1 电介质的极化和电导
- 格式:ppt
- 大小:742.50 KB
- 文档页数:20
⾼电压技术总复习第⼀章电介质的极化、电导和损耗⼀、掌握电介质极化的基本形式及特点(1)极化:电介质中的带电质点在电场作⽤下沿电场⽅向作有限位移现象。
(2)电⼦位移极化:负电荷的作⽤中⼼与正电荷的作⽤中⼼不再重合主要特点:1、极化所需时间极短;2、极化具有弹性,不产⽣能量损耗;3、温度对极化的影响较⼩。
(3)离⼦位移极化:在外电场E作⽤下,正、负离⼦将发⽣⽅向相反的偏移,使平均偶极矩不再为零,介质呈现极化。
离⼦式极化的特点:1、极化过程极短;2、极化具有弹性,⽆能量损耗;3、温度对极化有影响:(4)偶极⼦极化:在外电场的作⽤下,偶极⼦受到电场⼒的作⽤⽽发⽣转向,顺电场⽅向作有规律的排列,靠电极两表⾯呈现出电的极性。
偶极⼦式极化的特点:1、极化所需时间极长,故极化与频率有较⼤的关系;2、极化属⾮弹性,有能量损耗;3、温度对极化影响很⼤:极性⽓体介质具有负的温度系数;(5)空间电荷极化:是带电质点(电⼦或正、负离⼦)的移动形成的。
最典型的空间电荷极化是夹层极化。
夹层极化的特点:1、极化所需时间长,故夹层极化只有在低频时才有意义。
具有夹层绝缘的设备断开电源后,应短接进⾏彻底放电以免危及⼈⾝安全,⼤容量电容器不加电压时也应短接;2、极化涉及电荷的移动和积聚,所以必然伴随能量损耗。
⼆、介质的相对介电常数ε0 ——真空的介电常数=8.86×10-14F/cm三、掌握电介质损耗的基本概念、介质损耗因数tanδ概念采⽤介质损耗⾓正切tanδ作为综合反映电介质损耗特性优劣的⼀个指标,测量和监控各种电⼒设备绝缘的tanδ值已成为电⼒系统中绝缘预防性试验的最重要项⽬之⼀。
第⼆章⽓体放电的物理过程⼀、掌握⽓体中带电粒⼦的产⽣和消失1 ⽓体中带电质点的产⽣途径:电⼦获得⾜够的能量跳出最外层轨道,成为⾃由电⼦。
产⽣带电离⼦的过程称为电离(游离),它是⽓体放电的⾸要前提。
⼀是⽓体本⾝发⽣电离(游离);⼆是⽓体中的固体或液体⾦属发⽣表⾯电离(游离)。
高电压技术各章选择判断题汇总及答案附期末测试第一章电介质的极化、电导和损耗1.单选题用于电容器的绝缘材料中,所选用的电介质的相对介电常数()。
A 应较大B 应较小C 处于中间值D 不考虑这个因素A2.单选题偶极子极化()。
A 所需时间短B 属于弹性极化 C 在频率很高时极化加强D 与温度的关系很大D3.单选题电子式极化()。
A 所需时间长B 属于弹性极化C 在频率很高时极化加强D 与温度的关系很大B4.单选题离子式极化()。
A 所需时间长B 属于弹性极化C 在频率很高时极化加强D 与温度的关系很大B5.单选题极化时间最长的是()。
A 电子式极化 B 离子式极化 C 偶极子极化 D 空间电荷极化D6.单选题极化时伴随有电荷移动的是()。
A 电子式极化 B 离子式极化C 偶极子极化D 夹层极化D7.单选题夹层极化中电荷的积聚是通过电介质的()进行的。
A 电容B 电导C 电感D 极化B8.单选题相对介电常数是表征介质在电场作用下()的物理量。
A 是否极化B 损耗C 击穿D 极化程度D9.单选题对于极性液体介质,温度较低时,随温度的升高,极化()。
A 减弱B 增强C 先减弱再增强D 不变 B10.单选题用作电容器的绝缘介质时,介质的相对介电常数应()。
A 大些B 小些C 都可以D 非常小A11.单选题用作一般电气设备的绝缘时,介质的相对介电常数应()。
A 大些B 小些C 都可以D 非常小B12.单选题表征电介质导电性能的主要物理量为()。
A 电导率B 介电常数C 电阻D 绝缘系数A13.单选题电介质的电导主要是()引起的。
A 自由电子B 自由离子C 正离子D 负离子B14.单选题金属导体的电导主要是()引起的。
A 自由电子B 自由离子C 正离子D 负离子A15.单选题通常所说的电介质的绝缘电阻一般指()。
A 表面电阻B 体绝缘电阻C 表面电导D 介质电阻B16.单选题直流电压(较低)下,介质中流过的电流随时间的变化规律为()。
电介质材料中的电导率与极化关系电介质材料(Dielectric materials)是指具有高电阻率的材料,其主要特点是在电场作用下能够极化,产生电偶极矩。
在电子行业中,电介质材料被广泛应用于电容器、绝缘体等设备中。
电介质材料中的电导率与极化是两个关键的属性,它们之间存在着密切的联系。
电导率是指电流在单位面积上通过电介质材料的能力。
在理想情况下,电介质材料应该具有极高的电阻率,从而使得电流很难通过。
然而,在现实世界中,电介质材料中总会存在一些杂质或缺陷,这些杂质或缺陷会导致电介质材料的电导率变高。
这种非理想的情况在实际应用中经常发生,因此了解电导率与极化之间的关系,对于电子工程师来说非常重要。
极化是指电介质材料在外电场的作用下,原子或分子内部电荷分布发生改变,从而产生电偶极矩。
当外电场施加在电介质材料上时,其中的正负电荷将会产生偏移,并在材料内部形成一个电场,这就是极化现象。
根据材料的不同极化性质,电介质材料可分为电容极化、取向极化和离子极化等。
电导率与极化之间的关系可以通过极化强度来描述。
极化强度是指电介质材料中形成的电偶极矩的大小,它与外电场的强度有关。
当外电场强度增加时,极化强度也会随之增加,从而导致电介质材料的电导率增加。
这是因为极化强度增加意味着电介质材料内部电荷的分离程度加深,从而电流更容易在材料中传导。
另一方面,电导率与极化之间的关系还与材料本身的性质密切相关。
一些电介质材料,如氧化铝和陶瓷等,由于其内部晶格结构的特殊性质,具有较高的电导率。
而对于一些高性能电介质材料,如聚酰亚胺膜(Polyimide)等,其内部分子结构较为复杂,因此其电导率相对较低。
除了电导率与极化之间的关系,电介质材料中还存在着电介质弛豫(Dielectric relaxation)现象。
电介质弛豫是指在外电场的作用下,电介质材料内部电偶极矩的方向不断变化,从而产生电流。
这种电流是由于电偶极矩在外电场中不断重新定向导致的,因此被称为电介质弛豫电流。
高电压技术各章选择判断题汇总及答案附期末测试第一章电介质的极化、电导和损耗1.单选题用于电容器的绝缘材料中,所选用的电介质的相对介电常数()。
A 应较大B 应较小C 处于中间值D 不考虑这个因素A2.单选题偶极子极化()。
A 所需时间短B 属于弹性极化 C 在频率很高时极化加强D 与温度的关系很大D3.单选题电子式极化()。
A 所需时间长B 属于弹性极化C 在频率很高时极化加强D 与温度的关系很大B4.单选题离子式极化()。
A 所需时间长B 属于弹性极化C 在频率很高时极化加强D 与温度的关系很大B5.单选题极化时间最长的是()。
A 电子式极化 B 离子式极化 C 偶极子极化 D 空间电荷极化D6.单选题极化时伴随有电荷移动的是()。
A 电子式极化 B 离子式极化C 偶极子极化D 夹层极化D7.单选题夹层极化中电荷的积聚是通过电介质的()进行的。
A 电容B 电导C 电感D 极化B8.单选题相对介电常数是表征介质在电场作用下()的物理量。
A 是否极化B 损耗C 击穿D 极化程度D9.单选题对于极性液体介质,温度较低时,随温度的升高,极化()。
A 减弱B 增强C 先减弱再增强D 不变 B10.单选题用作电容器的绝缘介质时,介质的相对介电常数应()。
A 大些B 小些C 都可以D 非常小A11.单选题用作一般电气设备的绝缘时,介质的相对介电常数应()。
A 大些B 小些C 都可以D 非常小B12.单选题表征电介质导电性能的主要物理量为()。
A 电导率B 介电常数C 电阻D 绝缘系数A13.单选题电介质的电导主要是()引起的。
A 自由电子B 自由离子C 正离子D 负离子B14.单选题金属导体的电导主要是()引起的。
A 自由电子B 自由离子C 正离子D 负离子A15.单选题通常所说的电介质的绝缘电阻一般指()。
A 表面电阻B 体绝缘电阻C 表面电导D 介质电阻B16.单选题直流电压(较低)下,介质中流过的电流随时间的变化规律为()。