电介质的极化
- 格式:pdf
- 大小:150.19 KB
- 文档页数:14
在电场作用下,电介质中束缚着的电荷发生位移或者极性随电场方向改变的现象称为电介质的极化。
或者表示为,无论何种结构的电介质,在没有外电场作用时,电介质整体上对外没有极性,在外电场作用下,电介质对外呈现极性的过程。
电介质极化的基本类型包括:电子位移极化(电子式)、离子位移极化(离子式)、转向极化(偶极子式)、空间电荷极化(夹层式)四种类型。
1.电子位移极化(电子式)在外电场的作用下,介质原子中的电子运动轨道变形而出现感应电矩。
2.离子位移极化(离子式)在由离子键结合成的介质内,在外电场的作用下,除了各离子内部产生电子式极化外,还产生正、负离子相对位移而形成的极化称为离子式极化。
当没有外电场时,各正负离子对构成的偶极距彼此相消,合成电距为零;加上外电场后,所有的正负离子对构成的偶极距不再完全相消,形成一定的合成电距。
完成离子式极化所需时间约为10-13~10-12 s,有极微量的能量损耗,与电源频率几乎无关,温度升高时,电介质体积膨胀使离子间的距离增大,离子间相互作用的弹性力减弱,故离子极化率随温度的升高而略有增大。
3.转向极化(偶极子式)在外电场的作用下,极性分子的偶极子沿电场方向转动,作较有规则的排列,而显出极性。
偶极子式极化的建立需要较长时间,约为10-10~10-2 s,甚至更长。
有能量损耗,与电源频率和周围温度有关。
当电场交变频率提高时,极化可能跟不上电场的变化,从而使极化率减小。
4.空间电荷极化(夹层式)夹层式极化是最常见的一种空间电荷极化形式。
由多种介质组成的绝缘结构,在加上外电场后带电质点在介质分界面上堆积,造成电荷在介质空间新的分布,产生电矩。
如电缆、电容器、旋转电机、变压器、互感器、电抗器的绕组绝缘等,都是由多层电介质组成的。
夹层式极化过程是缓慢的,它的完成时间从几十分之一秒到几分钟甚至有长达几小时甚至更长。
因此,这种性质的极化只有在直流和低频交流电压下才能表现出来。
高频时,离子来不及移动,就很少有这种极化现象,故只有在低频时才有意义。
电介质极化
电介质极化是物理学中一个重要的概念,指的是在电场的作用下,电介质中的电荷分布发生变化,导致物质内部形成电偶极矩而出现极
化现象的过程。
这种现象在我们的日常生活中也随处可见,比如说电
容器、电子电路等设备,都需要利用电介质的极化性质才能正常运作。
下面让我们更加深入地了解电介质极化。
电介质极化的原理可以通过研究宏观电荷体系得到:当电介质体
系中有正负电荷分布时,会出现电场,从而导致介质中原子或分子的
电子云被拉伸,让正负电荷分别分布在了介质的两端,形成了电偶极子。
这个过程就是电介质极化的实现过程。
电介质极化可以分为两种类型:电子极化和离子极化,其中电子
极化是由于电介质中的原子或分子电子云位移而形成的;而离子极化
则是由于电介质分子中的离子受到电场的作用而发生电荷分离所致。
电介质的极化性质在电学理论研究中发挥了不可忽视的作用。
通
过这种极化现象,我们可以建立起数学模型,来解释电介质内部的电
场分布特性、介质在交、直流电场中的响应特性、以及介质中信号传
输的能力等现象。
电介质极化还具有广泛的应用价值。
比如说,在电容器中,由于
电介质的极化作用,正负极板之间的电场会得到加强,从而实现对电
荷的储存;在通信技术领域中,也会使用电介质极化来实现信号检测
和处理等操作。
总之,电介质极化是电学领域中一个非常重要的概念。
了解电介质极化的原理和应用,对于我们更加深入地了解电学理论、掌握电学技术,具有十分重要的指导意义。
电介质的四种极化方式
电介质的四种极化方式是电子位移极化、离子位移极化、偶极子极化和空间电荷极化。
1、电子位移极化
一切电介质都是由分子构成的,而分子又是由原子组成的,每个原子都是由带正电荷的原子核和围绕着原子核的带负电的电子构成的。
2、离子式极化
离子的极化由法扬斯首先提出。
离子极化指的是在离子化合物中,正、负离子的电子云分布在对方离子的电场作用下,发生变形的现象。
离子极化能对金属化合物性质产生影响。
3、偶极子极化
偶极子极化是指在电场作用下,组成介质的分子的固有偶极矩将沿着电场方向排列,所有偶极矩的矢量和不为零,介质产生宏观极化强度。
4、空间电荷极化
空间电荷极化常常发生在不均匀介质中,在外电场的作用下,不均匀电介质中的正负间隙离子分别向负、正极移动,引起电介质内各点离子密度的变化,产生电偶极矩,这种极化称为空间电荷极化。
电介质(dielectric)也就是绝缘体,它们本身是不导电的,即它们不含有自由电子。
因此,与导体相比,电介质对外场的响应是不同的。
对于导体而言,其对外电场的响应就是自由电子定向移动,产生感应电荷,最终达到静电平衡。
而对于电介质而言,其对外电场的响应是束缚电荷的受限移动(移动范围不能超出原子),从而产生宏观的极化电荷。
这种对外电场的响应称为电介质的极化。
极化的微观过程是束缚电荷在外电场中的运动。
任何物质的分子都是由电子和原子核构成的,整个分子是电中性的。
正(原子核)、负电荷(各个电子)在空间中都具有一定的分布。
利用等效理论(原理),对正、负电荷分开处理,可以得到这个分子的等效正电荷的大小、位置以及等效负电荷的大小、位置。
这样,就可以得到分子的等效固有电偶极矩。
根据对称性,可以将分子分为无极分子和有极分子。
顾名思义,无极分子就是分子等效电极距为0的分子,即分子的正、负等效电荷的位置重合,这要求分子的结构具有某些对称性,如氢分子,四氯化碳分子等。
有极分子就是分子等效电极距不为0的分子,这种情况更为多见。
自然地,这两种分子的极化机制不同。
对于无极分子而言,一旦加上了外电场,原本重合的正、负等效电荷点会分开,产生感生电极距,也称为位移极化。
而对于有极分子而言,不仅仅有位移极化,本身的固有电极距会在外场作用下从原本的杂乱无章到逐渐有序,这种极化称为取向极化。
那么如何定量描述极化的强度呢?极化强度是宏观量,而极化微观机制是微观图像。
将宏观量和微观图像联系起来的有效工具便是微元法,即取一小块体积元,将体积元内所有电极距叠加起来,除以体积元的大小,定义为极化强度矢量。
那么极化电荷的分布情况如何呢?对于均匀的电介质而言,可以想象,电介质体内是不会出现宏观的极化电荷的,因为它们都抵消掉了(想象一下极化的微观过程可知)。
但在表面情况就不同了。
这个表面并不是电介质的理想表面,而是指距离理想表面的距离小于L的地方。
其中L为分子感生电极距中等效正电荷点与等效负电荷点的距离。
电介质极化外电场作用下,电介质显示电性的现象。
在电场的影响下,物质中含有可移动宏观距离的电荷叫做自由电荷;如果电荷被紧密地束缚在局域位置上,不能作宏观距离移动,只能在原子范围内活动,这种电荷叫做束缚电荷。
理想的绝缘介质内部没有自由电荷,实际的电介质内部总是存在少量自由电荷,它们是造成电介质漏电的原因。
一般情形下,未经电场作用的电介质内部的正负束缚电荷平均说来处处抵消,宏观上并不显示电性。
在外电场的作用下,束缚电荷的局部移动导致宏观上显示出电性,在电介质的表面和内部不均匀的地方出现电荷,这种现象称为极化,出现的电荷称为极化电荷。
这些极化电荷改变原来的电场。
充满电介质的电容器比真空电容器的电容大就是由于电介质的极化作用。
电介质的极化机制[1]①电子极化,是在电场作用下原子核与负电子云之间相对位移,它们的等效中心不再重合而分开一定的距离l形成电偶极矩p e =el(l由负电中心指向正电中心,e是电荷量,见电偶极子)。
当电场不太强时,电偶极矩p e同有效电场成正比,p e=αe E,式中αe称为电子极化率。
②离子极化又称为原子极化,是在正负离子组成的物质中异极性离子沿电场向相反方向位移形成电偶极矩p a。
p a与有效电场成正比,p a=αa E,αa称为离子极化率,这两种极化都同温度无关。
③固有电矩的取向极化,某些电介质分子由于结构上的不对称性而具有固有电矩p。
在无外电场时,由于热运动,这些分子的取向完全是无规的,电介质在宏观上不显示电性。
在外电场的作用下,每个分子的电矩受到电场的力矩作用,趋于同外场平行,即趋于有序化;另一方面热运动使电矩趋于无序化。
在一定的温度和一定的外电场下,两者达到平衡。
固有电矩的取向极化也可以引入取向极化率αd描述,当电场强度不太大而温度不太低时,,k是玻耳兹曼常数,T是热力学温度。
这种极化同温度的关系密切。
④界面极化,由于电介质组分的不均匀性以及其他不完整性,例如杂质、缺陷的存在等,电介质中少量自由电荷停留在俘获中心或介质不均匀的分界面上而不能相互中和,形成空间电荷层,从而改变空间的电场。
§5.5 电介质极化一、电介质(Dielectric)的极化 1 电介质就是绝缘介质电介质内没有可以自由移动的电荷,在电场作用下,电介质中的电荷只能在分子范围内移动。
2.分子电矩分子—电偶极子(模型) 分子的正负电中心相对错开。
分子电矩3 电介质的极化 (1) .极性电介质的极化极性分子(Polar molecule)也称有极分子在正常情况下,内部电荷分布不对称,正负电中心已错开,有固有电矩p 分,常见极性分子:如HCl 、H 2O 、CO 和有机玻璃等。
有极分子电介质的极化是有极分子的取向极化。
有极分子取向极化p 分+-电介质分子p 分 = q 分l 分E有外电场无外电场无外电场时:每个分子p 分 ≠ 0 ,由于热运动,各p 分取向混乱,小体积∆V (宏观小、微观大)内有大量分子 ∑ p 分= 0。
有外电场时:各 p分向电场方向取向趋于相同(由于热运动,取向并非完全一致) 在∆V 内 ∑ p 分 ≠ 0,且外电场越强 | ∑ p 分| 越大,这种极化称取向极化。
(2) .非极性电介质的极化非极性分子(Non-polar molecule)又称无极分子在正常情况下电荷分布对称,正负电荷中心重合,无固有电矩。
非极性分子又称无极分子,常见非极性分子电介质有He 、 H 2、 N 2、 O 2、 CO 2、氢、甲烷、石蜡等): 非极性电介质的极化是无极分子的位移极化。
无外电场时:每个分子 p 分 = 0,∆V 内 ∑ p 分 = 0。
有外电场时:正负电中心产生相对位移, p 分(称感应电矩) ≠ 0,∆V 内 ∑ p 分 ≠ 0,且外电场越强, | ∑ p 分| 越大,这种极化称为位移极化。
无极分子 位移极化 4 电介质中的电场强度 1)束缚电荷(Bound charge)电介质极化后,在电介质体内及表面上可以出现束缚电荷(又称极化电荷)。
由于电介质极化后会出现束缚电荷,空间某点的电场应是由自由电荷与束缚电荷共同产生的。
电介质的极化现象极化现象是电介质中的重要现象,它是电学的基础,是理解电介质的性质和特性,将理论应用于实际电介质系统中的基础。
20世纪,极化现象的相关理论及其应用在现代电子技术中发挥着重要作用,因此,掌握有关电介质的极化现象及其特性非常重要。
极化现象是指电介质中空气、油和金属等物质,在施加外力作用时,电子由原来的静止状态或均衡状态发生移动,形成复合电荷或极化分布的现象。
电介质的极化现象的基本原理是,当外力作用于电介质中时,电介质中的电子会受到施加的外力作用作用而移动,产生极化分布,从而产生电荷强度和电场强度,即产生极化现象。
电介质的极化现象有三种类型:中性极化、静态极化和动态极化。
中性极化指当外力作用于电介质中时,电介质中的电子围绕朝着地点向外移动,形成中性极化分布,构成一个电荷层,形成介质体的电荷中心和电场中心,这种极化方式称为中性极化。
静态极化是指当外力作用于电介质中时,电介质中的电子一次性聚集介质体的任一端,从而形成介质体的极化和电场,这种极化方式称为静态极化。
动态极化指当外力作用于电介质中时,电介质中的电子会在不同的位置多次聚集,从而产生一个有序的动态极化和电场,这种极化方式称为动态极化。
电介质的极化现象有两个关键因素:一是外力施加的方式;二是介质的特性。
外力施加的方式包括电压、电流、磁场、温度和压力等,具体取决于介质性质,介质性质包括介质的电导率、热导率、磁导率、热传导率、介质的向心力、表面张力等,这些介质性质的变化都会影响介质的极化现象。
电介质的极化现象受到太多因素的影响,其特性很复杂,受多种外力和介质性质相互作用的影响,其表现出多种复杂的极化形式。
因此,理解和掌握介质极化现象的特性,以及将它应用到现实电介质系统中,对科学技术的发展有着重要的意义。
由于电介质的极化现象受多种外力和介质性质相互作用的影响,从而导致电介质的极性、强度和空间结构的变化,这就需要对电介质的极化现象进行详细的理论研究和实验测试。