力学变化量问题课件
- 格式:ppt
- 大小:122.00 KB
- 文档页数:16
§3.8力学量期望值随时间的变化 守恒定律一. 力学量的平均值随时间的变化关系力学量A 在ψ(x ,t)中的平均值为:*ˆ()(,)(,)A t x t Ax t dx ψψ=⎰ (3。
8.1) 因为ψ是时间的函数Â也可能显含时间,所以Ā通常是时间t 的函数。
为了求出Ā随时间的变化,(1)式两边对t 求导dA dt =***ˆˆˆA dx A dx A dx t t tψψψψψψ∂∂∂++∂∂∂⎰⎰⎰ (3.8.2) 由薛定谔方程ψψH t i ˆ=∂∂ ,⇒ ψψH i t ˆ1=∂∂ **)ˆ(1ψψH i t-=∂∂∴ ***ˆ11ˆˆˆˆ()()dA A dx H A dx A H dx dt t i i ψψψψψψ∂∴=-+∂⎰⎰⎰(3.8.3) ***ˆ1ˆˆˆˆ[]A dx AH dx HA dx t i ψψψψψψ∂=+-∂⎰⎰⎰ 因为Ĥ是厄密算符**ˆ1ˆˆˆˆ()A dx AH HA dx t i ψψψψ∂=+-∂⎰⎰ ˆ1ˆˆ[,]dA A A H dt t i ∂∴=+∂(3.8.6) 这就是力学量平均值随时间变化的公式。
若Â不显含t ,即ˆ0A t∂=∂,则有 1ˆˆ[,]dA A H dt i =(4) 如果Â既不显含时间,又与Ĥ对易([Â, Ĥ]=0),则由上式有0d A dt= (5) 即这种力学量在任何态ψ之下的平均值都不随时间改变。
证明:在任意态ψ下A 的概率分布也不随时间改变。
概括起来讲,对于Hamilton 量Ĥ不含时的量子体系,如果力学量A 与Ĥ对易,则无论体系处于什么状态(定态或非定态),A 的平均值及其测量的概率分布均不随时间改变。
所以把A 称为量子体系的一个守恒量。
即A 的平均值不随时间改变,我们称满足(5)式的力学量A 为运动恒量或守恒量。
守恒量有两个特点:(1). 在任何态ψ(t )之下的平均值都不随时间改变;(2). 在任意态ψ(t )下A 的概率分布不随时间改变。