7.4 拉氏变换的应用举例
- 格式:ppt
- 大小:223.00 KB
- 文档页数:5
电路元件拉氏变换拉氏变换是电路分析中常用的数学工具,用于描述电路元件在时域和频域之间的转换关系。
本文将介绍拉氏变换的基本概念、性质和应用,以及在电路分析中的具体应用案例。
一、拉氏变换的基本概念和性质1. 拉氏变换的定义拉氏变换是一种将时域函数转换为复频域函数的数学工具。
对于一个时域函数f(t),其拉氏变换F(s)定义为:F(s) = L{f(t)} = ∫[0,∞) e^(-st) f(t) dt其中,s是复变量,表示频域的频率。
2. 拉氏变换的性质拉氏变换具有线性性质,即对于任意常数a和b,有:L{af(t) + bg(t)} = aF(s) + bG(s)其中,F(s)和G(s)分别是f(t)和g(t)的拉氏变换。
拉氏变换还具有平移性质、尺度性质、微分性质、积分性质等。
这些性质使得我们可以通过拉氏变换来简化复杂的电路分析问题。
二、拉氏变换在电路分析中的应用1. 线性电路分析拉氏变换在线性电路的分析中起到了至关重要的作用。
通过将电路中的电压和电流信号进行拉氏变换,可以将微分方程转化为代数方程,从而简化电路分析的过程。
例如,对于一个RC电路,可以通过拉氏变换将微分方程转化为代数方程,进而求解电路的响应。
2. 信号处理拉氏变换在信号处理领域也有广泛的应用。
通过将信号进行拉氏变换,可以将时域的信号转化为频域的信号,从而分析信号的频谱特性。
例如,在音频处理中,可以通过拉氏变换将声音信号转化为频域信号,进而进行音频滤波、降噪等处理。
3. 控制系统分析拉氏变换在控制系统的分析与设计中也起到了重要的作用。
通过将控制系统的微分方程进行拉氏变换,可以得到系统的传递函数,进而分析系统的稳定性、频率响应等特性。
例如,在机器人控制系统中,可以通过拉氏变换分析系统的动态响应,从而设计合适的控制策略。
三、拉氏变换的应用案例以一个简单的RL电路为例,分析其拉氏变换在电路分析中的应用。
假设电路中的电压源为v(t),电感为L,电阻为R。
拉氏变换的基本性质及其应用举例
一、拉氏变换的性质
(1)线性定理:拉氏变换是线性变换,即:
(2)卷积定理:
称为、的卷积,记为
(3)乘积定理:设、的拉氏变换为、,则:的拉氏变换为:
(4)导数定理:
如果:
则:
(5)不定积分定理:
(6)象的导数定理:
(7)象的积分定理:设的象为,且积分收敛,则:
(8)相似定理:设,则:
(9)位移定理:
(10)延迟定理:设,则:
二、用拉氏变换求解常微分方程及积分方程举例
例1、求解初值问题:
解:对方程两端作拉普拉斯变换:
即:
将上式两端反演,即:
从例1中可得出运用拉普拉斯变换求解微分方程,积分方程的步骤可归纳为:
(1)对方程施行拉普拉斯变换,这变换把初始条件一同考虑。
(2)从变换后的方程中解出象函数。
(3)对求出的象函数进行反演,原函数就是原方程的解。
例2 求解交流RL电路的方程:
解:对方程两边作拉普拉斯变换
将上式两端反演得:
由卷积定理得:
所得结果第一部分代表一个稳定的(幅度不变的)振荡,第二部分则是随时间而衰减的.例3 求解
解:对该方程施行拉普拉斯变换后得:
记
将上式反演,设:
则
则由卷积定理得:
而:
例4 求解方程组:
解:对方程组施行拉氏变换得:
记:
两式相加减得:
将上方程组反演:
例5 求解积分方程
解:对方程两端施行拉氏变换
即:
进行反演:
例6 用拉普拉斯变换求积分:
解:当
进:对积分进行拉普拉斯变换
反演得:
当
时,作变换。
§2-3拉普拉斯变换及其应用时域的函数可以通过线性变换的方法在变换域中表示,变换域的表示有时更为简捷、方便。
例如控制理论中常用的拉普拉斯变换,简称拉氏变换,就是其中的一种。
一、拉氏变换的定义已知时域函数,如果满足相应的收敛条件,可以定义其拉氏变换为(2-45)式中,称为原函数,称为象函数,变量为复变量,表示为(2-46)因为是复自变量的函数,所以是复变函数。
有时,拉氏变换还经常写为(2-47)拉氏变换有其逆运算,称为拉氏反变换,表示为(2-48)上式为复变函数积分,积分围线为由到的闭曲线。
二、常用信号的拉氏变换系统分析中常用的时域信号有脉冲信号、阶跃信号、正弦信号等。
现复习一些基本时域信号拉氏变换的求取。
(1)单位脉冲信号理想单位脉冲信号的数学表达式为(2-49)且(2-50)所以(2-51)说明:单位脉冲函数可以通过极限方法得到。
设单个方波脉冲如图2-13所示,脉冲的宽度为,脉冲的高度为,面积为1。
当保持面积不变,方波脉冲的宽度趋于无穷小时,高度趋于无穷大,单个方波脉冲演变成理想的单位脉冲函数。
在坐标图上经常将单位脉冲函数表示成单位高度的带有箭头的线段。
由单位脉冲函数的定义可知,其面积积分的上下限是从到的。
因此在求它的拉氏变换时,拉氏变换的积分下限也必须是。
由此,特别指明拉氏变换定义式中的积分下限是,是有实际意义的。
所以,关于拉氏变换的积分下限根据应用的实际情况有,,三种情况。
为不丢掉信号中位于处可能存在的脉冲函数,积分下限应该为。
(2)单位阶跃信号单位阶跃信号的数学表示为(2-52)又经常写为(2-53)由拉氏变换的定义式,求得拉氏变换为(2-54)因为阶跃信号的导数在处有脉冲函数存在,所以单位阶跃信号的拉氏变换,其积分下限规定为。
(3)单位斜坡信号单位斜坡信号的数学表示为(2-55)图2-15单位斜坡信号另外,为了表示信号的起始时刻,有时也经常写为(2-56)为了得到单位斜坡信号的拉氏变换,利用分部积分公式得(2-57)(4)指数信号指数信号的数学表示为(2-58)拉氏变换为(2-59)(5)正弦、余弦信号正弦、余弦信号的拉氏变换可以利用指数信号的拉氏变换求得。
用拉氏变换法解线性微分方程一 基本定义若函数f(t),t 为实变量,线积分∫ f(t)e -st dt (s 为复变量)存在,则称其为f(t)的拉氏变换,记为F(s)或£[f(t)],即F(s)=£[f(t)]=∫ f(t)e -st dt常称:F(s)→f(t)的象函数;f(t) →F(s)的原函数。
二 基本思路用拉氏变换解线性微分方程,可将经典数学中的微积分运算转化成代数运算三 典型函数的拉氏变换 1、单位阶跃函数f(t)=1(t)= 1 t ≧0t <0F(s)=£[f(t)]= ∫ f(t)e -st dt =∫ 1 e -st dt =1/s2、单位斜坡函数 f(t)= t 1(t) = t t ≥00 t <0F(s)=£[f(t)]= ∫ t e -st dt =1/s ²3、等加速度函数∞0 ∞∞∞ 0∞f(t) = 1/2 t ² t ≥0 0t <0F(s) = ∫ 1/2 t ² e -st dt = 1/s ³4、指数函数t ≥0 t <0F(s)= ∫ 1/2 t ² e -stdt =1 / (s-α)5、正弦函数f(t)= sinwt t ≥0 0 t <0F(s) =∫sinwt e -st dt = w/(s ²+w ²) 四 拉氏变换的几个法则对于一些简单原函数,可根据拉氏变换定义求象,但对于较复杂的原函数,必须用到下面几个定理求取其象函数:1、线性定理若:£[f 1(t)]=F 1(s) , £[f 2(t)]=F 2(s) (a 、b 为常数) 则 £[a f 1(t) + b f 2(t)] = aF 1(s) + bF 2(s)2、微分定理若:£[f(t)]=F(s)则 £[d ⁿf(t)/dt ⁿ]=s ⁿF(s) - ∑s n-i-1 f (i) (0)式中f (i) (0)为f(t)及其各阶导数在t=0时的值∞∞∞n-1i=0若 f (i) (0) = 0 (a=1,2,…n )则 £[d ⁿf(t)/dt ⁿ] =s ⁿF(s)3、积分定理若:£[f(t)]=F(s) , 在零初始条件下: 则 £[∫…∫f(t)dt ⁿ]=1/s ⁿ F(s)4、位移定理(延时定理) 若:£[f(t)]=F(s)则 时域:£[f(t-t 0)1(t-t 0)] = F(s)eS 域:£[f(t)e ] = F(s+α)5、初值与终值定理若:£[f(t)] = F(s) ,且f(t)的拉氏变换存在, 则 f(0)=limf(t) = lim s F(s)f(∞)=limf(t)=lim sF(s)例:求阶跃函数 f(t)=A 1(t) 的象函数 解:F(s)= £[A 1(t)]= A £[1(t)]=A 1/s例:求脉冲函数δ(t) 的象函数 解: ∵δ(t) = d1(t)/dt∴应用微分定理(初零)得: F (s )= £[d1(t)/dt] = sF(s) =s 1/s = 1-αt-st o-αtt →0t →∞s →∞s →0例:求f(t) = e sinwt 的拉氏变换 解:应用位移定理,F (s )= £ [e sinwt] = w/[(s+α)²+w ²] 五 拉普拉斯反变换定义:若£-¹[F(s)] = f(t) = 1/(2πj )∫ F(s)e dt ,则称上式为F(s)的拉氏反变换。
拉普拉斯变换的应用拉普拉斯变换的实际应用拉普拉斯变换的实际应用在工程学上的应用应用拉普拉斯变换解常变量齐次微分方程,可以将微分方程化为代数方程,使问题得以解决。
在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s域)上来表示;在线性系统,控制自动化上都有广泛的应用。
拉氏变换在微分方程(组)初值问题中的应用1.1 利用拉氏变换解常系数线性微分方程的初值问题例1 求初值问题Y”一2y +2y=e~,y(O)=0,Y (0)=1.例2求解初值问题用拉氏变换求常系数线性微分方程(组),是把关于Y(t)的微分方程(组)转化成关于象函数l,(s)的代数方程,从而容易确定l,(s).从象函数l,(s)求其拉氏逆变换即得原函数Y(t).由于在求解过程中同时利用了初值条件,因此用拉氏变换求得的解是初值问题的解.如果把初值视为任意常数,则用拉氏变换求得的解就是通解.2 利用拉氏变换求积分方程用拉氏变换求解相关问题既方便又简洁.答案补充:应用拉普拉斯变换分析RLC电路,不需要确定积分常数拉普拉斯变换的数值逆在偏微分方程中的应用ut(t,x)-∫0^t(t-s)^-1/2uxx(s,x)ds=f(t,x)的数值解。
该方法选择适当的n可以达到相当高的精度。
用拉氏变换引入网络函数的概念,网络函数是分析电路正弦稳态响应的工具,最后,希望以系统的方式将电路的时域特性与频域特性联系起来,拉氏变换加深对电路功能的理解。
答案补充拉氏反变换:有理真分式、有理假分式、部分分式展开法、具有独立实根的有理真分式的拉氏反变换、具有共轭复根的有理真分式的拉氏反变换、具有实重根的有理真分式的拉氏反变换、具有多重复根的有理真分式的拉氏反变换、假分式的拉氏反变换(为一个多项式和有理真分式之和,然后分别求其拉氏反变换)、F(s)的零点极点、初值定理和终值定理、初值定理终值定理的应用。
s域电路分析拉氏变换用于电路分析具有两个特点:第一,拉氏变换将线性常系数微分方程转化为容易处理的线性多项式方程,第二,拉氏变换将电流和电压变量的初始值自动引入到多项式方程中,这样在变换处理过程中,初始条件就成为变换的一部分。
拉氏变换什么是拉氏变换拉氏变换(Laplace Transform)是一种将函数从时间域转换到复频域的数学工具。
它在工程学科和物理学中有广泛的应用,特别是在控制系统分析和信号处理领域。
拉氏变换通过积分运算将一个函数从时间域(t-domain)变换到频域(s-domain),其中s是一个复变量。
拉氏变换的定义给定一个函数f(t),其拉氏变换F(s)定义为:F(s) = L{f(t)} = ∫[0, ∞] e^(-st) f(t) dt这里,s是复变量,e是自然对数的底数,t表示时间。
拉氏变换的性质拉氏变换具有许多有用的性质,以下是一些常见的性质:1.线性性质:L{af(t) + bg(t)} = aF(s) + bG(s),其中a和b是常数。
2.移位性质:L{f(t - a)} = e^(-as)F(s),其中a是常数。
3.初值定理:lim_[s→∞] sF(s) = f(0),其中f(0)是函数f(t)在t=0时的初值。
4.终值定理:lim_[s→0] sF(s) = lim_[t→∞] f(t),即函数f(t)在t→∞时的极限等于F(s)在s=0时的极限。
这些性质使得拉氏变换成为了解决微分方程问题以及计算复杂电路的有效工具。
拉氏变换的应用1. 信号处理在信号处理领域,拉氏变换用于分析和处理连续时间信号。
通过将信号从时间域转换到频域,可以更好地理解信号的频谱特性,并进行滤波、降噪、调制等处理。
2. 控制系统在控制系统分析中,拉氏变换被广泛用于研究和设计控制系统的性能和稳定性。
通过将控制系统表示为拉氏域的传输函数,可以方便地进行频率响应、稳定性分析和控制器设计。
3. 电路分析在电路分析中,拉氏变换用于求解电路的幅频特性、相频特性和传输函数。
通过将电路中的电压和电流转换到拉氏域,可以更方便地进行复杂电路的分析和计算。
4. 信号传输拉氏变换在信号传输中的应用非常广泛。
信号的拉氏变换可以帮助我们理解信号在传输过程中的衰减、失真和干扰等问题,从而优化信号传输的方案。