矿井开拓与开采02煤与瓦斯共采部分
- 格式:ppt
- 大小:23.23 MB
- 文档页数:4
第四章井田开拓与开采第一节井田开拓一、井田开拓方式及井口位置(一) 影响井田开拓的主要因素本井田地质构造简单,大体为一向西倾斜的单斜构造,煤层倾角0~3°,未发现断层;水文地质条件简单;无老窑开采及采空区,对开采无影响。
影响井田开拓方式、井口位置的主要因素有:地形地貌、地质构造、煤层赋存特点、凿井工程地质条件、铁路接轨点位置、水源和电源情况、井下开拓部署、工业场地压煤量、技术装备水平和地质勘探程度等。
1. 地形地貌本井田内地形总体上为东南高、西北低,海拔标高+1302.5~+1278.5m,地形变化不大,地势平缓。
井田具风积沙漠~半沙漠地貌特征,半流动和半固定的新月形沙丘及沙丘链遍布全井田,耕地有限,因此,从地形地貌上看,对井口位置和开拓方式的选择影响不大。
2. 地质构造本区构造形态为一向北西倾斜的单斜构造,地层倾角小于2°。
区内断层不发育,无岩浆岩侵入体,故井田地质构造简单,煤层近水平,无煤层露头,同一煤层井田内高差小于120m,从构造上看,对井口位置和开拓方式的选择影响亦不明显。
3. 煤层赋存特点井田主要可采煤层3-1煤、4-1煤全区发育,赋存深度一般600~700m左右,赋存稳定,厚度变化小,主采煤层之上仅有一中厚2-2中煤层,2-2中煤层大部可采,仅在井田西南部不可采。
4-1煤下部还有4-2中、5-1、5-2、6-2上、6-2中五个煤层,井田范围内均大部可采。
除3-1煤和4-1煤为厚~中厚煤层(平均厚度4.75m和3.75m)外,其余煤层均为薄煤层或中厚煤层(平均厚度1.80~2.60m)各煤层倾角平缓(0~3°),适合长壁机械化开采。
4. 凿井工程地质条件井田浅部全部被第四系全新统风积沙及沉积砂土地层覆盖,厚度在27.13~135.50m,平均95.26m,南厚北薄,靠近井田储量中心范围内厚度在120m左右,厚度差不明显,新生界地层主要由风积沙、粉细砂、砂粘土、粘砂土组成,下部上更新统砂层富水性较强,上部风积沙层含水相对较弱。
煤与瓦斯共采技术采矿工程论文一、我国煤与瓦斯的基本特征我国的煤炭资源较丰富,目前的保有储量1100多亿t,且有48%的煤层属于高瓦斯和突出煤层,因此瓦斯储量丰富。
埋深2000m以浅已探明煤层气资源约为31万亿m³,位列世界第三。
但我国大规模的商业化瓦斯开采尚处于起步阶段,国家的相关产业政策出台较晚,或尚不明朗。
这里有认识和技术问题,更有我国煤层的透气性差,抽放困难等原因。
我国70%以上的煤层渗透率小于0.001μm²,属于低透气性煤层,其透气性比美国和澳大利亚低2--3个数量级,钻孔有效排放半径和钻孔瓦斯流量小,衰减快,透气性最好的抚顺煤层井下水平钻孔与美国同类条件相比,钻孔影响范围仅30--50m,而美国可达到100m以上。
煤层气体压力也对瓦斯的抽放起着重要作用,有关资料表明,我国煤层压力普遍偏低,这对抽放瓦斯极为不利。
中国的含煤地层一般都经历了成煤后的强烈构造运动,煤层内生裂隙系统遭到破坏,成为低透气性的高延性结构。
目前,我国瓦斯勘探和开发的主要煤阶是中阶煤和高阶煤,具有很强的非均质性,导致井网的井间干扰效应降低,相互间不能形成有效的联系,水力压裂增产效果也不明显。
二、煤与瓦斯共采技术的理论基础限制我国高瓦斯矿井井下瓦斯抽放的原因,主要是煤层的低渗透率和高可塑性,使得沿煤层打钻孔困难,煤层采前预抽效果较差。
由于我国含煤地层一般都经历了成煤后的强烈构造运动,煤层内生裂隙系统遭到破坏,塑变性大大增强,因而成为低透气性的高可塑性结构,这使得地面钻孔完井后采气效果差,水力压裂增产效果不明显。
而且煤层普遍具低渗透率,一般在0.0000001×0.000001μm²范围内,水城、丰城、霍岗、开滦、柳林等渗透率较好的矿区也仅为0.1×10ˉ³--1.8×10ˉ³μm²,这一特点决定了我国地面开发煤层气的难度很大。
鉴于此,我国煤层气开发生产的重点应放在井下,利用井下的采掘巷道,并尽量利用煤层采动影响,通过打钻孔和其它各种有效技术强化煤层的瓦斯抽放。
瓦斯治理理念和煤与瓦斯共采技术摘要:基于煤炭在我国能源构成中的重要地位,介绍了当前煤炭工业安全生产情况和科学开采面临的困难,并具体针对低透高瓦斯煤层群安全高效开采技术难题,重点分析了淮南矿区先进的瓦斯治理理念和管理理念,阐述了无煤柱煤与瓦斯共采技术的产生背景、发展历程,并详细介绍了无煤柱煤与瓦斯共采理论及基于此的瓦斯治理技术工程实例。
最后指出了深入研究的方向。
关健词:瓦斯治理;煤与瓦斯共采;煤层群;高效开采瓦斯治理是煤矿安全高效开采的前提和基础。
瓦斯问题特别低透气性煤层瓦斯治理是世界性难题,长期以来没有解决,因而导致煤矿瓦斯事故多发、生产效率低下,安全高效开采难以实现。
随着矿井开采深度加大,地质条件更复杂,地应力、瓦斯含量和压力增加,瓦斯治理难度进一步增大。
近期我国发生的煤与瓦斯突出引发瓦斯爆炸事故,都是由于煤矿向深部开采过程中,瓦斯灾害升级所导致的事故,如【1】:2009年2月22日发生在山西古交市屯兰煤矿的瓦斯爆炸事故,死亡77人;2009年5月30日,重庆松藻矿务局同华煤矿特大瓦斯突出事故,30人死亡,77人受伤;2009年9月8日发生河南平顶山市新华四矿“9.8”特大瓦斯爆炸事故,死亡54人;2009年11月21日发生在鹤岗新兴煤矿瓦斯爆炸,死亡108人。
淮南矿区煤层赋存条件极其复杂,是我国瓦斯含量最高的矿区之一,曾是全国瓦斯事故重灾区。
目前,淮南区内现有矿井全部为高瓦斯、煤与瓦斯突出矿井。
新建矿井多为深井开采,首采区多在距地表800m以下深度;大部分生产矿井的开采深度已达-700~-1000m,且开采深度正以每年20~25m的速度增加。
20世纪80年代以来,淮南矿区采用传统的瓦斯抽放技术和方法,均不能解决松软低透气性煤层群开采的瓦斯治理难题;自1998年后,淮南矿区转变了瓦斯治理理念,开展科研攻关,创新瓦斯治理技术,取得了瓦斯治理技术的重大突破,实现了煤矿安全高效开采。
1科学开采是煤炭工业发展的必由之路1.1煤炭科学产能的制约因素分析总体来看,我国煤炭科学产能制约因素主要有:(1)深部煤炭开发的资源制约;(2)煤炭开发基地西移中的生态环境及长距离输送制约;(3)安全高效生产能力制约;(4)资源回收率制约;(5)环境容量制约。
煤矿煤与瓦斯共采技术研究煤矿煤与瓦斯共采技术研究一直是煤矿工业领域的一个重要课题。
煤与瓦斯是煤矿开采过程中难以分离的两种资源,使用传统的开采方法会导致瓦斯的泄漏和事故的发生,因此煤矿煤与瓦斯共采技术的研究对于提高矿井安全、提高煤矿资源利用效率具有重要意义。
一、煤与瓦斯的关系在煤矿开采过程中,煤矿煤与瓦斯的关系密不可分。
煤层中含有大量的瓦斯,这是由于古生物在长时间的分解作用下,将一部分有机物转化为煤气而形成的。
煤矿开采时,人为地将初始地下温度提高,煤中瓦斯会被热解出来,脱离煤体,导致瓦斯涌出。
因此,要想解决煤矿瓦斯问题,就不能不考虑煤与瓦斯的关系。
二、瓦斯爆炸的危害瓦斯爆炸是煤矿开采过程中常见的事故之一。
瓦斯是一种易燃、易爆的气体,当瓦斯浓度超过正常范围时,一旦受到明火或电火花的刺激,就会发生爆炸。
这种爆炸非常危险,不仅会造成人员伤亡,还会造成矿井的破坏。
因此,矿井瓦斯治理是煤矿安全中不可忽视的环节。
三、煤与瓦斯共采技术的意义煤与瓦斯共采技术的研究对于煤矿开采具有重要的意义。
首先,煤矿煤与瓦斯共采技术可以将煤矿瓦斯有效地收集利用,提高煤矿资源的综合利用效益。
其次,煤与瓦斯共采技术可以减少瓦斯的泄漏,降低矿井瓦斯爆炸的风险,提高矿井的安全性。
因此,煤与瓦斯共采技术的研究不仅对于矿井的安全生产具有重要意义,也对于煤矿工业的可持续发展具有重要意义。
四、煤与瓦斯共采技术的研究方法煤与瓦斯共采技术的研究方法主要包括实验研究和数值模拟研究两种。
实验研究是通过在实验室中模拟煤矿矿井环境,提取煤样进行分析测试,以获取煤与瓦斯之间的相互作用规律。
数值模拟研究则是通过计算机建模,模拟矿井开采过程中的煤与瓦斯运移规律,进而预测煤矿开采过程中的瓦斯涌出量和分布。
五、煤与瓦斯共采技术的应用现状目前,煤与瓦斯共采技术已经在许多煤矿中得到应用。
一方面,利用煤与瓦斯共采技术可以提高矿井的安全性,降低瓦斯爆炸的风险;另一方面,煤与瓦斯共采技术也可以实现煤矿瓦斯的资源化利用,提高煤矿的经济效益。