机械振动复习
- 格式:ppt
- 大小:1.29 MB
- 文档页数:36
《机械振动》期末复习专题高2015届班姓名:一、知识回顾:(一)机械振动物体(质点)在某一中心位置(平衡位置)两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。
回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。
产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。
b、阻力足够小。
(二)简谐运动1. 定义:物体跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐运动。
简谐运动是最简单,最基本的振动。
研究简谐运动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。
因此简谐运动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-kx,其中“-”号表示力方向跟位移方向相反。
2. 简谐运动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。
3. 简谐运动是一种特殊的机械振动,有关机械振动的概念和规律都适用,简谐运动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。
(三)描述振动的物理量1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐运动在振动过程中,动能和势能相互转化而总机械能守恒。
2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。
振动的周期T跟频率f之间是倒数关系,即T=1/f。
振动的周期和频率都是描述振动快慢的物理量,简谐运动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。
(四)单摆:摆角小于5°的单摆是典型的简谐运动。
细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。
高三复习机械振动知识点机械振动是指物体在某一参考点周围以某一频率往复运动的现象。
在高三物理学习中,机械振动是一个重要的知识点。
本文将从简谐振动、振动的特性、振动的能量等方面进行讨论。
一、简谐振动简谐振动是指受到一个恢复力作用,在无阻尼、无扰动的情况下,物体沿着某一直线或者某一平面做往复运动的现象。
简谐振动有如下几个特点:1. 物体做简谐振动时,其运动是周期性的,即在一定的时间内完成一次完整的振动循环。
2. 物体做简谐振动的力是恢复力,且恢复力与物体的偏离位置成正比,方向相反。
3. 物体做简谐振动的周期与振幅无关,只与质量和弹性系数有关,可以通过以下公式计算:T=2π√(m/k)其中,T为周期,m为物体的质量,k为弹簧的弹性系数。
二、振动的特性1. 振幅(A):振幅是指物体在振动过程中,离开平衡位置的最大位移距离。
振幅越大,物体的振动幅度越大。
2. 频率(f):频率是指单位时间内振动循环的次数,用赫兹(Hz)表示。
频率可以通过以下公式计算:f=1/T其中,T为周期。
3. 角频率(ω):角频率是指单位时间内振动角度的变化速率,用弧度/秒(rad/s)表示。
角频率与频率的关系如下:ω=2πf4. 相位(φ):相位是指物体振动过程中离开平衡位置的位移相对于某一参考点的位置关系。
相位差可以通过以下公式计算:φ=ωt其中,φ为相位差,ω为角频率,t为时间。
三、振动的能量振动系统具有动能和势能,它们之间的转化是振动的能量变化过程。
振动系统的能量可以分为以下几个部分:1. 动能(K):动能是指物体在振动过程中具有的运动能量,可以通过以下公式计算:K=1/2mv^2其中,m为物体的质量,v为物体的速度。
2. 势能(U):势能是指物体在振动过程中具有的储存能量,可以通过以下公式计算:U=1/2kx^2其中,k为弹簧的弹性系数,x为物体的位移。
3. 总能量(E):振动系统的总能量是指动能和势能之和,即E=K+U。
在简谐振动中,总能量保持不变。
机械振动和机械波知识点复习一 机械振动知识要点1. 机械振动:物体(质点)在平衡位置附近所作的往复运动叫机械振动,简称振动条件:a 、物体离开平衡位置后要受到回复力作用。
b 、阻力足够小。
➢ 回复力:效果力——在振动方向上的合力➢ 平衡位置:物体静止时,受(合)力为零的位置:运动过程中,回复力为零的位置(非平衡状态)➢ 描述振动的物理量位移x (m )——均以平衡位置为起点指向末位置振幅A (m )——振动物体离开平衡位置的最大距离(描述振动强弱)周期T (s )——完成一次全振动所用时间叫做周期(描述振动快慢)全振动——物体先后两次运动状态(位移和速度)完全相同所经历的过程频率f (Hz )——1s 钟内完成全振动的次数叫做频率(描述振动快慢)2. 简谐运动➢ 概念:回复力与位移大小成正比且方向相反的振动➢ 受力特征:kx F -= 运动性质为变加速运动➢ 从力和能量的角度分析x 、F 、a 、v 、E K 、E P特点:运动过程中存在对称性平衡位置处:速度最大、动能最大、动量最大;位移最小、回复力最小、加速度最小 最大位移处:速度最小、动能最小、动量最小;位移最大、回复力最大、加速度最大✧ v 、E K 同步变化;x 、F 、a 、E P 同步变化,同一位置只有v 可能不同3. 简谐运动的图象(振动图象)➢ 物理意义:反映了1个振动质点在各个时刻的位移随时间变化的规律可直接读出振幅A ,周期T (频率f ) 可知任意时刻振动质点的位移(或反之) 可知任意时刻质点的振动方向(速度方向) 可知某段时间F 、a 等的变化4. 简谐运动的表达式:)2sin(φπ+=t TA x 5. 单摆(理想模型)——在摆角很小时为简谐振动➢ 回复力:重力沿切线方向的分力➢ 周期公式:gl T π2= (T 与A 、m 、θ无关——等时性) ➢ 测定重力加速度g,g=224T L π 等效摆长L=L 线+r 6. 阻尼振动、受迫振动、共振阻尼振动(减幅振动)——振动中受阻力,能量减少,振幅逐渐减小的振动受迫振动:物体在外界周期性驱动力作用下的振动叫受迫振动。
1.振动:指一个物理量在它的平均值附近不停地经过极大值和极小值而往复变化2.机械振动:机械或结构在它的静平衡位置附近的往复弹性运动3.激励:外界对振动系统的激励或作用4.响应:系统对外界影响的反应5.振动分类1)按系统振动微分方程分为线性振动和非线性振动2)按振动是否可以预测分为确定振动和随机振动3)按系统自由度个数是有限还是无限分为离散系统和连续系统4)按激励情况分为自由振动和强迫振动5)按响应情况分为确定性振动和随机振动,其中确定性振动分为简谐振动,周期振动和瞬态振动6.离散振动系统三个最基本元件是惯性元件、弹性元件和阻尼元件1)弹性元件忽略其质量和阻尼,在振动过程中储存势能。
弹性力与其两端相对位移成比例,方向相反2)阻尼元件振动过程中消耗振动能量。
阻尼大小与阻尼元件两端相对速度成比例,方向相反,称之为粘性阻尼3)惯性元件完全刚性且无阻尼,振动过程中储存动能。
惯性力与加速度成正比,方向相反7.简谐振动是最简单的周期运动,他是时间的单一正弦或余弦行数8.简谐振动速度、加速度和位移一样,都是简写函数。
三者频率相同,速度、加速度的相位分别比位移超前π/2和π,幅值分别增大ω和ω2倍。
简谐振动加速度大小与位移成正比,方向与位移相反。
9.叠加原理是分析线性振动系统的振动性质的基础10.只有一个自由度的振动系统称为单自由度振动系统11. 1)单自由度系统无阻尼自由振动是简写振动,振幅A、初相位φ取决于初始条件和系统的刚度、质量。
运动的中点就是系统的静平衡位置。
2)振动频率只与系统的刚度,质量有关。
通常称ωn,fn为系统固有频率3)ωn,fn k成正比于m成反比4)振动得以维持的原因是系统有储存动能的惯性元件和储存势能的弹性元件。
无阻尼自由振动时机械能守恒,机械能大小取决于初始条件和系统参数。
振动时动能势能不断转换,势能有一最小值,此时位置是系统的静平衡位置。
系统有稳定的平衡位置,其动能和势能可以相互转化,在外界激励作用下,才能产生振动。
第34讲机械振动目录复习目标网络构建考点一简谐运动的基本规律【夯基·必备基础知识梳理】知识点1 简谐运动的基础知识知识点2 简谐运动的五个特征【提升·必考题型归纳】考向1 简谐运动中各物理量的分析考向2 简谐运动的特征应用考点二简谐运动的公式和图像【夯基·必备基础知识梳理】知识点1 对简谐运动图像的认识知识点2 由简谐运动图像可获取的信息【提升·必考题型归纳】考向1 从振动图像获取信息考向2 根据条件写出振动方程考点三简谐运动的两类模型【夯基·必备基础知识梳理】知识点弹簧振子模型和单摆模型【提升·必考题型归纳】考向1 弹簧振子模型考向2 单摆模型考点四受迫振动和共振【夯基·必备基础知识梳理】知识点1 简谐运动、受迫振动和共振的比较知识点2 对共振的理解【提升·必考题型归纳】考向1 受迫振动和共振规律考向2 实际生活中的受迫振动和共振真题感悟1、理解和掌握简谐运动的基本规律和图像。
2、能够利用简谐运动的基本规律处理有关弹簧振子和单摆模型的有关问题。
3、理解和掌握受迫振动和共振。
考点一 简谐运动的基本规律机械振动动量守恒的条件及应用1.简谐运动的基础知识2.简谐运动的五个特征简谐运动的公式和图像1.对简谐运动图像的认识2.由简谐运动图像可获得的信息简谐运动的两类模型1.弹簧振子模型2.单摆模型受迫振动和共振1.受迫振动和共振2.对共振的理解知识点1 简谐运动的基础知识(1)定义:如果物体的位移与时间的关系遵从 函数的规律,即它的振动图像(xt 图像)是一条正弦曲线,这样的振动是一种简谐运动。
(2)条件:如果物体在运动方向上所受的力与它偏离平衡位置位移的大小成正比,并且总是指向 ,质点的运动就是简谐运动。
(3)平衡位置:物体在振动过程中 为零的位置。
(4)回复力①定义:使物体返回到 的力。
②方向:总是指向 。
③来源:属于 ,可以是某一个力,也可以是几个力的 或某个力的 。
机械振动复习提纲知识点一、简谐运动1、机械运动:物体相对与参考系位置发生改变叫机械运动。
常见的机械运动形式有:匀速直线运动、匀变速直线运动、非匀变速直线运动、自由落体运动、竖直上抛运动、平抛运动、圆周运动、类平抛运动、机械振动等。
2、机械振动:物体在某一平衡位置附近的往复运动叫机械振动,简称振动。
3、简谐运动:物体在与位移成正比方向相反的回复力作用下的机械振动叫简谐运动。
注意:(1)、简谐运动是机械振动中最简单、最基本的运动、是理想的物理模型。
(2)、做简谐运动的物体的位移默认指的是物体离开平衡位置的位移,因此位移的方向始终从平衡位置指向物体所在的位置。
(3)、简谐运动的平衡位置就是运动轨迹的对称中心的位置,也就是物体静止时所在的位置。
(4)、简谐运动中的物体到达平衡位置时速度最大,位移为0,在离开平衡位置最远的位置时位移最大,速度为0。
4、简谐运动的两个常见模型:(1)、弹簧振子(2)、单摆例题1、下述说法中正确的是( )A .树枝在风中摇动是振动B .拍篮球时,篮球的运动是振动C .人走路时手的运动是振动D .转动的砂轮的边缘上某点的运动是振动,圆心可以看作是振动中心知识点二、描述简谐运动的物理量1、简谐运动的位移在简谐运动中,通常研究物体在某一时刻或到达某一位置时的位移,因此默认是离开平衡位置的位移,方向总是从平衡位置指向物体所在的位置。
2、回复力:回复力是根据力的效果命名的,回复力的方向总是指向平衡位置,其作用效果是要把物体拉回到平衡位置。
注意:(1)、回复力可能是物体受到的某一个力、可能是物体受到的合力、也可能是物体受到的某一个力的分力。
(2)、在简谐运动中,回复力和位移的关系是:kx F -=例题1、关于机械振动,下列说法正确的是( )A .往复运动就是机械振动B .机械振动是靠惯性运动的,不需要有力的作用C .机械振动是受回复力作用的D .回复力是物体所受的合力例题2、物体做机械振动的回复力( )A .必定是区别于重力、弹力、摩擦力的另一种力B .必定是物体所受的合力C .可以是物体受力中的一个力D .可以是物体所受力中的一个力的分力3、加速度:简谐运动的加速度是指回复力产生的加速度,由牛二定律可知它和物体的位移成正比,方向相反。
期末复习四机械振动知识总结1、机械振动(简称)是一种运动;平衡位置指振动物体时所处位置,它是位移的点,是回复力的点;偏离平衡位置的最大叫振幅,用符号表示;振动物体循环一次又回到位置的过程叫一次全振动,其过程所经历的路程等于振幅的倍,所用时间为,倒数为频率f (两者关系为= 1/f )。
Q P2、简谐运动的两种判断方式:(1)物体的位移-时间(x-t)图象(也叫图象)遵从函数规律,即位移x = A sin(ωt+ φ),其中A叫,ω叫圆频率,可用公式计算;(2)物体在运动方向上所受的力与它偏离平衡位置的位移的大小成比,并且总是指向位置,即F= 。
3、简谐运动的位移-时间图象(x-t图象,也叫振动图象):纵坐标x表示质点振动的,横坐标t表示质点振动的时刻(横坐标也表示质点的位置),用来表示质点的随时间的变化.4、单摆振动过程的回复力是力沿圆弧切线方向的分力,其在摆角θ很小(θ小于)时可看作简谐运动;确定了单摆的周期公式,可用它测量重力加速度g= 。
5、振动的能量与有关;振幅随时间逐渐的振动叫阻尼振动;系统在力作用下的振动叫受迫振动,其特点为物体振动的频率于驱动力的频率;当驱动力的频率于物体固有频率时,物体做受迫振动的振幅达到,叫共振。
针对训练1、(多选)作简谐运动的物体,当它每次经过同一位置时,一定相同的物理量是( )A、速度B、位移C、回复力D、加速度2、关于机械振动的位移和平衡位置,以下说法中正确的是()A、平衡位置就是物体振动范围的中心位置B、机械振动的位移总是以平衡位置为起点的位移C、机械振动的物体运动的路程越大,发生的位移也越大D、机械振动的位移是指振动物体偏离平衡位置最远时的位移3、如图所示,弹簧振子在BC 间振动,O 为平衡位置,BO =OC =5 cm ,若振子从B 到C 的运动时间是1 s ,则下列说法正确的是 ( ) A 、振子从B 经O 到C 完成一次全振动 B 、振动周期是1 s ,振幅是10 cmC 、经过两次全振动,振子通过的路程是20 cmD 、B 开始经过3 s ,振子通过的路程是30 cm4、(多选)一弹簧振子振动时,先后以相同的速度通过路径上的A 、B 两点,从A 到B 历时1s ,过了B 点后继续运动,再经过1s 振子又回到B 点,则可判断这个弹簧振子( ) A 、振动的周期为4s B 、在A 、B 两点的加速度相同 C 、在A 、B 两点的位移相同 D 、在A 、B 两点的弹性势能相同一个做简谐运动的质点,先后以同样的速度通过相距10 cm 的A 、B 两点,历时0.5 s(如图)。
简谐运动的规律和图像一、简谐运动的基本规律1.简谐运动的特征2.注意:(1)弹簧振子(或单摆)在一个周期内的路程一定是4A,半个周期内路程一定是2A,四分之一周期内的路程不一定是A。
(2)弹簧振子周期和频率由振动系统本身的因素决定(振子的质量m和弹簧的劲度系数k ),与振幅无关。
二、简谐运动的图像1.简谐运动的数学表达式:x=A sin(ωt+φ)2.根据简谐运动图象可获取的信息(1)振幅A、周期T(或频率f)和初相位φ(如图所示).(2)某时刻振动质点离开平衡位置的位移.(3)某时刻质点速度的大小和方向:曲线上各点切线的斜率的大小和正负分别表示各时刻质点的速度的大小和速度的方向,速度的方向也可根据下一时刻物体的位移的变化来确定.(4)某时刻质点的回复力、加速度的方向:回复力总是指向平衡位置,回复力和加速度的方向相同,在图象上总是指向t轴.(5)某段时间内质点的位移、回复力、加速度、速度、动能和势能的变化情况.3.简谐运动图象问题的两种分析方法法一图象-运动结合法解此类题时,首先要理解x -t 图象的意义,其次要把x -t 图象与质点的实际振动过程联系起来.图象上的一个点表示振动中的一个状态(位置、振动方向等),图象上的一段曲线对应振动的一个过程,关键是判断好平衡位置、最大位移及振动方向.法二 直观结论法简谐运动的图象表示振动质点的位移随时间变化的规律,即位移-时间的函数关系图象,不是物体的运动轨迹.三、针对练习1、一个小物块拴在一个轻弹簧上,并将弹簧和小物块竖直悬挂处于静止状态,以此时小物块所处位置为坐标原点O ,以竖直向下为正方向建立Ox 轴,如图所示。
先将小物块竖直向上托起使弹簧处于原长,然后将小物块由静止释放并开始计时,经过s 10π,小物块向下运动20cm 第一次到达最低点,已知小物块在竖直方向做简谐运动,重力加速度210m /s g =,忽略小物块受到的阻力,下列说法正确的是( )A .小物块的振动方程为0.1sin 102x t π⎛⎫=+ ⎪⎝⎭(m ) B .小物块的最大加速度为2gC 2m /sD .小物块在0~1330s π的时间内所经过的路程为85cm2、(多选)某弹簧振子在水平方向上做简谐运动,其位移x 随时间变化的关系式为x =A sin ωt ,如图所示,则( )A .弹簧在第1 s 末与第5 s 末的长度相同B .简谐运动的频率为18Hz C .第3 s 末,弹簧振子的位移大小为22A D .第3 s 末至第5 s 末,弹簧振子的速度方向不变3、(多选)如图甲所示,悬挂在竖直方向上的弹簧振子,在C 、D 两点之间做简谐运动,O 点为平衡位置。
2023高中物理机械振动复习题集附答案2023高中物理机械振动复习题集附答案1. 单选题1. 在弹簧振子的简谐振动中,下列哪个量不变?A. 动能B. 势能C. 总机械能D. 振动频率答案:D2. 下列哪个不属于弹簧振子的简谐运动特征?A. 周期相等B. 频率相等C. 能量守恒D. 加速度为常数答案:D3. 振动的周期与频率的关系是:A. 周期和频率成反比B. 周期和频率成正比C. 周期和频率无关D. 周期是频率的平方答案:A4. 下列哪个条件不是机械振动的必要条件?A. 有弹性形变B. 有恢复力C. 有质量D. 有外力作用答案:D5. 一个物体做简谐振动,其振动方程为x = 5sin(2πt + π/3),振幅为:A. 5B. 3C. 2D. 1答案:A2. 多选题1. 下列哪些是质点的简谐运动特点?A. 周期相等B. 频率相等C. 振幅相等D. 加速度恒定答案:A、B、C2. 下列哪些物体可以进行机械振动?A. 弹簧B. 摆子C. 电子D. 钢琴弦答案:A、B、D3. 一个弹簧振子的周期为2s,频率为5Hz,则它的角频率为:A. π/10 rad/sB. π/5 rad/sC. π/2 rad/sD. 2π rad/s答案:D4. 对于一个质点做直线简谐运动,振幅为3m,频率为2Hz,则振动的角频率是:A. π rad/sB. 2π rad/sC. 3π rad/sD. 6π rad/s答案:B3. 解答题1. 描述简谐振动的物理量有哪些?答:简谐振动的物理量包括振幅、周期、频率、角频率、相位等。
2. 简述谐振条件及其对应的公式。
答:谐振条件是指在机械振动中,外力频率等于振动体的固有频率时,会出现共振现象。
其对应的公式为f = 1/(2π√(l/g))。
3. 什么是阻尼振动?它与简谐振动有什么区别?答:阻尼振动是指在振动过程中,受到阻力的影响,振动幅度逐渐减小的振动。
与简谐振动不同的是,阻尼振动会消耗能量,振动的幅度逐渐衰减。
习题课及考前复习(24题)
一、考试知识点
二、考题分布情况
三、作业题
四、课堂练习题
五、经典例题
一、考试知识点
第一章
1、单自由度系统振动方程。
2、无阻尼单自由度系统的自由振动。
3、等效单自由度系统。
4、有阻尼单自由度系统的自由振动。
5、简谐力激励下的受迫振动。
6、基础简谐激励下的受迫振动。
第二章
1、多自由度系统的振动方程。
2、建立系统微分方程的方法。
3、无阻尼系统的自由振动。
4、无阻尼系统的受迫振动。
二、考题分布情况
1、主要围绕作业题、课堂练习题、经典例题题型展开。
2、复习时把握每章知识要点,理解基础题型解题方法。
3、考卷共6道大题。
习题课及考前复习(24题)
一、考试知识点
二、考题分布情况
三、作业题
四、课堂练习题
五、经典例题
m
222(2)m l θ= ⎧⎨⎩211
(2)m l θ= 212(22)2k l l l θθ−⋅−⋅⋅11k l l θ−⋅221(22)2k l l l
θθ−⋅−⋅⋅
习题课及考前复习(24题)
一、考试知识点
二、考题分布情况
三、作业题
四、课堂练习题
五、经典例题
m
m
m
m
m
m
习题课及考前复习(24题)
一、考试知识点
二、考题分布情况
三、作业题
四、课堂练习题
五、经典例题
m。