胡克定律
- 格式:ppt
- 大小:956.00 KB
- 文档页数:10
胡克定律的定义胡克定律Hooke's law,又译为虎克定律,是力学弹性理论中的一条基本定律,表述为:固体材料受力之后,材料中的应力与应变单位变形量之间成线性关系。
满足胡克定律的材料称为线弹性或胡克型英文Hookean材料。
从物理的角度看,胡克定律源于多数固体或孤立分子内部的原子在无外载作用下处于稳定平衡的状态。
许多实际材料,如一根长度为L、横截面积A的棱柱形棒,在力学上都可以用胡克定律来模拟——其单位伸长或缩减量应变在常系数E称为弹性模量下,与拉或压应力σ成正比例,即:F=-k·x或△F=-k·Δx。
其中为总伸长或缩减量。
胡克定律用17世纪英国物理学家罗伯特·胡克的名字命名。
胡克提出该定律的过程颇有趣味,他于1676年发表了一句拉丁语字谜,谜面是:ceiiinosssttuv。
两年后他公布了谜底是:ut tensio sic vis,意思是“力如伸长那样变化”,这正是胡克定律的中心内容。
胡克定律的表达式为F=k·x或△F=k·Δx,其中 k是常数,是物体的劲度倔强系数。
在国际单位制中, F的单位是牛,x的单位是米,它是形变量弹性形变, k的单位是牛/米。
劲度系数在数值上等于弹簧伸长或缩短单位长度时的弹力。
弹性定律是胡克最重要的发现之一,也是力学最重要基本定律之一。
在现代,仍然是物理学的重要基本理论。
胡克的弹性定律指出:弹簧在发生弹性形变时,弹簧的弹力Ff和弹簧的伸长量或压缩量x成正比,即F= -k·x 。
k是物质的弹性系数,它由材料的性质所决定,负号表示弹簧所产生的弹力与其伸长或压缩的方向相反。
为了证实这一定律,胡克还做了大量实验,制作了各种材料构成的各种形状的弹性体。
满足胡克定律的弹性体是一个重要的物理理论模型,它是对现实世界中复杂的非线性本构关系的线性简化,而实践又证明了它在一定程度上是有效的。
然而现实中也存在这大量不满足胡克定律的实例。
力学基本定律之一胡克定律胡克定律是力学基本定律之一。
适用于一切固体材料的弹性定律,它指出:在弹性限度内,物体的形变跟引起形变的外力成正比。
这个定律是英国科学家胡克发现的,所以叫做胡克定律。
胡克定律的表达式为F=-kx或△F=-kΔx,其中k是常数,是物体的劲度(倔强)系数。
在国际单位制中,F的单位是牛,x的单位是米,它是形变量(弹性形变),k的单位是牛/米。
倔强系数在数值上等于弹簧伸长(或缩短)单位长度时的弹力。
弹性定律是胡克最重要的发现之一,也是力学最重要基本定律之一。
在现代,仍然是物理学的重要基本理论。
胡克的弹性定律指出:弹簧在发生弹性形变时,弹簧的弹力Ff和弹簧的伸长量(或压缩量)x成正比,即F= -kx。
k是物质的弹性系数,它由材料的性质所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反。
为了证实这一定律,胡克还做了大量实验,制作了各种材料构成的各种形状的弹性体。
胡克定律Hook's law材料力学和弹性力学的基本规律之一。
由R.胡克于1678年提出而得名。
胡克定律的内容为:在材料的线弹性范围内,固体的单向拉伸变形与所受的外力成正比;也可表述为:在应力低于比例极限的情况下,固体中的应力σ与应变ε成正比,即σ=Εε,式中E为常数,称为弹性模量或杨氏模量。
把胡克定律推广应用于三向应力和应变状态,则可得到广义胡克定律。
胡克定律为弹性力学的发展奠定了基础。
各向同性材料的广义胡克定律有两种常用的数学形式:σ11=λ(ε11+ε22+ε33)+2Gε11,σ23=2Gε23,σ22=λ(ε11+ε22+ε33)+2Gε22,σ31=2Gε31,(1)σ33=λ(ε11+ε22+ε33)+2Gε33,σ12=2Gε12,及式中σij为应力分量;εij为应变分量(i,j=1,2,3);λ和G为拉梅常量,G又称剪切模量;E为弹性模量(或杨氏模量);v为泊松比。
λ、G、E和v之间存在下列联系:式(1)适用于已知应变求应力的问题,式(2)适用于已知应力求应变的问题。
、胡克定律: F = Kx (x为伸长量或压缩量,K为倔强系数,只与弹簧的原长、粗细和材料有关)2、重力:G = mg (g随高度、纬度而变化)力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离)5、摩擦力的公式:(1 ) 滑动摩擦力:f=μN说明:a、N为接触面间的弹力,可以大于G;也可以等于G;也可以小于G 为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面μb、积大小、接触面相对运动快慢以及正压力N无关.(2 ) 静摩擦力:由物体的平衡条件或牛顿第二定律求解,与正压力无关.fm (fm为最大静摩擦力,与正压力有关)≤ f静≤大小范围:O说明:a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。
b、摩擦力可以作正功,也可以作负功,还可以不作功。
c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。
d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。
Vg (注意单位)ρ6、浮力:F=7、万有引力:F=GmM/r²(1).适用条件(2) .G为万有引力恒量(3) .在天体上的应用:(M一天体质量R一天体半径g一天体表面重力加速度)a 、万有引力=向心力Gb、在地球表面附近,重力=万有引力mg=GmM/r²c、第一宇宙速度mg = m V=8、库仑力:F=K (适用条件)9、电场力:F=qE (F 与电场强度的方向可以相同,也可以相反)10、磁场力:(1)洛仑兹力:磁场对运动电荷的作用力。
V) 方向一左手定⊥公式:f=BqV (B(2)安培力:磁场对电流的作用力。
I)方向一左手定则⊥公式:F= BIL (BFy = m ay∑Fx = m ax ∑11、牛顿第二定律:F合= ma 或者理解:(1)矢量性(2)瞬时性(3)独立性(4)同一性12、匀变速直线运动:基本规律:Vt = V0 + a t S = vo t + a t2几个重要推论:(1) Vt2 -V02 = 2as (匀加速直线运动:a为正值匀减速直线运动:a为正值)(2) A B段中间时刻的即时速度:Vt/ 2 = = A S a t B(3) AB段位移中点的即时速度:Vs/2 =匀速:Vt/2 =Vs/2 ; 匀加速或匀减速直线运动:Vt/2 <Vs/2(4) 初速为零的匀加速直线运动,在1s 、2s、3s¬……ns内的位移之比为12:22:32……n2;在第1s 内、第2s内、第3s内……第ns内的位移之比为1:3:5…… (2n-1); 在第1米内、第2米内、第3米内……第n米内的时间之比为1::……((5) 初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位s = aT2 (a一匀变速直线运动的加速度T一每个时间间隔的时间)∆移之差为一常数:13、竖直上抛运动:上升过程是匀减速直线运动,下落过程是匀加速直线运动。
弹性力学中的胡克定律弹性力学是力学中的一个重要分支,研究材料在受力时的变形和恢复过程。
胡克定律(Hooke's law)是弹性力学的基本定律之一,被广泛应用于力学、工程、材料科学等领域。
本文将重点探讨弹性力学中的胡克定律,并讨论其应用和局限性。
一、胡克定律的基本原理胡克定律是由英国科学家罗伯特·胡克在17世纪末提出的。
它表明,在弹性变形的范围内,物体受力时产生的变形与受力大小成正比。
简单来说,胡克定律可以表示为:F = kx其中,F代表受力的大小,k表示弹性系数或刚度,x表示物体的变形。
胡克定律的基本原理可以通过实验验证。
例如,当我们用手指捏取一根弹簧,拉伸它时,可以观察到弹簧的长度发生了变化。
根据胡克定律,当我们施加的拉力越大,弹簧的伸长量也会越大,两者成正比关系。
二、胡克定律的应用胡克定律的应用非常广泛。
在工程领域中,胡克定律常用于计算弹性材料的变形和应力分布。
例如,结构工程师使用胡克定律来确定桥梁、建筑物等承重结构在受力时的变形情况,以确保其在正常使用条件下的安全性。
同时,在材料科学中,胡克定律也被用于确定弹性常数(如弹性模量、剪切模量等)的测量方法。
通过在实验条件下施加一定的力量,测量物体的变形,我们可以根据胡克定律得出与材料性质相关的弹性常数。
这对于材料研究和工程设计非常重要。
胡克定律也在其他领域有着重要的应用。
例如,生物力学研究中,胡克定律被用于分析骨骼和肌肉的弹性特性,探究人体运动机理。
此外,胡克定律还被广泛应用于弹性体力学、声学、光学等领域。
三、胡克定律的局限性虽然胡克定律具有重要的应用价值,但也存在一定的局限性。
首先,胡克定律只适用于小应变范围内。
当受力超过一定程度时,物体可能会出现非弹性变形,无法使用胡克定律进行准确预测。
其次,胡克定律对于不同材料的适用性有一定限制。
不同的材料具有不同的弹性行为,某些材料可能不符合胡克定律的假设条件。
因此,在实际应用中,我们需要根据具体的材料性质和受力情况来选择合适的力学模型。
胡克定律定义胡克定律,也叫作虎克定律,是力学弹性理论中的一条基本定律,表述为:在弹性限度内,弹簧的弹力f和弹簧的劲度系数k、弹簧的形变量x(伸长量或压缩量)成正比,k是自然界的恒定的常量,但与其他因素无关,只是与弹簧本身有关。
该定律是英国科学家罗伯特·胡克于1678年发现的。
胡克定律的内容在弹性限度内,弹簧的弹力f和弹簧的劲度系数k、弹簧的形变量x(伸长量或压缩量)成正比,k是自然界的恒定的常量。
表达式为:F=kx。
其中,F为弹力大小,k为劲度系数,x为弹簧形变量。
胡克定律的适用范围1. 胡克定律是静力学的初级定律,适用于形状规则、密度均匀的弹性体。
2. 胡克定律不适用于粘性物质、非弹性体、气体及非均质体。
3. 胡克定律中的形变量包括膨胀和收缩形变。
4. 在弹性限度内,弹性体的形变才满足胡克定律。
5. 弹性体的弹力与形变量成正比,这是物理学的基本规律之一。
6. 胡克定律在建筑领域、机械制造领域和材料科学领域都有广泛的应用。
7. 胡克定律不适用于具有复杂应力的弹性体,例如旋转弯曲、拉伸压缩等复杂形变的情况。
8. 在温度变化时,胡克定律也不适用。
9. 胡克定律是线弹性力学的三大基本定律之一,另外两个是能量守恒定律和动量守恒定律。
10. 在原子物理学中,胡克定律不适用,因为原子之间的作用力不受距离的变化而变化。
11. 在生物学中,细胞膜的弹性和张力与胡克定律不完全相符,因为细胞膜的弹性和张力与多种因素有关,包括膜的厚度、蛋白质的数量和分布等。
12. 在地球物理学中,地壳的弹性与胡克定律也有所不同,因为地壳的弹性受到地壳的厚度、密度和构造等因素的影响。
13. 在气象学中,大气压力的变化与胡克定律不完全相符,因为大气压力的变化受到温度、湿度和气候变化等多种因素的影响。
14. 在爆炸力学中,爆炸产生的冲击波和应力波与胡克定律也不相符,因为爆炸产生的应力波具有瞬时性和极大的冲击力。
15. 在材料科学中,材料的疲劳强度和寿命与胡克定律不完全相符,因为材料的疲劳强度和寿命受到多种因素的影响,包括材料的质量、加工工艺和使用环境等。
胡克定律的应用范围
胡克定律是力学基本定律之一,其表达式为 F=-kx,其中 F 为弹簧的弹力,k 为弹簧的劲度系数,x 为弹簧的形变量。
该定律的应用范围非常广泛,主要包括以下几个方面:
1. 弹簧的设计和制造:胡克定律是弹簧设计和制造的基础。
根据胡克定律,可以计算出弹簧的劲度系数和形变量,从而设计出符合要求的弹簧。
2. 机械振动:胡克定律可以用来描述机械振动中的弹簧振子的运动。
根据胡克定律,可以计算出弹簧振子的振动频率和振幅,从而研究机械振动的规律。
3. 弹性材料的研究:胡克定律可以用来研究弹性材料的力学性质。
通过测量弹性材料的形变量和所受的力,可以计算出材料的弹性模量和泊松比等参数。
4. 工程设计:胡克定律可以用来设计各种机械结构,如弹簧、减震器、悬挂系统等。
根据胡克定律,可以计算出这些结构的弹性变形和所受的力,从而保证设计的合理性和安全性。
5. 地质力学:胡克定律可以用来研究地质力学中的问题,如地壳运动、地震等。
根据胡克定律,可以计算出地壳的弹性变形和所受的力,从而研究地质力学的规律。
总之,胡克定律是力学中非常重要的基本定律之一,其应用范围非常广泛,涉及到机械、材料、工程、地质等多个领域。
胡克定律是什么
胡克定律是力学中一个重要的定律,又称为“弹性定律”。
它描述了物体在受到外力作用下,会发生多大的形变,以及对应的恢复力有多大。
胡克定律的公式为F=kx,其中F是恢复力,k称为弹性系数,x是形变量。
按照胡克定律,当物体受到外力作用时,会发生弹性形变。
这种形变是可逆的,也就是说,一旦外力停止作用,物体就会恢复到原来的形状。
恢复的力大小跟形变量成正比,而弹性系数则是一个常数,反映了物体的特性。
弹簧是一个很好地符合胡克定律的物体。
当我们把一个弹簧拉伸或压缩时,它就会变形。
变形跟拉伸或压缩的程度成正比,而恢复力也跟变形量成正比。
弹簧的弹性系数跟它的材料、截面积、长度等因素有关,可以通过实验测定。
除了弹簧以外,胡克定律还可以应用于很多其他物体。
例如,我们可以用胡克定律来描述物体在受到应力时的形变,或者竖直
弹簧系统的振动。
这些应用都基于胡克定律的基本原理:恢复力跟形变量成正比。
总之,胡克定律是一个非常基本、重要的定律,已经被广泛地应用于力学、材料科学、物理学和工程学等领域。
它不仅可以帮助我们预测物体在受到力作用时的变形与恢复,还可以用来设计和优化各种材料和结构。
因此,掌握胡克定律的基本原理和应用是非常有必要的。
胡克定律
胡克定律,也称胡克-警告定律或警告-胡克定律,是描述心理学中一种人类行为规律的理论。
该理论由心理学家胡克(Robert E. Hoke)和警告(Sidney L. Pressey)共同提出,即“满意度与期望值之间的差距决定了个体行为的强度”。
具体而言,当个体感受到自己的期望值与现实结果之间的差距较小时,其满意度较高,因此其行为表现也相对较为轻松、安逸;而当个体感受到期望值与现实结果之间的差距较大时,其满意度降低,从而表现出更强烈的行为表现以填补这一差距。
例如,如果一位学生期望在一次考试中得到优秀的成绩,但最终得分并不高,他的满意度降低,可能会更努力地学习以填补这一成绩差距。
相反,如果他的得分已经超过了期望值,他的满意度则会提高,从而在学习上更加放松。
胡克定律在心理学和营销学等领域有着重要的应用。
在营销学中,基于胡克定律的规律,营销人员可以根据消费者的期望值设计适当的促销活动,以满足他们的期望值,从而提高满意度。
在心理学中,胡克定律的原理被广泛用于研究个体行为的动机,以及心理干预的有效性。
总体而言,胡克定律提供了一种描述人类行为规律的理论,随着心理学和营销学领域的不断发展,对其的实际应用也会越来越广泛。
胡克定律科技名词定义中文名称:胡克定律英文名称:Hooke's law定义:材料在弹性变形范围内,力与变形成正比的规律。
应用学科:水利科技(一级学科);工程力学、工程结构、建筑材料(二级学科);工程力学(水利)(三级学科)胡克定律是力学基本定律之一。
适用于一切固体材料的弹性定律,它指出:在弹性限度内,物体的形变跟引起形变的外力成正比。
这个定律是英国科学家胡克发现的,所以叫做胡克定律。
目录弹性力学的基本规律之一。
由R.胡克于英国力学家胡克无关,因此函数 f 1 对应变的一阶偏导数为常数。
因此应力应变的一般关系表达式可以简化为上述关系式是胡克(Hooke)定律在复杂应力条件下的推广,因此又称作广义胡克定律。
广义胡克定律中的系数Cmn(m,n=1,2,…,6)称为弹性常数,一共有36个。
如果物体是非均匀材料构成的,物体内各点受力后将有不同的弹性效应,因此一般的讲,Cmn 是坐标x,y,z的函数。
但是如果物体是由均匀材料构成的,那么物体内部各点,如果受同样的应力,将有相同的应变;反之,物体内各点如果有相同的应变,必承受同样的应力。
这一条件反映在广义胡克定理上,就是Cmn 为弹性常数。
胡克的弹性定律指出:在弹性限度内,弹簧的弹力f和弹簧的长度x 成正比,即f= -kx。
k是物质的弹性系数,它由材料的性质所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反。
弹簧的串并联问题串联:劲度系数关系1/k=1/k1+1/k2并联:劲度系数关系k=k1+k2注:弹簧越串越软,越并越硬郑玄-胡克定律它是由英国力学家胡克(Robert Hooke, 1635-1703) 于1678年发现的,实际上早于他1500年前,东汉的经学家和教育家郑玄(公元127-200)为《考工记〃马人》一文的“量其力,有三钧”一句作注解中写到:“假设弓力胜三石,引之中三尺,驰其弦,以绳缓擐之,每加物一石,则张一尺。
”以正确地提示了力与形变成正比的关系,郑玄的发现要比胡克要早一千五百年.因此胡克定律应称之为“郑玄——胡克定律.”胡克定律的公式胡克定律在弹性限度内,弹簧的弹力和弹簧的形变量(伸长或压缩值)成正比。
胡克定律三个表达形式
1. F = kx:这是胡克定律最常见的表达形式,其中F代表弹簧的弹力,k代表弹簧的弹性系数,x代表弹簧的伸长或压缩的长度。
2. F = -kx:这是胡克定律的另一种常见的表达形式,其中F代表弹簧的弹力,k代表弹簧的弹性系数,x代表弹簧的伸长或压缩的长度。
与第一种表达形式不同的是,这里的负号表示弹力的方向与伸长或压缩的方向相反。
3. F = kΔx:这是胡克定律的一种更一般的表达形式,其中F代表弹簧的弹力,k代表弹簧的弹性系数,Δx代表弹簧的伸长或压缩的长度的变化量。
这种表达形式适用于描述弹簧的非线性变形情况,即弹簧的弹性系数k可能随着伸长或压缩的长度的变化而变化。
弹性力学中的胡克定律解析在物理学的领域中,弹性力学是研究材料在受力后能够恢复其原始形状和大小的科学原理。
而胡克定律是弹性力学中最基础且常见的定律之一。
胡克定律描述了弹性体的力学行为,为我们理解和解释弹性体力学性质的变化提供了重要的理论基础。
胡克定律是以十七世纪的著名科学家罗伯特·胡克(Robert Hooke)的名字命名的。
这个定律指出,当一个物体受到一个外力作用时,它会发生形变。
根据胡克定律,物体的形变与外力的大小成正比,与物体的弹性系数成反比。
具体而言,胡克定律可以用如下的公式表示:F = -kx其中,F表示外力的大小,k表示弹性系数,x表示物体的形变。
符号“-”表示物体受力与形变方向相反。
通过胡克定律,我们可以推导出一些有趣的结论。
首先,根据胡克定律的公式,当外力为零时,物体的形变也为零。
也就是说,当外力作用于物体上时,物体会变形,但是当外力消失时,物体会恢复到原始的形状和大小。
其次,胡克定律还告诉我们,外力越大,物体的形变也越大。
这是因为外力的大小与物体受力大小成正比,而物体的形变与外力的大小成正比。
所以,当外力增加时,物体的形变也会增加。
另外,通过胡克定律,我们可以计算物体的劲度和弹性势能。
对于一个弹性体,其劲度是指单位形变所需要的外力大小。
根据胡克定律,劲度可以通过弹性系数k来计算,即劲度等于弹性系数乘以形变大小。
同样地,弹性体的弹性势能是指由于形变所存储的能量。
通过胡克定律,我们可以将弹性势能表示为弹性系数和形变大小的平方的乘积。
这表明了弹性体的弹性势能与形变程度成正比。
胡克定律在工程学、物理学和材料科学中有着广泛的应用。
例如,在建筑设计中,胡克定律可以用来分析建筑物的结构和材料的稳定性。
在机械工程中,胡克定律可以用来设计弹簧和悬挂系统。
在材料科学中,胡克定律可以用来研究材料的力学性能和行为。
尽管胡克定律在弹性力学中无处不在,但实际应用中存在一些限制。
首先,胡克定律只适用于小形变的系统。
胡克定律公式举例胡克定律(Hooke's Law)是描述弹簧弹性变形的力学定律,它指出,弹性体的变形量与作用在其上的恢复力成正比。
以下是10个符合要求的例子:1. 弹簧拉伸:当我们用力拉伸一根弹簧时,根据胡克定律,弹簧的伸长量与施加的拉力成正比。
2. 弹簧压缩:同样地,当我们用力压缩一根弹簧时,胡克定律也适用,弹簧的压缩量与施加的压力成正比。
3. 弹簧振动:当弹簧被拉伸或压缩后释放,它会产生振动。
胡克定律描述了弹簧振动的特性,振动频率与弹簧的劲度系数和质量有关。
4. 弹簧秤:弹簧秤是一种常见的测量重量的工具。
胡克定律被应用于弹簧秤的设计中,通过测量弹簧的伸缩量来确定物体的重量。
5. 悬挂吊车:悬挂吊车使用了胡克定律的原理。
吊车上的钢索被拉伸以支撑物体的重量,根据胡克定律,钢索的伸长量与物体的重量成正比。
6. 弹簧悬挂系统:许多车辆和交通工具使用弹簧悬挂系统来提供舒适的乘坐体验。
胡克定律用于设计和调整弹簧的刚度,以使悬挂系统能够承受不同道路条件下的冲击力。
7. 弹簧床垫:弹簧床垫使用了胡克定律的原理。
当我们躺在床垫上时,床垫中的弹簧会根据我们的体重产生不同程度的压缩,以提供舒适的支撑。
8. 弹力球:弹力球是一种玩具,它利用了胡克定律的原理。
当我们挤压弹力球时,球体会产生变形,胡克定律描述了球体恢复原状的力量。
9. 弹簧门闩:弹簧门闩是一种常见的锁具。
弹簧门闩的设计使用了胡克定律,门闩的弹性变形与施加在其上的力量成正比,以保持门的牢固关闭。
10. 弹簧挂钟:弹簧挂钟使用了胡克定律来驱动钟摆的摆动。
胡克定律描述了弹簧的恢复力与钟摆的摆动频率成正比,从而实现了准确的时间测量。
通过以上例子,我们可以看到胡克定律在日常生活和工程应用中的广泛应用。
胡克定律不仅帮助我们理解弹簧的力学性质,还为各种设计和测量提供了基础。
了解胡克定律的应用可以帮助我们更好地理解和解决与弹性变形相关的问题。
1、 胡克定律: F = Kx (x 为伸长量或压缩量,K 为倔强系数,只与弹簧的原长、粗细和材料有关)2、 重力: G = mg (g 随高度、纬度、地质结构而变化)3 、求F 1、F 2两个共点力的合力的公式:F=θCOS F F F F 2122212++注意:(1) 力的合成和分解都均遵从平行四边行法则。
(2) 两个力的合力范围: ⎥ F 1-F 2 ⎥ ≤ F ≤ F 1 +F 2(3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。
5、摩擦力的公式: (1 ) 滑动摩擦力: f= μFn说明 : a 、Fn 为接触面间的弹力,可以大于G ;也可以等于G;也可以小于Gb 、 μ为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N 无关.(2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关.大小范围: O ≤ f 静≤ f m (f m 为最大静摩擦力,与正压力有关)说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一 定 夹角。
b 、摩擦力可以作正功,也可以作负功,还可以不作功。
c 、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。
d 、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。
12、匀变速直线运动:加速度是描述速度变化快慢的物理量,它等于速度变化量跟发生这一变化量所用时间的比值,定义式是a =Δv /Δt=(v t -v 0)/Δt ,加速度是矢量,其方向与速度变化量的方向相同,与速度的方向无关。
基本规律: V t = V 0 + a t S = v o t +12a t 2几个重要推论: (1) V t 2 - V 02 = 2as (匀加速直线运动:a 为正值 匀减速直线运动:a 为正值)(2) A B 段中间时刻的即时速度: V t/ 2 =V V t 02+=s t (3)AB 段位移中点的即时速度: V s/2 = v v o t 222+ 匀速:V t/2 =V s/2 ; 匀加速或匀减速直线运动:V t/2 <V s/2(4) 初速为零的匀加速直线运动,在1s 、2s 、3s ……ns 内的位移之比为12:22:32 ……n 2; 在第1s 内、第 2s 内、第3s 内……第ns 内的位移之比为1:3:5…… (2n-1); 在第1米内、第2米内、第3米内……第n 米内的时间之比为1:()21-: 32-)……(n n --1)(5) 初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:Xn-Xn-1 = aT 2 (a 一匀变速直线运动的加速度 T 一每个时间间隔的1时间)13、 竖直上抛运动: 上升过程是匀减速直线运动,下落过程是匀加速直线运动。
胡克定律形变量方向1. 胡克定律简介胡克定律是描述弹性变形的基本定律之一,它表明弹性体在受到外力作用时,会产生与外力成正比的形变。
这一定律由英国物理学家罗伯特·胡克于17世纪提出,被广泛应用于材料力学和结构工程领域。
2. 胡克定律的数学表达式胡克定律的数学表达式为:F = k * ΔL其中,F为外力的大小,k为弹性系数,ΔL为弹性体的形变量。
根据胡克定律,当外力F作用于弹性体上时,弹性体会发生形变,形变量ΔL与外力F成正比,比例系数k即为弹性系数。
3. 形变量的方向在胡克定律中,形变量ΔL的方向与外力F的方向有密切关系。
根据胡克定律,当外力作用于弹性体时,弹性体会沿着外力的方向发生形变。
具体而言,当外力作用于弹性体上时,弹性体内部的原子、分子之间的相对位置会发生改变,从而导致弹性体的形变。
这种形变可以是拉伸形变、压缩形变或剪切形变。
•拉伸形变:当外力作用于弹性体上时,使弹性体沿着外力方向发生伸长形变,形变量ΔL的方向与外力F的方向相同。
•压缩形变:当外力作用于弹性体上时,使弹性体沿着外力方向发生压缩形变,形变量ΔL的方向与外力F的方向相反。
•剪切形变:当外力作用于弹性体上时,使弹性体内部的平行层次发生相对滑动,形变量ΔL的方向垂直于外力F的方向。
4. 弹性系数对形变量方向的影响弹性系数k是衡量材料抵抗形变的能力的物理量。
它反映了材料的刚度,弹性系数越大,材料的刚度越高,抵抗形变的能力越强。
根据胡克定律的数学表达式 F = k * ΔL,可以得出以下结论:•当外力F固定时,弹性系数k越大,形变量ΔL越小。
这意味着材料的刚度越高,形变量越小,弹性体对外力的变形能力越强。
•当形变量ΔL固定时,弹性系数k越大,外力F越大。
这意味着材料的刚度越高,需要施加更大的外力才能产生相同的形变量。
因此,弹性系数k的大小对形变量方向没有直接的影响,但它对形变量的大小和外力的大小有重要影响。
5. 胡克定律在工程中的应用胡克定律在工程领域有广泛的应用,特别是在材料力学和结构工程中。