高二数学 向量的坐标表示及其运算
- 格式:ppt
- 大小:566.50 KB
- 文档页数:16
专题三 空间向量及其运算的坐标表示一 知识结构图二.学法指导1.在空间直角坐标系中,确定点的坐标或求对称点坐标时,要记住规律:“在谁的轴上,谁属于R ,其它为零;在谁的平面上,谁属于R ,其它为零.”“关于谁对称谁不变,其余变成相反数.” 2.空间几何体中,要得到有关点的坐标时,先建立适当的坐标系,一般选择两两垂直的三条线段所在直线为坐标轴,然后选择基向量,根据已知条件和图形关系将所求向量用基向量表示,即得所求向量的坐标.3.进行空间向量的数量积坐标运算的技巧利用向量坐标运算解决问题的关键是熟记向量坐标运算的法则,同时掌握下列技巧. (1)在运算中注意相关公式的灵活运用,如(a +b )·(a -b )=a 2-b 2=|a |2-|b |2,(a +b )·(a +b )=(a +b )2等.(2)进行向量坐标运算时,可以先代入坐标再运算,也可先进行向量式的化简再代入坐标运算,如计算(2a )·(-b ),既可以利用运算律把它化成-2(a ·b ),也可以求出2a ,-b 后,再求数量积;计算(a +b )·(a -b ),既可以求出a +b ,a -b 后,求数量积,也可以把(a +b )·(a -b )写成a 2-b 2后计算. 4.判断空间向量垂直或平行的步骤(1)向量化:将空间中的垂直与平行转化为向量的垂直与平行; (2)向量关系代数化:写出向量的坐标;(3)对于a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),根据x 1x 2+y 1y 2+z 1z 2是否为0判断两向量是否垂直;根据x 1=λx 2,y 1=λy 2,z 1=λz 2(λ∈R )或x 1x 2=y 1y 2=z 1z 2(x 2,y 2,z 2都不为0)判断两向量是否平行.5.利用向量数量积的坐标公式求异面直线所成角的步骤(1)根据几何图形的特点建立适当的空间直角坐标系;(2)利用已知条件写出有关点的坐标,进而获得相关向量的坐标;(3)利用向量数量积的坐标公式求得异面直线上有关向量的夹角,并将它转化为异面直线所成的角.6.利用向量坐标求空间中线段的长度的一般步骤(1)建立适当的空间直角坐标系;(2)求出线段端点的坐标;(3)利用两点间的距离公式求出线段的长.三.知识点贯通知识点1 求空间点的坐标例题1.如图,在长方体ABCD A 1B 1C 1D 1中,|AB |=4,|AD |=3,|AA 1|=5,N 为棱CC 1的中点,分别以DA ,DC ,DD 1所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系.(1)求点A ,B ,C ,D ,A 1,B 1,C 1,D 1的坐标; (2)求点N 的坐标. 【解析】(1)显然D (0,0,0),因为点A 在x 轴的正半轴上,且|AD |=3, 所以A (3,0,0).同理,可得C (0,4,0),D 1(0,0,5).因为点B 在坐标平面xOy 内,BC ⊥CD ,BA ⊥AD ,所以B (3,4,0).同理,可得A 1(3,0,5),C 1(0,4,5),与B 的坐标相比,点B 1的坐标中只有竖坐标不同,|BB 1|=|AA 1|=5,则B 1(3,4,5).(2)由(1)知C (0,4,0),C 1(0,4,5), 则C 1C 的中点N 为⎝⎛⎭⎫0+02,4+42,0+52,即N ⎝⎛⎭⎫0,4,52. 知识点二 求对称点的坐标在空间直角坐标系中,任一点P (a ,b ,c )的几种特殊的对称点的坐标如下:(1)求点P 关于x 轴的对称点的坐标; (2)求点P 关于xOy 平面的对称点的坐标;(3)求点P 关于点M (2,-1,-4)的对称点的坐标【解析】 (1)由于点P 关于x 轴对称后,它在x 轴的分量不变,在y 轴、z 轴的分量变为原来的相反数,所以对称点为P 1(-2,-1,-4).(2)由于点P 关于xOy 平面对称后,它在x 轴、y 轴的分量不变,在z 轴的分量变为原来的相反数,所以对称点为P 2(-2,1,-4).(3)设对称点为P 3(x ,y ,z ),则点M 为线段PP 3的中点.由中点坐标公式,可得x =2×2-(-2)=6,y =2×(-1)-1=-3,z =2×(-4)-4=-12,所以P 3(6,-3,-12). 知识点三 空间向量的坐标表示若),,(),,(2211y x B y x A 则),(1212y y x x --=。
高二数学 空间向量运算的坐标表示——夹角和距离公式教学要求:掌握空间向量的长度公式、夹角公式、两点间距离公式、中点坐标公式,并会用这些公式解决有关问题.教学重点:夹角公式、距离公式.教学难点:夹角公式、距离公式的应用. 教学过程: 一、复习引入1. 向量的直角坐标运算法则:设a =123(,,)a a a ,b =123(,,)b b b ,则⑴a +b =112233(,,)a b a b a b +++; ⑵a -b =112233(,,)a b a b a b ---; ⑶λa =123(,,)a a a λλλ()R λ∈; ⑷a ·b =112233a b a b a b ++上述运算法则怎样证明呢?(将a =1a i +2a j +3a k 和b =1b i +2b j +3b k 代入即可)2. 怎样求一个空间向量的坐标呢?(表示这个向量的有向线段的终点的坐标减去起点的坐标.) 3.练习:(1)与向量(1,-3,2)平行的一个向量的坐标为( C ) A .(1,3,2) B .(-1,-3,2) C .(-2,6,-4) D .(1,-3,-2) (2)已知点A (1,2,-1),且向量OC 与向量OA 关于平面xoy 对称,向量OB 与向量OA 关于平面x 轴对称,求向量和向量AB答案:BC =(0,4,0) =(0,-4,2)(3)已知向量a =(2,-1,3)求一向量,使∥,且∣∣=3∣∣ 答案: =(6,-3,9)或=(-6,3,5)(4)已知空间三点A (-1,0,2),B (-1,1,2),C (-3,0,4),设=,=,若k +与k -2互相垂直,求k 的值。
(K =2或k = -25) 二、新课讲授⒈ 向量的模:设a =123(,,)a a a ,b =123(,,)b b b ,求这两个向量的模.|a,|b向量的长度公式.这个公式的几何意义是表示长方体的对角线的长度. 2. 夹角公式推导:∵ a ·b =|a ||b |cos <a ,b >∴ 1122a b a b a++cos <a ,b >由此可以得出:cos <a ,b这个公式成为两个向量的夹角公式.利用这个共识,我们可以求出两个向量的夹角,并可以进一步得出两个向量的某些特殊位置关系:当cos <a 、b >=1时,a 与b 同向; 当cos <a 、b >=-1时,a 与b 反向; 当cos <a 、b >=0时,a ⊥b .例1.已知A (1,0,0),B (0,-1,1),OB OA λ+与的夹角为120°,求λ的值(66-)例2:如图,在正方体1111ABCD A B C D -中,1111114A B B E D F ==, 求1BE 与1DF 所成的角的余弦值.分析:如何建系?→ 点的坐标?→ 如何用向量运算求夹角?→ 练习:(1)如图:空间坐标系中,原点O 是BC 的中点,点A ()0,21,23,D 是平面yox 上,BC=2,∠BDC=90°,∠DCB=30°,(1)求D 点的坐标,(2)求BC的值。
第3讲空间向量及其运算的坐标表示新课标要求①了解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示。
②掌握空间向量的线性运算及其坐标表示。
③掌握空间向量的数量积及其坐标表示。
知识梳理1.空间向量运算的坐标表示若a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则:(1)a +b =(a 1+b 1,a 2+b 2,a 3+b 3);(2)a -b =(a 1-b 1,a 2-b 2,a 3-b 3);(3)λa =(λa 1,λa 2,λa 3)(λ∈R );(4)a ·b =a 1b 1+a 2b 2+a 3b 3;(5)a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R );(6)a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0;(7)|a |=a ·a =a 21+a 22+a 23;(8)cos 〈a ,b 〉=a ·b|a ||b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23.2.空间中向量的坐标及两点间的距离公式在空间直角坐标系中,设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则:(1)AB →=(a 2-a 1,b 2-b 1,c 2-c 1);(2)d AB =|AB →|=(a 2-a 1)2+(b 2-b 1)2+(c 2-c 1)2.名师导学知识点1空间直角坐标系【例1-1】(武汉期末)点(1P ,2,3)-关于xOz 平面对称的点的坐标是()A .(1,2,3)B .(1,2-,3)-C .(1-,2,3)-D .(1-,2-,3)【变式训练1-1】(河南月考)在空间直角坐标系Oxyz 中,点(1,2-,4)关于y 轴对称的点为()A .(1-,2-,4)-B .(1-,2-,4)C .(1,2,4)-D .(1,2,4)2025高二上数学专题第3讲 空间向量及其运算的坐标表示(解析版)知识点2空间向量的坐标运算【例2-1】(钦州期末)已知(1a = ,2,1),(2b = ,4-,1),则2a b +等于()A .(4,2-,0)B .(4,0,3)C .(4-,0,3)D .(4,0,3)-【例2-2】(济南模拟)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求a 与b 夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求k 的值;(3)设|c |=3,c ∥BC →,求c .【变式训练2-1】(菏泽期末模拟)已知a =(2,-1,3),b =(0,-1,2).求:(1)a +b ;(2)2a -3b ;(3)a ·b ;(4)(a +b )·(a -b ).【变式训练2-2】(烟台期末)已知A (1,0,0),B (0,-1,1),若OA →+λOB →与OB →(O 为坐标原点)的夹角为120°,则λ的值为()A.66B .-66C .±66D .±6知识点3空间两点间的距离【例3-1】(淄博调研)已知△ABC 的三个顶为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为()A .2B .3C .4D .5【变式训练3-1】(温州期中)点(1M -,2,3)是空间直角坐标系Oxyz 中的一点,点M 关于x 轴对称的点的坐标为,||OM =.名师导练A 组-[应知应会]1.(安徽期末)空间直角坐标系中,点(2P ,1-,3)关于点(1M -,2,3)的对称点Q 的坐标为(()A .(4,1,1)B .(4-,5,3)C .(4,3-,1)D .(5-,3,4)2.(金牛区校级期中)点(3A ,2,1)关于xOy 平面的对称点为()A .(3-,2-,1)-B .(3-,2,1)C .(3,2-,1)D .(3,2,1)-3.(东阳市校级月考)已知点(1A ,2-,3),则点A 关于原点的对称点坐标为()A .(1-,2,3)B .(1-,2,3)-C .(2,1-,3)D .(3-,2,1)-4.(茂名期末)已知向量(1,1,2)a =-- 及(4,2,0)b =- 则a b + 等于()A .(3-,1,2)-B .(5,5,2)-C .(3,1-,2)D .(5-,5-,2)5.(高安市校级期末)已知空间向量()()()1,,1,3,1,,,0,0,,(a xb yc z a b c xyz =-==+= 则的值为)A .2±B .2-C .2D .06.(丰台区期末)已知(2AB = ,3,1),(4AC = ,5,3),那么向量(BC = )A .(2-,2-,2)-B .(2,2,2)C .(6,8,4)D .(8,15,3)7.(多选)(三明期末)如图,在长方体1111ABCD A B C D -中,5AB =,4AD =,13AA =,以直线DA ,DC ,1DD 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则()A .点1B 的坐标为(4,5,3)B .点1C 关于点B 对称的点为(5,8,3)-C .点A 关于直线1BD 对称的点为(0,5,3)D .点C 关于平面11ABB A 对称的点为(8,5,0)8.(公安县期末)在空间直角坐标系中,已知两点(5P ,1,)a 与(5Q ,b ,4)关于坐标平面xOy 对称,则a b +=.9.(温州期末)在平面直角坐标系中,点(1,2)A -关于x 轴的对称点为(1,2)A '--,那么,在空间直角坐标系中,(1B -,2,3)关于x 轴的对称轴点B '坐标为,若点(1C ,1-,2)关于xOy 平面的对称点为点C ',则||B C ''=.10.(浙江期中)空间直角坐标系O xyz -中,点(1M ,1-,1)关于x 轴的对称点坐标是;||OM =.11.(兴庆区校级期末)已知(2a = ,3-,1),(2b = ,0,3),(1c = ,0,2),则68a b c +-= .12.(辽阳期末)已知向量(2,3,1)a =- ,(1,2,4)b =- ,则a b +=.13.(越秀区期末)已知点(1A ,2,0)和向量(3a = ,4,12)-,若2AB a = ,则点B 的坐标是.14.(黄浦区校级月考)已知向量(7,1,5),(3,4,7)a b =-=- ,则||a b +=15.(青铜峡市校级月考)已知点A ,B 关于点(1P ,2,3)的对称点分别为A ',B ',若(1A -,3,3)-,(3A B ''= ,1,5),求点B 的坐标.16.(福建期中)已知空间三点(1A -,2,1),(0B ,1,2)-,(3C -,0,2)(1)求向量AB AC与的夹角的余弦值,(2)若向量3AB AC AB k AC -+与向量垂直,求实数k 的值.17.(扶余县校级月考)(Ⅰ)设向量(3a = ,5,4)-,(2b = ,0,3),(0c = ,0,2),求:()a b c -+ 、68a b c +- .(Ⅱ)已知点(1A ,2-,0)和向量(1a =- ,2,3)求点B 坐标,使向量AB 与a同向,且.B 组-[素养提升]1.(襄阳期中)已知向量a,b ,c 是空间的一个单位正交基底,向量a b + ,a b - ,c 是空间的另一个基底,若向量p 在基底a,b ,c 下的坐标为(3,2,1),则它在a b + ,a b - ,c 下的坐标为()A .15(,,1)22B .51(,1,)22C .15(1,,22D .51(,,1)222.(安庆质检)已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)若AP →∥BC →,且|AP →|=214,求点P 的坐标;(2)求以AB →,AC →为邻边的平行四边形的面积.第3讲空间向量及其运算的坐标表示新课标要求①了解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示。