绝对值导学案
- 格式:doc
- 大小:59.50 KB
- 文档页数:2
绝对值导学案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN22.3绝对值【学习目标】知识目标:借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两负数的大小。
能力目标:会通过学习绝对值的概念,应用绝对值解决实际问题,体会绝对值的意义,并进一步明确数学知识在实际生活中的用途。
情感目标:通过学习,积极参与数学学习活动,学会与人合作,与人交流。
【学习重点、难点】重点:绝对值的概念和求一个数的绝对值。
难点:绝对值概念的理解以及绝对值的非负性。
【使用说明及学法指导】【预习案】一、 知识链接:1、具有 、 、 的 叫做数轴。
2、3到原点的距离是 ,—5到原点的距离是 ,到原点的距离是6的数有 ,到原点距离是1的数有 。
3、2的相反数是 ,—3的相反数是 ,a 的相反数是 ,a —b 的相反数是 。
二、 自学指导(请安静的阅读并理解书本绝对值的类容,完成下面类容) 1. 自主学习:问题1、两位同学在书店O 处购买书籍后坐出租车回家,甲车向东行驶了10公里到达A 处,乙车向西行驶了10公里到达B 处。
若规定向东为正,则A处记做__________, B处记做__________。
(1) 请画出数轴,并在数轴上标出A 、B 的位置;(2) 这两辆出租车在行驶的过程中,有没有共同的地方在数轴上的A、B两点又有什么特征 (3)(3)在数轴上表示-5和5的点,它们到原点的距离分别是多少?表示- 34 和34 的点呢? 归纳:一般地,在数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作: 例如:4的绝对值记作 ,它表示在 上 到 的距离,所以| 4|= 。
同理:—6的绝对值记作 ,它表示在 上 到 的距离, 所以|—6|= 。
【探究案】2. 合作探究、展示点评1、请在小组内说出| 7|、∣—2.25∣、∣25-∣、∣0∣的意义及其值。
2、(1)|+2|= ,51= ,|+8.2|= ;(2)|0|= ;(3)|-3|= ,|-0.2|= ,|-8.2|= .归纳:把你所发现的规律写在下面,并在小组内验证是否正确。
2.4 绝对值学习目标:1.理解绝对值的概念及其几何意义;〔重点〕2.会求一个数的绝对值,会根据绝对值求对应的数;〔重点〕 3.了解绝对值的非负性,并能用其非负性解决相关问题.〔重点、难点〕自主学习一、知识链接1.a 的相反数表示为.2.在数轴上表示-5和5的点,它们到原点的距离分别是多少?表示-34 和34 的点呢? 二、新知预习〔预习课本P22-24〕填空并完成练习:1.在数轴上,表示一个数的点到叫做这个数的绝对值,用“〞表示.2.一个正数的绝对值是_;一个负数的绝对值是它的__;0的绝对值是.3.任何一个有理数的绝对值总是正数和0〔通常也称〕,即对有理数a ,总有|a|0. 练习:1.写出以下各数的绝对值. +4,-21,0,-5.1. 2.计算:〔1〕|-1|+|+3|; 〔2〕|-1.2|+|-0.7|.合作探究一、要点探究探究点1:绝对值的意义及求法【概念提出】在数轴上,表示一个数的点到叫做这个数的绝对值,用“〞表示. 问题1 分别写出3,0,-6的绝对值和到原点的距离,你发现了什么? 【要点归纳】一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是. 问题2 分别计算5和-5,3和-3,和的绝对值,你发现了什么? 【要点归纳】互为相反数的两个数的绝对值. 【典例精析】12,-53,,0.〔1〕|﹣0.25|; 〔2〕+|﹣3.14|; 〔3〕﹣|2.3|.【针对训练】化简:〔1〕﹣|+2.5|; 〔2〕-|﹣4|; 〔3〕|﹣〔﹣3〕|. 探究点2:绝对值的性质及应用思考1:观察这些数的绝对值,它们有什么共同点? |5|=5;|-10|=10;;|-5000|=5000;|0|=0……思考2: 假设字母a 表示一个有理数,你知道a 的绝对值等于什么吗? (1)当a >0时,|a |=;(2)当a<0时,|a|=;(3)当a=0时,|a|=.【要点归纳】任何一个有理数的绝对值总是正数和0〔通常也称〕.【典例精析】(1)绝对值等于0的数是;(2)绝对值等于的正数是_;(3)绝对值等于的负数是;2的数是_.|a|+|b|=0,求a,b的值.提示:由绝对值的性质可得|a|≥0,|b|≥0.【方法总结】几个非负数的和为0,那么这几个数都为0.二、课堂小结1.数轴上表示数a的点与原点的距离叫做数a的绝对值.2.绝对值的性质:(1)|a|≥0;(2)(0)||(0)0(0)a aa a aa>⎧⎪=-<⎨⎪=⎩当堂检测6.﹣|﹣2|=;|﹣〔﹣〕|=;|﹣〔+〕|=;﹣|﹣1|=.7.计算:〔1〕56-++; 〔2〕5.02.1---; 〔3〕535-⨯-. 参考答案自主学习一、知识链接1.-a2.解:-5和5到原点的距离均为5,-34 和34 到原点的距离都是34 . 二、新知预习1.原点的距离 | |2.它本身 相反数 03.非负数 ≥ 练习:1.解:它们的绝对值分别是4,21,0,5.1. 2.解:〔1〕原式=1+3=4; 〔2〕原式=1.2+0.7=1.9. 合作探究 二、要点探究探究点1:绝对值的意义及求法【概念提出】原点的距离 | | 〞表示. 【要点归纳】它本身 相反数 0 【要点归纳】相等 【典例精析】〔1〕|12|=12;〔2〕|﹣53|=53;〔3〕|﹣7.5|=;〔4〕|0|=0.解:〔1〕|﹣0.25|=;〔2〕+|﹣3.14|=;〔3〕﹣|2.3|=﹣.【针对训练】解:〔1〕﹣|+2.5|=﹣;〔2〕-|﹣4|=-4;〔3〕|﹣〔﹣3〕|=|3|=3. 探究点2:绝对值的性质及应用思考1:解:它们的绝对值都是正数或0. 思考2: (1)a (2)-a (3)0 【要点归纳】非负数 【典例精析】(2)5.25 (3)-5.25 (4)±2|a|≥0,|b|≥0,|a|+|b|=0,所以|a|=0,|b|=0,所以a=0,b=0. 当堂检测6.﹣2 ﹣17.解:〔1〕115656=+=-++;〔2〕7.05.02.15.02.1=-=---;〔3〕3535535=⨯=-⨯-. 第1课时 单项式与单项式、多项式相乘1.探索并了解单项式与单项式、单项式与多项式相乘的法那么,并运用它们进行运算.(重点)2.熟练应用运算法那么进行计算.(难点) 一、情境导入1.教师引导学生回忆幂的运算公式.学生积极举手答复:同底数幂的乘法公式:a m ·a n =a m +n(m ,n 为正整数).幂的乘方公式:(a m )n =a mn(m ,n 为正整数).积的乘方公式:(ab )n =a n b n(n 为正整数).2.教师肯定学生的答复,并引入课题——单项式与单项式、多项式相乘. 二、合作探究探究点一:单项式乘以单项式【类型一】 直接利用单项式乘以单项式法那么进行计算计算:(1)(-23a 2b )·(56ac 2);(2)(-12x 2y )3·3xy 2·(2xy 2)2;(3)-6m 2n ·(x -y )3·13mn 2(y -x )2.解析:运用幂的运算法那么和单项式乘以单项式的法那么计算即可. 解:(1)(-23a 2b )·(56ac 2)=-23×56a 3bc 2=-59a 3bc 2;(2)(-12x 2y )3·3xy 2·(2xy 2)2=-18x 6y 3×3xy 2×4x 2y 4=-32x 9y 9;(3)-6m 2n ·(x -y )3·13mn 2(y -x )2=-6×13m 3n 3(x -y )5=-2m 3n 3(x -y )5.方法总结:(1)在计算时,应先进行符号运算,积的系数等于各因式系数的积;(2)注意按顺序运算;(3)不要丢掉只在一个单项式里含有的字母因式;(4)此性质对于多个单项式相乘仍然成立.【类型二】 单项式乘以单项式与同类项的综合-2x 3m +1y 2n 与7x n -6y -3-m 的积与x 4y 是同类项,求m 2+n 的值.解析:根据-2x 3m +1y 2n 与7x n -6y -3-m 的积与x 4y 是同类项可得出关于m ,n 的方程组,进而求出m ,n 的值,即可得出答案.解:∵-2x3m +1y 2n与7x n -6y-3-m的积与x4y 是同类项,∴⎩⎪⎨⎪⎧3m +1+n -6=4,2n -3-m =1,解得:⎩⎪⎨⎪⎧m =2,n =3,∴m 2+n =7.方法总结:单项式乘以单项式就是把它们的系数和同底数幂分别相乘,结合同类项,列出二元一次方程组.【类型三】 单项式乘以单项式的实际应用有一块长为x m ,宽为y m 的矩形空地,现在要在这块地中规划一块长35x m ,宽34y m的矩形空地用于绿化,求绿化的面积和剩下的面积.解析:先求出长方形的面积,再求出矩形绿化的面积,两者相减即可求出剩下的面积.解:长方形的面积是xy m 2,矩形空地绿化的面积是35x ×34y =920xy (m)2,那么剩下的面积是xy -920xy =1120xy (m 2).方法总结:掌握长方形的面积公式和单项式乘单项式法那么是解题的关键. 探究点二:单项式乘以多项式【类型一】 直接利用单项式乘以多项式法那么进行计算计算: (1)(23ab 2-2ab )·12ab ;(2)-2x ·(12x 2y +3y -1).解析:先去括号,然后计算乘法,再合并同类项即可.解:(1)(23ab 2-2ab )·12ab =23ab 2·12ab -2ab ·12ab =13a 2b 3-a 2b 2;(2)-2x ·(12x 2y +3y -1)=-2x ·12x 2y +(-2x )·3y -(-2x )·1=-x 3y +(-6xy )-(-2x )=-x 3y -6xy +2x .方法总结:单项式与多项式相乘的运算法那么:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.【类型二】 单项式乘以多项式乘法的实际应用一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽(a +2b )米,坝高12a 米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?解析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法那么计算;(2)防洪堤坝的体积=梯形面积×坝长.解:(1)防洪堤坝的横断面积S =12[a +(a +2b )]×12a =14a (2a +2b )=12a 2+12ab .故防洪堤坝的横断面积为(12a 2+12ab )平方米;(2)堤坝的体积V =Sh =(12a 2+12ab )×100=50a 2+50ab .故这段防洪堤坝的体积是(50a2+50ab )立方米.方法总结:通过此题要知道梯形的面积公式及堤坝的体积(堤坝体积=梯形面积×长度)的计算方法,同时掌握单项式乘多项式的运算法那么是解题的关键.【类型三】 化简求值先化简,再求值:3a (2a 2-4a +3)-2a 2(3a +4),其中a =-2.解析:首先根据单项式与多项式相乘的法那么去掉括号,然后合并同类项,最后代入的数值计算即可.解:3a (2a 2-4a +3)-2a 2(3a +4)=6a 3-12a 2+9a -6a 3-8a 2=-20a 2+9a ,当a =-2时,原式=-20×4-9×2=-98.方法总结:在做乘法计算时,一定要注意单项式的符号和多项式中每一项的符号,不要搞错.【类型四】 单项式乘多项式,利用展开式中不含某一项求未知系数的值如果(-3x )2(x 2-2nx +23)的展开式中不含x 3项,求n 的值.解析:原式先算乘方,再利用单项式乘多项式法那么计算,根据结果不含x 3项,求出n 的值即可.解:(-3x )2(x 2-2nx +23)=(9x 2)(x 2-2nx +23)=9x 4-18nx 3+6x 2,由展开式中不含x3项,得到n =0.方法总结:单项式与多项式相乘,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.三、板书设计单项式与单项式、多项式相乘1.单项式与单项式相乘法那么:单项式与单项式相乘就是它们的系数、相同字母的幂分别相乘,对于只在一个单项式中出现的字母,那么连同它的指数一起作为积的一个因式.2.单项式与多项式相乘的法那么:单项式与多项式相乘,只要将单项式分别乘以多项式的每一项,再将所得的积相加.本节知识的重点是让学生理解单项式与单项式、多项式相乘的法那么,并能应用.这就必须要求学生对乘法的分配律以及幂的运算法那么有一定的根底,因此课前可以要求学生先复习该局部的知识,同时在上新课前也可以通过练习题让学生回忆知识.对于运算法那么的得出,教师通过“试一试〞逐步解题,通过计算演示法那么的内容,更有利于学生理解运算法那么.。
1.2.4绝对值导学案(一)
学习目标:1.借助数轴,初步理解绝对值的概念,能求一个数的绝对值。
复习回顾引入新课1.在数轴上分别标出–5, 3.5 0 及他们的相反数所对应的点。
2. 在数轴上找出与原点距离等于6点。
自主学习整体感知两辆汽车从同一处O出发,分别向东西行驶10km到达A .B两处,若规定向东为正,则:A处记做B处记做
1. 在数轴上标出A B 的位置。
2)两车行驶路线相同吗?它们行驶的路程远近相同吗?
3.在数轴上表示﹣5的点到原点的距离是。
在数轴上表示﹢5的点到原点的距离是。
绝对值:
记作:读作:
练习:1.4的绝对值指在数轴上表示与距离,所以︱4︱=﹣6的绝对值指在数轴上表示与距离,所以︱﹣6︱=
2.试说出︱7︱,︱﹣2.25︱,︱﹣5︱,︱0︱分别表示的意义,及其它们的结果。
小组合作质疑解疑写出下列数的绝对值
2,-5 , 0,-0.5, 1.5,+6 ,-100,+56
1.一个正数的绝对值是它的,即当a>0时︱a︱=
2. 0的绝对值是,即当a=0时︱a︱=
3.一个负数的绝对值是它的,即当a<0时︱a︱=
学以致用知识内化
1.化简︱5︱=︱﹣17︱=--︱﹣4.5︱=
︱+6.3︱=︱- 4︱=︱0︱=
2.如果一个数的绝对值等于
3.25,则这个数是多少?如果︱x︱=2 则x=
3.绝对值等于它本身的数是绝对值等于它的相反数的是
任何数的绝对值一定是绝对值最小的数是。
绝对值导学案第6课时绝对值一、学习目标1.理解、掌握绝对值概念,根据绝对值的意义判断代数式的符号;2.掌握求一个已知数的绝对值的方法;3.体验绝对值非负性的应用.二、知识回顾小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线不相同(填相同或不相同),他们行走的距离相同0到原点的距离是10 ,—10到原点的距离也是10到原点的距离等于10的数有 2 个,它们的关系是一对相反数.三、新知讲解1.绝对值的概念一般地,数轴上表示a的点与原点的距离叫做数a 的绝对值,记作|a| .这里的数a可以是正数、负数和0 .例如5和-5,它们与原点的距离都是5个单位长度,所以5和-5的绝对值都是5.显然|0|=0.2.求一个数的绝对值一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0 .即(1)如果a0,那么|a|= a ;(2)如果a=0,那么|a|= 0 ;(3)如果a0,那么|a|= -a 绝对值的非负性应用绝对值表示距离,由于距离不可能是负数,所以任何数的绝对值总是正数或0,即对于任意有理数a,总有|a| ≥0.四、典例探究.绝对值的几何意义【例1】(1)式子∣-5.7∣表示的意义是与原点的距离是.(2)-2的绝对值表示它离开原点的距离是个单位,记作;总结:|a|表示点a与原点的距离,|-a|表示点-a与原点的距离.根据绝对值的几何意义,互为相反数的两个数的绝对值相等.练1(1)一个数的绝对值越大,表示它的点在数轴上越靠右.()(2)一个数的绝对值越大,表示它的点在数轴上离原点越远.()2.求一个数的绝对值【例2】求下列各数的绝对值-3,-5.2, , ,200,0总结:求一个数的绝对值,应先判断该数是正数、负数还是0,再根据绝对值的代数意义求解.当然也可以根据几何意义,借助数轴求解.练2判断下列各式是否正确(1)|7|=|-7|;(2)-7=|-7|;(3)-|7|=|-7|.3.绝对值的性质1(根据|a|=±a判断a的符号)【例3】绝对值等于其相反数的数一定是………………()A.负数 B.正数 C.负数或零 D.正数或零总结:若|a|=a,则a≥0;若|a|=-a,则a≤0;特别地,若|a|=0,则a=0.练3给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有…………………………………………………()A.0个B.1个C.2个D.3个练4判断题:当a≠0时,|a|总是大于0.()4.绝对值的性质2(绝对值非负性的应用)【例4】若实数a,b满足|3a-1|+|b-2|=0,求a+b的值.总结:任何数的绝对值总是非负数,即|a|≥0.进一步,我们还可以得到|a|≥±a,即|a|±a≥0.如果几个数的绝对值(或几个非负数)之和为0,那么这几个数都为0.练5若|x-2|+|y-3|=0,求x,y的值.五、课后小测一、选择题1.-4的绝对值是()A. B. C.4 D.-42.若|x|=5,则x的值是()A.5B.-5C.±5 D若a与1互为相反数,则等于(). A.2 B.-2 C.1 D.-下列说法错误的是().A.一个正数的绝对值一定是正数 B.一个负数的绝对值一定是正数C.任何数的绝对值一定是正数 D.任何数的绝对值都不是负数二、填空题5.-8的绝对值是,记作________.6.化简的结果为________.三、解答题7.写出下列各数的绝对值,并指出这些数中,哪个数的绝对值最大,哪个数的绝对值最小.-(-6.3),+(),-(+2.5),-(-10).8.若|x- |+|y-7|=0,求y-x的值.典例探究答案:【例1】(1)-5.7与原点的距离是5.7 ;(2)2 |-2| 练1.(1)× (2)√【例2】3,-3,-5.2, , ,200,0的绝对值分别是:3,3,5.2, , ,200,0.练2.(1)正确;(2)不正确;(3)不正确【例3】C练3.B练4.√【例4】解:由绝对值的非负性知|3a-1|≥0,|b-2|≥0,所以只有当|3a-1|和|b-2|都为0时,它们的和才为0,否则它们的和大于0.所以|3a-1|=0,且|b-2|=0时,|3a-1|+|b-2|=0才成立,解得a= ,b=2.所以a+b=2 .练5.解:根据绝对值的非负性,可得x-2=0,y-3=0,解得x=2,y=3课后小测答案:1.A.解析:根据一个负数的绝对值等于这个数的相反数,直接得出答案.2.C.解析:根据绝对值的几何意义可知绝对值等于5即表示到原点的距离为5,所以有是5或-解析:a与1互为相反数,所以a=-1,即解析:因为绝对值表示的一个数到原点的距离,所以任何数的绝对值都大于或等于0,由此可知C错|-8|.解析:根据一个负数的绝对值是它的相反数可知-8的绝对值是8,表示一个数的绝对值时用绝对值符号“| |”并把数写在里面-4.解析:绝对值里面不管有多少正负号,化简完之后一定不含有任何正负号根据绝对值的定义一一进行求解,各数的绝对值依次是:6.3,8 ,2.5,10.8.根据绝对值的非负性,可得x= ,y=7,所以y-x=。
《绝对值》导学案一、学习目标1、理解绝对值的概念,会求一个数的绝对值。
2、理解绝对值的几何意义和代数意义。
3、掌握绝对值的性质,并能运用绝对值的性质解决相关问题。
二、学习重点1、绝对值的概念和求法。
2、绝对值的性质及其应用。
三、学习难点1、绝对值的几何意义的理解。
2、绝对值性质的灵活运用。
四、知识回顾1、数轴的三要素:原点、正方向、单位长度。
2、在数轴上,表示互为相反数的两个点,位于原点的两侧,且到原点的距离相等。
五、新课导入在日常生活中,我们经常会遇到一些与距离有关的问题。
比如,小明家距离学校 5 千米,小李家距离学校 3 千米。
这里的“5 千米”和“3 千米”就是表示距离的量。
在数学中,我们也有一个类似的概念,叫做绝对值。
六、知识讲解1、绝对值的定义一般地,数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记作|a|。
例如,数轴上表示-5 的点与原点的距离是 5,所以|-5| = 5;表示5 的点与原点的距离是 5,所以|5| = 5。
2、绝对值的几何意义一个数的绝对值就是数轴上表示这个数的点到原点的距离。
距离总是非负的,所以绝对值一定是非负的,即|a| ≥ 0。
例如,|-3|表示数轴上表示-3 的点到原点的距离,这个距离是3,所以|-3| = 3。
3、绝对值的代数意义(1)正数的绝对值是它本身;即若 a > 0,则|a| = a。
(2)0 的绝对值是 0;即|0| = 0。
(3)负数的绝对值是它的相反数;即若 a < 0,则|a| = a。
例如,|5| = 5,|0| = 0,|-8| =(-8) = 8。
4、绝对值的性质(1)互为相反数的两个数的绝对值相等。
例如,|-5| =|5| = 5。
(2)绝对值具有非负性,即|a| ≥ 0。
(3)若|a| =|b|,则 a = ±b。
七、例题讲解例 1:求下列各数的绝对值:(1)-7 (2)0 (3)35 (4)-25解:(1)|-7| = 7(2)|0| = 0(3)|35| = 35(4)|-25| = 25例 2:已知|x| = 4,求 x 的值。
《1.2.4绝对值》导学案 班级 姓名活动一 明确目标,自主学习(一)学习目标:1、借助于数轴,初步理解绝对值的概念,能求一个数的绝对值;2、通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。
重点:绝对值的概念和求一个数的绝对值难点:理解绝对值的概念,绝对值的意义。
(二)自学探究知识回顾:1.在数轴上分别标出–5,3.5,0及它们的相反数所对应的点。
2.在数轴上找出与原点距离等于6的点。
3.相反数是怎样定义的?活动二 小组合作,探究新知问题1、两位同学在书店O 处购买书籍后坐出租车回家,甲车向东行驶了10公里到达A 处,乙车向西行驶了10公里到达B 处。
若规定向东为正,则A处记做__________,B处记做__________。
(1)请同学们在数轴上标出A 、B 的位置;(2)这两辆出租车行驶路线相同吗?它们行驶路程的远近(距离)相同吗?实际生活中距离是不是与方向无关?(3)在数轴上表示-5的点到原点的距离是 ,在数轴上表示+5的点到原点的距离是如果说-5和+5的绝对值相等,就刚才学习的内容,猜测一下什么是绝对值?归纳:一般地,在数轴上 叫做数a 的绝对值,记作: 活动三 深度记忆,强化新知1、 4的绝对值指在数轴上表示 与 的距离,所以| 4|= 。
同理:—6的绝对值指在数轴上表示 与 的距离,所以| —6|= 。
2、请与同桌交流| 7|、∣—2.25∣、∣25 ∣、∣0∣的意义及其值。
小组之间互相出题考查。
问题2、试一试:你能从中发现什么规律?(1)|+2|= ,51= ,|+8.2|= ; (2)|0|= ; (3)|-2|= ,|-51|= ,|-8.2|= . 归纳:把你所发现的规律写在下面,并在小组内验证是否正确。
小结:一个正数的绝对值是它 ,即:当a>0时,|a|=一个负数的绝对值是它的 ,即:当a<0时,|a|=0的绝对值是 ,即:当a=0时,|a|=活动四 亲身体验,领会知识深入到游戏中,总结归纳一个数a 的绝对值应是什么样的数?活动五 我总结,我收获,我提高!活动六 达标检测,反馈拓展【基础过关】1、绝对值等于其相反数的数一定是( )A .负数B .正数C .负数或零D .正数或零2.、在-(+2),-(-8),-5,+(-4)中,负数有 ( )A .1个B .2个C .3个D .4个3、绝对值等于它本身的数是____________。
1.2.4.2 绝对值第2课时导学案
一、学习目标
1.了解绝对值的概念;
2.掌握绝对值的运算性质;
3.能够利用绝对值解决实际问题。
二、课前预习
1.课本P16、P17页的练习题和题解;
2.了解数轴的基本概念和绘制方法(可参考网络资料);
3.复习取反和相反数的定义及运算规律。
三、课堂授课
1.绝对值的定义:对任何实数x,其绝对值|x|都是一个非负数,它的值为x
与0之间的距离,即|x| = { x , (x≥0);-x , (x<0)}。
2.绝对值的运算性质:
•非负性:对于任何实数x,都有|x|≥0,且|x|=0当且仅当x=0;
•三角不等式:对于任何实数x、y,都有|x+y|≤|x|+|y|和|x-y|≥|x|-|y|;
•分类讨论应用:
|x| + |y| = |x + y| 或 |x - y|,当且仅当 x、y 同号时成立。
|x| - |y| = |x - y| 或 |x + y|,当且仅当 x、y 异号时成立。
3.绝对值的实际应用举例:
•温度计:温度计的刻度设定为-30,-29,-28,……,0,……,29,30度,每个刻度之间相隔1度。
则0度和-10度之间的温度差为10度,而0度和10度之
间的温度差仍然是10度。
用绝对值符号将该温度差表达为:|0-(-10)| = 10;
•立体几何:求两个点在空间中的距离。
•等等……
四、课后作业
1.完成课本P20页练习31~35题;
2.总结绝对值的定义及运算性质,并完成一道综合练习题。
1.2.4 绝对值(第一课时)导学案一、学习目标:1.理解绝对值的概念及其几何意义,通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法;(数形结合思想)2.会求一个数的绝对值,知道一个数的绝对值,会求这个数;3.通过应用绝对值解决实际问题,培养学生的学习兴趣,提高学生对数学的好奇心和求知欲.重点:能够正确地写出一个有理数的绝对值,知道一个有理数的绝对值是非负数.难点:从数、形两个方面理解绝对值的意义.二、学习过程:自学导航结合情境,思考:(1)在数轴上表示出这一情景.(2)它们所要跑的路线相同吗?_______________(3)它们所要跑的路程(线段OA、OB的长度)一样吗?__________________________________________________________________________【归纳】一般地,数轴上表示数a的点与_______的_______叫做数a的________,用“____”表示.考点解析考点1:求一个数的绝对值★★例1.求下列各数的绝对值:-12,5,-56,+45,0,-5.8.【题后思考】一个正数的绝对值是什么?一个负数的绝对值是什么?0的绝对值是什么?一个正数的绝对值是_______,一个负数的绝对值是它的______,0的绝对值是_____.即(1)如果 a>0,那么|a|=___;(2)如果 a=0,那么|a|=___;(3)如果 a<0,那么|a|=___.【迁移应用】1.计算:(1)|−2|=_____,|−0.75| =_____,-|−54|=_____;(2)|−23|的绝对值等于______,|−12|的相反数等于______. 2.写出下列各数的绝对值: -21,49,-7.8,+3.考点2:绝对值的意义理解★★★ 例2.下列说法正确的是( ) A.绝对值等于它本身的数是正数 B.绝对值等于它的相反数的数是负数 C.不存在绝对值最小的数D.一个数的绝对值越小,表示它在数轴上对应的点离原点越近 【迁移应用】1.数a ,b ,c 在数轴上的对应点的位置如图所示,那么这三个数中绝对值最大的是( )A.aB.bC.cD.无法确定2.如果|a |=a ,那么有理数a 一定是( )A.正数B.负数C.非正数D.非负数3.如图,在数轴上每隔一个单位长度取一个点,若点A,B 表示的数的绝对值相等,则点A 表示的数是_____.自学导航思考:相反数、绝对值的联系是什么?考点解析考点3:绝对值的非负性★★ 例 3.对于任意有理数m ,当m 为何值时,5|3|m --有最大值?最大值为多少?【迁移应用】 1.当x=____时,|x |+5取最小值,这个最小值是_____;当a=____时,36-|a −2|取最大值,这个最大值是_____. 2.已知|a |=8,|a|>a ,则a 等于_____.3.|x|=152,则x=________; |-x|=______;若|-2.5|=|-a|,则a=_________.例4.若|x-4|+|y-6|=0,求x+y的值.【迁移应用】1.若|m−2|+|n−7|=0,则|m+n|等于( )A.2B.7C.8D.92.若|x−1|+|y−5|+|z−3|=0,求x+2y+3z的值.考点4:绝对值几何意义的应用★★★★例5.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看最接近标准质量的是哪个足球?请用你所学的知识进行解释.【迁移应用】已知某零件的标准直径是100mm,超过标准直径的毫米数记作正数,不足标准直径的毫米数记作负数,检验员某次抽查了5件样品,记录如下:(1)指出哪件样品的大小最符合要求;(2)如果规定误差的绝对值在0.18mm以内的是正品,误差的绝对值在0.18~0.22mm 的是次品,误差的绝对值超过0.22mm的是废品,那么这5件样品分别属于哪类产品?。
2.4 绝对值【学习目标】:1、借助数轴,理解、掌握绝对值概念.体会绝对值的作用与意义;2、掌握求一个已知数的绝对值;3、利用绝对值比较两个负数的大小4.通过应用绝对值解决问题,体验运用直观知识解决数学问题的成功;【过程与方法目标】:1.通过实例理解绝对值的几何意义,渗透数形结合思想,2.通过绝对值与相反数及数轴的关系的理解,让学生感知数学知识的普遍联系性;【情感与态度目标】:1.感受数学知识在实际生活中的应用;;2.培养学生合作,交流的良好品质;3.通过学生自主探索,体验自主探索获得成功的喜悦;【学法引导】学生自主探索,合作讨论,教师引导总结归纳【教学重点】绝对值的意义【教学重点】利用绝对值比较两个负数的大小【导学指导】一、知识链接问题:如下图小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线(填相同或不相同),他们行走的距离(即路程远近)二、自主探究1、由上问题可以知道,10到原点的距离是,—10到原点的距离也是到原点的距离等于10的数有个,它们的关系是一对。
这时我们就说10的绝对值是10,—10的绝对值也是10;例如,—3.8的绝对值是3.8;17的绝对值是17;—613的绝对值是归纳:一般地,数轴上表示数a的点与________的距离叫做数a的绝对值,记作_____________;2、练习(1)、式子∣-5.7∣表示的意义是。
(2)、—2的绝对值表示它离开原点的距离是 个单位,记作 ;(3)、∣24∣= . ∣—3.1∣= ,∣—13∣= ,∣0∣= ; 3、由此可知:一个有理数由两部分组成,即____________和__________;4、思考、交流、归纳由绝对值的定义可知:一个正数的绝对值是 ;一个负数的绝对值是它的 ;0的绝对值是 。
用式子表示就是:1)、当a 是正数(即a>0)时,∣a ∣= ;2)、当a 是负数(即a<0)时,∣a ∣= ;3)、当a=0时,∣a ∣= ;5、由此得出:任何一个有理数的绝对值总是___________________________;即对任意的有理数a,总 有______________;4、随堂练习 P12第1、2大题【课堂练习】:1、自学例题 P23例1 (教师指导)P24例2 (教师指导)2、P24 练习1,2,3【要点归纳】:一个正数的绝对值是 ;一个负数的绝对值是它的 ;0的绝对值是 。
绝对值导学案
学习目标:
1.绝对值概念; 2.借助数轴初步理解绝对值的概念,能求一个数的绝对值;
学习重点难点:
绝对值的概念以及求一个数的绝对值。
学习过程:
(一)课前回顾:
1、具有、、的叫做数轴。
2、3到原点的距离是,—5到原点的距离是,到原点的距离是6的数有,到原点距离是1的数有。
3、2的相反数是,—3的相反数是,a的相反数是,
a—b的相反数是。
4.如果a是负数,那么-a表示a的,则-a 0; 如果a是正数,则-a 0;
5.a 、b、c 在数轴上的位置如图,它们的大小顺序是
(二)自主探究
问题1:小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线(填相同或不相同),他们行走的距离(即路程远近)
由上问题知道,10到原点的距离是 ,—10到原点的距离也是 到原点的距离等于10的数有 个,它们的关系是一对 ;
归纳:一个数在数轴上对应的点到 的距离叫做这个数的绝对值. 尝试练习:
1、4的绝对值记作( ),它指在数轴上表示 与 的距离,所以| 4|= 。
2、—6的绝对值记作( ),它指在数轴上表示在 与 的距离,所以| —6|= 。
3、请在小组内说出| 7|、∣—2.25∣、∣2
5
∣、∣0∣的意义及其值。
问题2:试一试:你能从中发现什么规律?
(1)|+2|= ,51= ,|+8.2|= ; (2)|0|= ; (3)|-3|= ,|-0.2|= ,|-8.2|= .
归纳:把你所发现的规律写在下面,并在小组内验证是否正确。
小结:由绝对值的定义可知:一个正数的绝对值是 ;一个负数的绝对值是它的 ;0的绝对值是 。
符号语言表示为: 1)、当a 是正数(即a>0)时,∣a ∣= ;
2)、当a 是负数(即a<0)时,∣a ∣= ;
3)、当a=0时,∣a ∣= ;。