压缩机的喘振现象PPT
- 格式:pptx
- 大小:209.12 KB
- 文档页数:20
压缩机喘振的机理与故障特征1.喘振喘振是离心式和轴流式压缩机运行中的常见故障之一,是旋转失速的进一步发展。
如图3所示,离心式压缩机具有这样的特性,对于一个确定的转速,总对应一个流量值,压缩机效率达到最高点。
当流量大于或小于此值时,效率都将下降。
一般常以此流量的工况点为设计工况点。
压缩机的性能曲线左边受到喘振工况(Qmin )的限制,右边受到堵塞工况(Qmax)的限制,在这二者之间的区域,称为压缩机的稳定工况区域。
稳定工况区域的大小,是衡量压缩机性能的重要指标。
图3 压缩机性能曲线当压缩机在运行过程中,若因外部原因使流量不断减小达到Qmin值时,就会在压缩机流道中出现严重的旋转脱离,若气量进一步减小时,压缩机叶轮的整个流道被气流旋涡区所占据,这时压缩机的出口压力将突然下降。
但是,压缩机出口所连接的较大容量的管网系统中压力并不马上下降,此时会出现管网中气体向压缩机倒流的现象。
当管网中压力下降到低于压缩机出口排气压力时,气体倒流会停止,压缩机又恢复向管网排气。
然而,因为进气量的不足,压缩机在出口管网恢复到原来的压力以后,又会在流道内出现旋涡区。
如此周而复始,机组和管道内的流量会发生周期性变化,机器进出口压力会大幅度脉动。
由于气体在压缩机进出口处吞吐倒流,会伴随有巨大周期性的气流吼声和剧烈的机器振动,这些波动在仪表操作盘的压力、流量、振动信号显示、记录中可以清楚地反映出来,在操作现场也可以立即觉察得到。
由喘振引起的机器振动频率、振幅与管网容积大小密切相关,管网容积越大,喘振频率越低,振幅越大。
一些机器的排气管网容量非常大,此时喘振频率甚至小于1Hz。
2.喘振的故障特征压缩机发生喘振的主要特征如下。
(1)压缩机接近或进入喘振工况时,缸体和轴承都会发生强烈的振动,其振幅要比正常运行时大大增加,喘振频率可参考式计算,一般都比较低,通常为1~30Hz。
(2)压缩机在稳定工况下运行时,其出口压力和进口流量变化不大,所测得的数据在平均值附近波动,幅度很小。
离心式压缩机的喘振离心式压缩机的特性曲线可用一条抛物线来描述。
该特性曲线描述了在低流量范围内,可压缩流体的绝热压头H与吸气侧体积流量Q之间的关系(见式12—44)。
绝热压头是一包含分子量W、热容比值、温度Ts和超压缩性的复杂函数。
在低压缩比下,它与压缩比(P2/P1)大致成线性关系。
假设线性关系成立,则有H=(P2/P1—1)(Ts/W)=KsQ2(12—44)式中P2——出口压力;P1——入口压力;Ts——温度;Q——入口体积流量;W——分子量;Ks——比例系数。
P2/P1—Q近似呈抛物线关系(见图12—43)。
不同转速下可形成一簇抛物线n1、n2、n3……。
连接这些抛物线最高点的虚线,是一条表征压缩机是否工作在喘振区的临界状态曲线。
图中阴影部分是压缩机工作的不稳定区,称喘振区或飞动区。
虚线的右侧则为正常运行区。
压缩机工作在喘振区时,当负荷Q减小时,则压缩比P2/P1下降,出口压力应当减小,而与压缩机相连接的管路压力在这一瞬间将来不及变,于是就出现瞬间气体从管路向压缩机倒流的现象,压缩机的工作点由月点下降到C点。
由于压缩机还在继续运转,此时还在向系统输送流量,于是工作点的流量由C点突变到D点。
D点对应的流量QD>QA,超过了要求的负荷量,管路系统压力被逼高。
若能迅速将负荷控制在相应值QA,系统可以稳定下来,否则将经过A点到B点。
不断地重复上述循环,就会发生压缩机喘振。
压缩机喘振时机身剧烈震动,严重时会造成机毁事故。
图12—43 离心式压缩机的特性曲线百度搜索“就爱阅读”,专业资料,生活学习,尽在就爱阅读网,您的在线图书馆。
CCC压缩机防喘振控制技术(Antisurge Control)1. 喘振现象喘振是涡轮压缩机特有的现象从图中可以看出压缩机运行点由D沿性能曲线上升流量减小压力升高由A点开始到B点压缩机出现负流量即出现倒流B-C C-D这样伴随喘振而来的是压缩机振动剧烈上升如果不能有效控制会给压缩机造成严重的损伤一般来讲在1-2秒内就以发生2. 喘振控制2.1 喘振线的确定通常压缩机都会有一系列的性能曲线图由于压缩机入口条件的不同压力其喘振曲线是分散的多条曲线CCC根据压缩机的设计理论可以将多变的入口条件的喘振曲线转化成与入口条件无关的曲线而一般来讲压缩机制造厂商提供的性能曲线是计算值特别是旧机组的性能会发生变化或者没有性能曲线传统的测试方法需要由经验丰富的测试工程师来进行测试这样做带来了巨大的风险确往往会动作滞后或过早打开CCC的喘振算法和控制算法能够在自动状态下测量喘振曲线这一功能是CCC的专利技术而且是世界独一无二的2.2 喘振控制算法在传统的防喘振控制算法中用运行点的流量与喘振点的流量比较放空阀这样做会造成大量的回流能量和造成工艺的扰动甚至中断2,1)(op r s q hr f S = 2,1)(SLL r q hr f =喘振线上的点1)(2,1==op r s q hr f S 因而Ss <1的区域为安全区域从而实现控制各种控制线及其相互之间的关系(1) Surge Limit Line, SLL压缩机在不同的工况下有不同的性能曲线所有这些点构成了一条喘振极限线SLLCCC 防喘振控制算法在喘振极限线SLL 右边设置了一个可变的安全裕量bÔö¼ÓѹËõ»úµÄÁ÷Á¿Èç¹û²Ù×÷µã³¬¹ýÕâ¸ö¼«ÏÞRTL 位于SCL 与SLL 之间如果操作点超过这个极限安全保险响应将增加喘振控制线的裕度(总b 值)SOL 线在喘振极限线的左边(5) Tight Shut-off Line, TSL TSL 定义最小的SCL 的偏差二者之间的距离为d 12.3.2 CCC防喘振控制算法的控制功能(1) PID控制响应对于缓慢的小的扰动CCC防喘振控制算法的PI控制算法防止压缩机操作点回到SCL左侧的非安全控制区而是用于加大CCC防喘振控制算法的安全裕量但并没有实质的喘振危险时只有在操作点处于或者接近防喘振控制线SCL时这样一来又能防止喘振的发生当比例积分响应和特殊微分响应不能使压缩机操作点保持在SCL线的右边则RTL响应就会以快速重复的阶跃响应迅速打开防喘振阀(3) 根据SOL线的安全保险响应如果因意外情况过程变化使压缩机的操作点越过SLL 线和SOL线而发生喘振使喘振控制线右移在一个喘振周期内将喘振止住那么防喘振控制算法的TSL响应将输出0或者100%的信号CCC防喘振控制算法根据喘振发生的特点当操作点越过不同的控制线产生不同的控制响应这种控制响应既能防止喘振也不需要浪费能量则喘振控制算法自动加大一个安全裕量b4ÕâÒ»¶¯×÷×î¶à¿ÉÒÔ¼Ó´ó5次b4,并且可以手动或自动复位当计算喘振接近度S S公式中所用的输入信号出现故障时(7) 手动控制手动控制可以让操作员手动控制防喘振阀的开度一种是完全的手动另一种方式是在手动操作中(8) 解耦控制对于有性能控制的机组当压缩机进入喘振调节时如性能控制变量为入口压力时两个控制回路是互相反作用的使机组更加接近喘振CCC的性能控制算法和喘振控制算法会将各自的输出加权到对方的控制响应中去迅速稳定系统CCC的控制算法能够在机组达到最小控制转速后或当出口单向阀打开时将机组并入到工艺系统中去将机组切出系统(11) CCC喘振控制算法功能框图3. 采用CCC防喘振控制算法的益处采用先进的防喘振控制算法而不必打开回流阀内置的回路解耦算法允许性能控制算法和防喘振控制算法之间更快地协调并消除防喘振控制动作可能产生的间断效应CCC防喘振控制算法消除了因喘振或者过载引起的不必要停车消除损害性的喘振(5) 压缩机运行更可靠FallBack¿ØÖÆËã·¨Äܹ»ÔÚ±äËÍÆ÷·¢Éú¹ÊÕÏʱ(6) 操作简化(7)更低的工程成本用户不必进行软件设计和软件组态(8) 降低压缩机初始投资。
压缩机喘振现象及处理方法压缩机喘振现象及处理方法1. 喘振现象的定义喘振是指在压缩机工作过程中发生的一种流动性现象,表现为压缩机机体及管道内的气流产生剧烈的振荡。
喘振会导致压缩机性能下降、噪音增大,并且对设备寿命和安全造成影响。
2. 喘振的原因喘振的产生原因较为复杂,主要有以下几个方面:•气流回流现象:当气流经过突然的节流或阻碍,会产生压力波,并引起喘振。
•气体返流:由于管路系统设计不当或安装错误,会导致气体返流,进而引起压缩机喘振。
•系统过载:当压缩机运行在过载工况下,过多的气体被压缩,产生的压力波会引起喘振。
•系统堵塞:管道内的污染物或异物堵塞,导致气流不畅,也会引起喘振。
3. 处理喘振的方法为了解决压缩机喘振问题,可以采取以下方法:安装减振装置•在压缩机的进气口和排气口安装减振器,可以有效降低振动的传导和扩散,减少喘振的发生。
•在压缩机和管道连接处安装减振垫,起到缓冲作用,减少振动对管道的影响。
调整压缩机的工况•根据压缩机的额定工况,合理设置压缩机的运行参数,避免过载运行,减少喘振的可能性。
•对于多台压缩机并联运行的系统,需要合理分配压缩机的负荷,避免负载不均衡引起的喘振。
清洁管道和过滤器•定期清洗管道和过滤器,防止污染物和异物堵塞管道,保持气流通畅,减少喘振的概率。
优化系统设计•在设计压缩机系统时,合理选用管道材料和直径,减小阻力,降低压缩机运行时的压力波。
•合理设计气流通道,避免急转弯、突变节流等情况,减少压力波的产生。
总结压缩机喘振是一个常见且严重的问题,但通过合适的处理方法,可以有效地降低喘振的发生。
在实际操作过程中,需要根据具体情况综合考虑上述方法,并结合实际经验进行处理,以确保压缩机正常工作,延长设备寿命,保障工作安全。
4. 使用软启动装置•软启动装置可以帮助降低压缩机的启动冲击,减少振动和喘振的发生。
•软启动可以逐渐增加电流和转速,避免突然的负载变化,降低喘振的风险。
5. 定期维护和检查•定期维护和检查压缩机,包括清洁和更换滤芯、润滑油等。