excellent mechanical properties. The development of advanced cutting parameters and optimization techniques has further enhanced the process efficiency and reduced waste. As technological advancements continue to emerge, thepotential for electrical discharge wire cutting technology to transform the manufacturing industry is immense, with implications far beyond the aerospace industryIn conclusion, the machining of titanium alloys has undergone significant advancements, enabling the production of precise and intricate components with exceptional mechanical properties. With the development of advanced cutting parameters and optimization techniques, the efficiency of the process has been further improved, resulting in reduced waste. Furthermore, the potential for electrical discharge wire cutting technology to transform the manufacturing industry is vast, with implications beyond the aerospace sector。
线切割和电火花加工(2学时)一、实验内容:了解电火花线切割、电火花成形的加工原理,了解机床结构、进行简单的编程操作。
二、实验目的:通过实验学习电火花线切割、电火花成形的加工原理,了解线切割和电火花加工机床的结构,通过简单的编程操作,进一步学习机床结构和运动及加深对加工原理的认识。
三、实验设备、仪器及工具:1.电火花线切割机床2.电火花成形加工机床3.必要的电源工具、辅料等四、实验注意事项:1. 数控切割机是一种精密的设备,要认真学习操作,以免损毁设备。
2. 在操作前必须确认无外界干扰,一切正常后,把所切割的板材放在切割平台上,进行切割。
3. 加工完成后对设备进行保养,打扫卫生。
五、试验步骤(一)学习机床的工作原理电火花加工主要用于模具生产中的型孔、型腔加工,已成为模具制造业的主导加工方法,推动了模具行业的技术进步。
电火花加工可大体分为:电火花成形加工、电火花线切割加工、电火花磨削加工、电火花展成加工、非金属电火花加工和电火花表面强化等。
1、电火花线切割加工工作原理如图1所示。
绕在运丝筒4上的电极丝1沿运丝筒的回转方向以一定的速度移动,装在机床工作台上的工件3由工作台按预定控制轨迹相对于电极丝做成型运动。
脉冲电源的一极接工件,另一极接电极丝。
在工件与电极丝之间总是保持一定的放电间隙且喷洒工作液,电极之间的火花放电蚀出一定的缝隙,连续不断的脉冲放电就切出了所需形状和尺寸的工件。
2、电火花成形加工工作原理如图2所示,电火花成形加工该方法是通过工具电极相对于工件作进给运动,将工件电极的形状和尺寸复制在工件上,从而加工出所需要的零件。
它包括电火花型腔加工和穿孔加工两种。
(二)、实验过程用线切割加工如图3所示的同心圆,手工编程并加工。
图3. 线切割加工同心圆程序如下:H000=+00000000 H001=+00000100;H005=+00000000;T84 T86 G54 G90 G92X+0Y+0;C007;G01X+4000Y+0;G04X0.0+H005;G41H000;C001;G41H000;G01X+5000Y+0;G04X0.0+H005;G41H001;G03X-5000Y+0I-5000J+0;G04X0.0+H005;X+5000Y+0I+5000J+0;G04X0.0+H005;G40H000G01X+4000Y+0;M00;C007;G01X+0Y+0;G04X0.0+H005;T85 T87;M00;M05G00X+20000;M05G00Y+0;M00;H000=+00000000 H001=+00000100;H005=+00000000; T84 T86 G54 G90 G92X+20000Y+0;C007;G01X+16000Y+0;G04X0.0+H005;G41H000;C001;G41H000;G01X+15000Y+0;G04X0.0+H005;G41H001;G02X-15000Y+0I-15000J+0;G04X0.0+H005;X+15000Y+0I+15000J+0;G04X0.0+H005;G40H000G01X+16000Y+0;M00;C007;G01X+20000Y+0;G04X0.0+H005;T85 T87 M02;六、考核要求(1)能够对工件进行正确装夹。
项目教学法的教学设计案例精选范文两篇(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--项目教学法的教学设计案例精选范文两篇项目式教学法案例设计篇一为最大限度地激发学生主动学习的热情,使项目式教学法得以顺利实施,达到培养学生综合能力的目的,文章介绍了项目式教学法案例设计过程中的一些注意事项。
所谓的项目式教学法是以工程实践为导向,融合多种现代教育理念,包括现代认知心理学、自适应学习理论,探索性学习架构的教学模式,鼓励学生主动学习,自主发展。
此种教学模式将理论学习与工程实践有效结合起来,充分发挥学生的主观能动性,培养学生独立思考问题的能力、团队协作能力和分析问题、解决问题的能力等。
项目教学法成败的关键是能否设计一项合适的工作任务,即一个具体的工程案例,项目设计的好坏将直接影响教学效果的优劣,案例设计须注意以下事项:1.生动有趣,激发兴趣“兴趣是最好的老师”,在教学过程中如果能有效地激发学生的兴趣,则能够极大地调动学生主动探索求知的积极性。
学生的兴趣表现为有集中精力、不畏艰难、不惜时间主动求知、积极探索的意愿。
因此,在项目案例设计中,教师应把握学生的兴趣点,有效激发学生的求知欲望。
案例应尽可能来自工程实践。
来自工程实践的案例具备高度的真实性,这种与学生将来要就业的岗位具备高的关联度的项目能够促使学生主动学习,以便为胜任未来岗位打下基础。
案例可以来源于各种相关竞赛题目,尤其是国内、国外重大竞赛,通常给参赛人员带来较大的挑战性,能够充分调动和体现参赛者的各种综合能力,大学生群体通常愿意尝试这种有挑战性的任务。
学生可以参与案例设计或者自主设计案例。
学生可以参照身边非常熟悉的产品,重新设计和制造产品,提高学习兴趣。
2.难易适中,便于操作学生要在发现问题、解决问题、形成成果的过程中,培养解决实际技术问题的能力和沟通合作等关键能力。
过于简单的案例由于比较容易解决,往往不能使学生的综合能力得到充分锻炼,而且由于缺乏挑战性,学生容易厌倦;过于复杂的案例往往要经历较长时间才能完成,学生较难有成就感,这对于学生的信心、毅力都是巨大的挑战,将极大挫伤学生的积极性。
项目1数控电火花快走丝线切割加工工艺与编程操作一、教学目标1、了解快走丝线切割部分模具零件的加工工艺。
2、熟悉掌握快走丝线切割进行手工与自动编程。
3、熟悉掌握快走丝线切割机床对典型模具进行加工的方法。
二、课时分配本项目共七个任,安排14课时。
三、教学重点通过本项目的学习,让学生们了解到角度样板冲模凸模和定位卡板凸模的加工,熟悉并掌握其凸模的加工工艺和和编程方法。
掌握凹凸模和及进模凹模的加工工艺和编程方法。
掌握模具零件的二次装夹修割和凹模落料空的加工方法。
四、教学难点1、熟悉掌握快走丝线切割进行手工与自动编程。
2、熟悉掌握快走丝线切割机床对典型模具进行加工的方法。
五、教学内容任务一角度样板冲模凸模的加工(一)任务描述该任务为角度样板冲裁模当中的一个凸模零件加工,通过对快走丝线切割3B代码手工编程及部分机床操作的学习,完成下图零件的加工。
(二)知识储备1.工艺准备数控电火花线切割加工,一般是作为工件尤其是模具加工中的最后工序。
为避免模具零件应力变形,应尽可能采用穿丝孔。
为缩短开始切割时的切入长度,穿丝孔也可选在距离型孔边缘2〜5mm处,如(a)所示。
(a)位置选择加工凸模时,为减小变形,电极丝切割时的运动轨迹与边缘的距离应大于5mm,如(b)所示。
(b)位置选择在选择起切点位置时应注意以下几点:①把起切点尽可能选择在几何图形的拐角点处,有多个拐角点时,优先选择直线与直线相交的拐角点,其次选择直线与圆弧、圆弧与圆弧相交的拐角点。
②把起切点尽可能选择在工件表面粗糙度要求不高的一侧。
③把起切点尽可能选择在工件切割后容易修磨的表面上。
④ 可在穿丝点与起切点(终止点)间加入一导引入(导引出)切割轨迹,以改善切割痕迹。
2.工件材料及毛坯3.工件的装夹4.电极丝的选择5.电极丝位置的调整6.工作液的选配7.程序准备电火花线切割编程格式主要为ISO (也称为G代码编程)、3B、4B、EIA,目前,快走丝主要以3B代码程序的使用为主。
电火花线切割加工工艺优缺点的研究与分析1.摘要本文对电火花线切割加工工艺的优缺点进行了研究、总结与分析,并对未来发展趋势进行了总结。
2.概述电火花加工工艺,主要是利用具有特定几何形状的放电电极(EDM 电极)在金属(导电)部件上利用火靠工具和工件之间不断的脉冲性火花放电产生局部、瞬时的高温把金属材料逐步蚀除掉形成电极的形状的加工工艺,并广泛应用于冲裁模和铸模的生产,特别是在模具的复杂、精密小型腔、窄缝、沟槽、拐角、小孔、深度切削上有重要的应用。
线切割加工是电火花加工的重要分支,它是一种以线状电极、利用火花放电腐蚀原理对工件进行切割加工的加工工艺。
它不仅具有电火花类加工工艺的通有的加工特点,也有它独有的技术特色与缺点。
研究电火花线切割加工的优缺点对于提高其加工性能、扩展其适用范围有重要的意义。
因此,我列举并分析了线切割加工的优点与不足,并对不同的机型、发展趋势进行了研究。
3.内容一、电火花加工工艺通有的加工特点①电火花属于不接触加工。
工具电极和工件之间并不直接接触,而是有一个火花放电间隙(0.1-0.01mm),间隙充满了工作液。
②在加工过程中没有宏观的切削力。
在火花放电时,局部、瞬时爆炸力平均值很小,因此工件的变形和位移很小。
③可以加工任何难加工的金属材料和导电材料。
由于加工中材料的去除是靠火花放电时的腐蚀作用实现的,材料的可加工性主要取决于材料的导电性及热学特性,如熔点、沸点、比热容、导热系数、电阻率等,而几乎与其力学性能(硬度、强度等)无关。
这样可以突破传统切削加工对刀具的限制,可以实现用软的工具加工硬、韧的工件甚至可以加工聚晶金刚行、立方氮化硼一类的超硬材料。
目前电极材料多采用紫铜或石墨,因此工具电极较容易加工。
④可以加工特殊要求的零件。
由于工具电极于工件在加工过程中没有接触,没有宏观切削力,因此适宜加工低刚度工件或精密加工。
二、电火花线切割独有的特色①需要制造形状复杂的工具电极,就能加工出以直线为母线的任何二维曲面。