数学建模葡萄酒的评价
- 格式:doc
- 大小:821.00 KB
- 文档页数:23
葡萄酒的评价摘要葡萄拥有很高的营养价值,含有多种氨基酸、蛋白质和维生素,而以葡萄为原料的葡萄酒也蕴藏了多种营养物质,而且这些物质都是人体必须补充和吸收的营养品。
目前,已知的葡萄酒中含有的对人体有益的成分大约就有600种。
葡萄酒的营养价值由此也得到了广泛的认可,可以说葡萄酒是一个良好的滋补品。
本文通过对葡萄酒的评价,以及酿酒葡萄和葡萄酒的理化指标之间的关系进行讨论分析。
对于本题,我们主要采用SPSS和MATLAB软件对模型进行求解。
针对问题一,首先我们将附件1中数据在Excel中进行处理;其次,我们在SPSS中,采用T检验,分别分析出两组评酒品红、白葡萄酒的评价结果有无差异性。
最后,我们通过T检验,在SPSS中可其相应的标准差,通过比较标准差来确定哪个组更可靠。
针对问题二,首先利用主成分分析法对酿酒葡萄的指标进行简化,将问题转化成一个多元函数的求解问题,然后分别对酿酒葡萄中的指标和葡萄酒理化指标进行相关性分析,得出指标间的相关性关系,将问题转化为求解超定方程组的解,最后利用最小二乘法建立了酿酒葡萄与葡萄酒理化指标间的关系式。
一、问题重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。
每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。
酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。
附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。
请尝试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?2. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。
二、问题分析2.1针对问题一,我们将它分成两个问题去解决1、针对问题一中的两组评酒员的评价结果有无显著性差异,我们在SPSS 中利用T检验去判断。
在这之前,我们对附录1中数据进行处理,利用excel 分别求出两组评酒员分别对红葡萄酒和白葡萄酒的评价结果的平均值。
数学建模毕业论文--葡萄酒的评价
葡萄酒的评价是一项复杂的任务,涉及多个因素,包括葡萄品种、酿造过程、年份、产地和存储条件等。
在数学建模中,我们可以利用统计分析和机器学习算法来对葡萄酒进行评价,以预测其质量和特征。
首先,我们可以采集一定数量的葡萄酒样本,并测量其相关属性,如酒精含量、酸度、pH值、残留糖分、挥发性酸、柠檬
酸等。
利用统计分析方法,我们可以探索这些属性与葡萄酒质量之间的关系,建立相应的数学模型。
例如,可以使用线性回归分析来确定具体属性与葡萄酒得分之间的相关性。
另一方面,机器学习算法可以帮助我们构建更复杂的评价模型。
可以使用聚类算法将葡萄酒样本分成不同的类别,以发现具有相似特征的葡萄酒群体。
此外,可以使用分类算法或回归算法来预测葡萄酒的质量评分。
这些算法可以利用已知的葡萄酒样本数据进行训练,并在新样本上进行预测。
除了属性数据,我们还可以考虑其他因素对葡萄酒评价的影响。
例如,可以考虑葡萄酒的价格、评分和消费者评价等因素,以构建更综合的评价模型。
可以使用模糊数学方法来处理这些不确定性和主观性因素,以得出更准确的评价结果。
最后,为了验证模型的准确性和稳定性,可以使用交叉验证或留一验证的方法进行模型评估。
这些方法可以帮助我们评估模型的泛化能力,并进行必要的调整和改进。
数学建模可以帮助我们对葡萄酒进行评价,为葡萄酒生产商、消费者和酒评人提供有关葡萄酒质量和特征的有价值信息。
葡萄酒评价数学建模matlab【原创实用版】目录一、引言二、葡萄酒评价的数学模型介绍三、数学建模在葡萄酒评价中的应用案例四、MATLAB 在葡萄酒评价数学模型中的应用五、结论正文一、引言随着人们生活水平的提高,对葡萄酒的需求也日益增加。
葡萄酒的品质不仅取决于酿酒葡萄的品种、产地、气候等条件,还与酿酒工艺紧密相关。
为了对葡萄酒的质量进行客观评价,数学建模方法被广泛应用于葡萄酒评价领域。
本文将介绍葡萄酒评价的数学模型,并探讨如何利用 MATLAB 进行葡萄酒评价数学模型的实现。
二、葡萄酒评价的数学模型介绍葡萄酒评价的数学模型主要基于葡萄酒的理化指标,如花色苷、总酚、单宁等,以及葡萄酒的外观、香气和口感等感官评价指标。
通过建立数学模型,可以客观地评价葡萄酒的质量,并为酿酒师提供参考意见。
常用的数学模型包括多元线性回归模型、逐步回归模型、主成分分析模型等。
三、数学建模在葡萄酒评价中的应用案例数学建模在葡萄酒评价中的应用案例有很多,其中之一是利用逐步回归分析找出对葡萄酒理化指标影响显著的因素,得出酿酒葡萄与葡萄酒理化指标之间的函数关系。
另一个案例是基于多目标优化模型研究酿酒葡萄的分级方法,同时考虑酿酒葡萄和葡萄酒的理化指标,建立以误差平方和最小为目标的多目标优化模型。
四、MATLAB 在葡萄酒评价数学模型中的应用MATLAB 是一种强大的数学计算软件,可以方便地实现葡萄酒评价数学模型。
例如,通过 MATLAB 可以轻松地完成多元线性回归模型的参数估计、逐步回归模型的变量筛选等任务。
此外,MATLAB 还可以绘制葡萄酒理化指标与感官评价指标的关系图,便于酿酒师直观地了解葡萄酒的质量状况。
五、结论数学建模方法在葡萄酒评价领域具有广泛的应用前景,可以提高葡萄酒评价的客观性和准确性。
MATLAB 作为一种有效的数学计算工具,在葡萄酒评价数学模型的实现中发挥着重要作用。
MATLAB·设计论⽂葡萄酒质量评价的数学建模葡萄酒质量评价的数学建模摘要:关于葡萄酒质量的评价,通常是通过评酒员的打分来确定的。
本论⽂通过对酿酒葡萄与葡萄酒的理化指标之间的相关关系和评酒员打分进⾏了深⼊系统地分析,给出了葡萄酒质量评价的量化研究。
基于相关数据,利⽤配对的t(α=0.05)检验、克隆巴赫系数信度分析、主成分分析、模糊C均值聚类、多元回归等⽅法,对酿酒葡萄质量评级模型,酿酒葡萄与葡萄酒之间的典型性相关分析关系模型等,并通过图像与数据分析研究了酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响。
对于问题⼀,利⽤配对数据的t检验,我们得出两组评酒员的评价结果没有显著性差异,并应⽤克伦巴赫系数信度分析法分别求出两组评酒员评价结果的可信度,通过数据⽐较和分析得到第⼀组评酒员的评价结果更可信,更符合实际。
对于问题⼆,基于数据,本⽂⾸先根据第⼀问中确定的的可信的⼀组(第⼀组评酒员)根据附表⼀对葡萄酒品尝后得出的总分,确定葡萄酒的质量,从⽽相应的给酿酒葡萄进⾏⼀个初步的排名。
然后对附表⼆中的酿酒葡萄的理化指标进⾏标准化处理后,进⾏主成分分析,根据新变量进⾏排名。
最后采⽤模糊C均值聚类⽅法对酿酒葡萄的理化指标进⾏了聚类分析,同时结合葡萄酒的质量得分,我们最终确定了酿酒葡萄的三级评判⽅案。
对于问题三,我们将酿酒葡萄与葡萄酒的理化指标做了多元回归,将酿酒葡萄与葡萄酒的主要指标做了典型相关系数的检验,结果表明:酿酒红葡萄中氨基酸总量、花⾊苷、苹果酸、褐变度、DPPH⾃由基、总酚、单宁、葡萄总黄酮、还原糖、PH值、果⽪颜⾊等对红葡萄酒中主要成分有显著影响;酿酒⽩葡萄中氨基酸总量、单宁、葡萄总黄酮、黄酮醇、⼲物质含量、出汁率,对⽩葡萄酒中主要成分有显著影响。
对于问题四,我们把葡萄的理化参数、葡萄酒的理化参数作为⾃变量,对酒的评价作为因变量,通过⽤MATLAB中plot作图,分析了酿酒葡萄与葡萄的理化指标之间的关系,得出结论:葡萄酒与葡萄酒的理化指数存在关系,但是葡萄酒的质量与其⾊泽、品味、环境以及⼝感有关系,所以并不能⽤葡萄和葡萄酒的理化指数指标来评价葡萄酒的质量。
数学建模葡萄酒评价问题葡萄酒作为一种重要的饮品,在许多场合都扮演着重要的角色。
但在选择和鉴赏葡萄酒时,往往需要一定的专业知识和经验。
如何评价葡萄酒的品质,成为一个重要的问题。
通过数学建模,可以对葡萄酒评价问题进行深入研究。
一、葡萄酒评价的一些基本概念在对葡萄酒进行评价时,我们需要了解一些基本概念。
其中有几个核心概念,包括:1.口感:葡萄酒口感主要包括甜度、酸度、单宁和酒精度四个方面。
其中,甜度和酸度是相反的两个方面,而单宁和酒精度则是影响葡萄酒深度和复杂度的关键因素。
2.香气:葡萄酒香气是葡萄酒评价中非常重要的部分,其中包括了果香、花香、木香等多种因素。
3.口感平衡度:葡萄酒口感的平衡度是评价葡萄酒品质的重要指标,它包括了口感中甜度、酸度、单宁和酒精度四个因素之间的和谐程度。
二、对葡萄酒品质的数学建模通过对葡萄酒的评价指标进行分析和量化,我们就可以建立一种数学模型,来对葡萄酒的品质进行评价。
其中的一些关键步骤包括:1.建立评价指标的量化模型:通过对葡萄酒评价指标的分析,我们可以建立相应的量化模型。
例如,将单宁的口感评价量化为0-10分,将香气的评价量化为0-5分等等。
2.确定评分标准:针对不同类型的葡萄酒,我们可以设定相应的评分标准。
例如,某种类型的葡萄酒,其平衡度得分要高于80分,香气得分要高于90分等等。
3.对葡萄酒样品进行测量和评分:在具体的评分过程中,我们需要对葡萄酒样品进行测量和评分,以得出相应的评价分数。
三、葡萄酒品质的数据分析通过对大量葡萄酒样品的评价数据进行收集和整理,我们可以进行相应的数据分析,以得到一些关于葡萄酒品质的重要结论。
例如:1.不同类型的葡萄酒在各项评价指标上存在差异。
例如,红葡萄酒相对白葡萄酒来说,具有更重的单宁和更鲜明的果香和木香。
2.葡萄酒品质在不同地区和不同产年之间也存在差异。
例如,同一品种的葡萄,在不同地区以及不同产年中,会产生明显的差异。
3.葡萄酒品质和价格之间的关系并不一定单调。
葡萄酒评价数学建模matlab摘要:I.引言- 介绍葡萄酒评价数学建模matlab 的意义和目的- 说明本文的主要内容和结构II.葡萄酒评价数学建模概述- 数学建模的定义和作用- 葡萄酒评价数学建模的基本流程和方法III.matlab 在葡萄酒评价数学建模中的应用- matlab 的介绍和特点- matlab 在葡萄酒评价数学建模中的具体应用和实现IV.葡萄酒评价数学建模matlab 实例分析- 一个具体的葡萄酒评价数学建模问题- 使用matlab 进行求解和分析的过程V.结论- 总结葡萄酒评价数学建模matlab 的重要性和优势- 展望葡萄酒评价数学建模matlab 的发展前景正文:I.引言葡萄酒评价是葡萄酒行业中的一个重要环节,对于葡萄酒的品质、口感、价格等方面具有重要的影响。
数学建模是一种基于数学和统计学的方法,可以对葡萄酒评价问题进行量化和分析,为葡萄酒的评价和分级提供科学依据。
matlab 是一种功能强大的数学软件,可以用于求解各种数学问题,包括葡萄酒评价数学建模问题。
本文将介绍葡萄酒评价数学建模matlab 的意义和作用,以及matlab 在葡萄酒评价数学建模中的应用和实现。
II.葡萄酒评价数学建模概述葡萄酒评价数学建模是一种利用数学和统计学方法对葡萄酒进行评价和分析的过程。
其基本流程包括问题定义、模型建立、模型求解和结果分析等步骤。
问题定义阶段是明确葡萄酒评价的具体问题和目标,例如葡萄酒的品质、口感、价格等。
模型建立阶段是根据问题定义阶段的结果,建立数学模型,例如利用回归分析、聚类分析等方法建立葡萄酒评价模型。
模型求解阶段是将建立的数学模型进行求解,得到评价结果。
结果分析阶段是对求解结果进行分析,例如利用图表等方式对葡萄酒的品质、口感、价格等进行可视化分析。
III.matlab 在葡萄酒评价数学建模中的应用matlab 是一种功能强大的数学软件,可以用于求解各种数学问题,包括葡萄酒评价数学建模问题。
数学建模经典案例分析以葡萄酒质量评价为例一、本文概述本文旨在通过深入剖析数学建模在葡萄酒质量评价中的应用,展示数学建模的经典案例。
我们将首先简要介绍数学建模的基本概念及其在各个领域的应用,然后聚焦葡萄酒质量评价这一具体问题,阐述如何通过数学建模对其进行科学、客观的分析。
文章将详细分析数据的收集与处理、模型的建立与求解、模型的验证与优化等关键环节,并探讨不同数学模型在葡萄酒质量评价中的优缺点。
我们将总结数学建模在葡萄酒质量评价中的实际应用效果,展望其在未来葡萄酒产业中的发展前景。
通过阅读本文,读者将能够了解数学建模在葡萄酒质量评价中的重要作用,掌握相关数学建模方法和技术,为类似问题的解决提供有益的参考和借鉴。
本文也将促进数学建模在葡萄酒产业中的应用与发展,推动葡萄酒产业的科技进步和产业升级。
二、数学建模基础数学建模是一种将实际问题抽象化、量化的过程,通过数学工具和方法来求解问题的近似解。
在葡萄酒质量评价这一案例中,数学建模提供了从复杂的实际生产环境中提取关键信息,并建立预测模型的可能。
这需要我们具备一定的数学基础,如统计学、线性代数、微积分等,同时也需要理解并掌握数据处理的基本技术,如数据清洗、特征提取和选择等。
在葡萄酒质量评价问题中,我们首先需要收集大量的葡萄酒样本数据,这些数据可能包括葡萄品种、产地、气候、土壤、酿造工艺、化学成分等多个方面的信息。
然后,我们需要对这些数据进行预处理,如去除缺失值、异常值,进行数据标准化等,以提高模型的稳定性和准确性。
接下来,我们可以选择适合的模型进行训练。
在这个案例中,我们可以选择线性回归、决策树、随机森林、神经网络等模型进行尝试。
我们需要根据数据的特性和问题的需求,选择最合适的模型。
同时,我们还需要进行模型的训练和验证,通过调整模型的参数,提高模型的预测能力。
我们需要对模型进行评估和优化。
这可以通过交叉验证、ROC曲线、AUC值等评估指标来进行。
如果模型的预测能力不足,我们需要对模型进行优化,如改进模型的结构、增加更多的特征等。
摘要葡萄酒是用新鲜的葡萄或葡萄汁经发酵酿成的酒精饮料。
通常分红葡萄酒和白葡萄酒两种。
前者是红葡萄带皮浸渍发酵而成;后者是葡萄汁发酵而成的。
葡萄酒讲究三分工艺七分原料,而葡萄酒是以鲜葡萄或葡萄汁为原料,葡萄质量好,酒相对就好。
对于问题一,葡萄酒质量的评定是由每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分而确定的。
第一、二两组评酒员分别评定同一批酒品,故为单因素模型,分别求出两组评酒员评定结果的方差,方差较小的说明稳定性较高,波动较小,经过计算分析得出第二组更为精确。
此后均认为第二组结果作为一个评价酒的质量的一个标准。
对于问题二,已知葡萄酒的品质,利用反演法把确定的葡萄酒品质信息流的方向倒转,关注酿酒葡萄的各项理化指标。
然后根据附件一中各种判断指标标准的比例以及通过查找的资料信息对主要理化指标成分进行加权,最终得出了酿酒葡萄的品质结果并进行了降序排列,对酿酒葡萄划分了四个不同的等级。
对于问题三,首先将附件二中葡萄酒和酿酒葡萄中相同的理化指标放在一张表上加以分析,利用matlab软件对所得的数据分别进行曲线拟合,得出了相对应的函数表达式和相关参数,并且做了简要的分析。
对于问题四,假设酿酒葡萄和葡萄酒的理化指标对葡萄酒质量有影响,根据附件中数据得知为无重复试验的双因素问题。
利用双因素方差分析法的数学模型对两种因素求得总偏差平方和及效应平方和,再根据它们对误差的影响程度确定那种影响因素更能决定葡萄酒的质量。
最后根据附件三的芳香物质表验证,得出一个重要的结论:比较好的酒所含的脂类物质远比品质较差的酒高,与此同时我们还得到,品质较好的酒所对应的酿酒葡萄所含的酯类同样也远高于品质较差的酒所对应的酿酒葡萄所含的酯类。
关键词:葡萄酒质量、曲线拟合、反演法、双因素方差分析模型一、 问题重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。
每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。
全国大学生数学建模竞赛A题葡萄酒评价分析葡萄酒是一种古老而美妙的饮品,其种类繁多,风味各异。
如何对葡萄酒进行准确的评价和分析成为了葡萄酒爱好者和生产商们共同关注的问题。
在此次全国大学生数学建模竞赛A题中,我们将围绕葡萄酒的评价和分析展开讨论。
1. 引言葡萄酒是一种由葡萄经过发酵而成的酒类饮品。
葡萄酒的风味和品质受到许多因素的影响,如产地、葡萄品种、酿造工艺等。
为了准确评价葡萄酒的质量和特点,我们需要建立相应的评价指标和模型。
2. 数据分析为了进行葡萄酒评价,我们首先需要收集相关的数据。
通过对不同品牌、不同种类的葡萄酒进行采样和测试,我们可以获得葡萄酒的关键指标,如酒精含量、酸度、甜度、单宁含量等。
在数据分析中,我们可以运用统计学方法和数学建模技术,对数据进行整理和处理。
通过计算均值、方差、相关系数等指标,我们可以得到葡萄酒的基本特征和相互之间的关系。
3. 葡萄酒评价指标体系建立基于数据分析的结果,我们可以建立葡萄酒评价指标体系。
这一体系应该包含对葡萄酒各项指标的评价方法和权重。
常见的评价指标包括酒精含量、色泽、香气、口感等。
在指标体系中,我们可以采用层次分析法,通过对各个指标的重要性进行排序和评估。
同时,还可以利用数学模型,将各项指标综合起来,得到最终的评价结果。
4. 葡萄酒评价模型构建在对葡萄酒进行评价时,我们可以利用数学建模方法构建评价模型。
常用的模型包括多元回归模型、灰色关联度模型等。
多元回归模型可以用来分析葡萄酒各项指标之间的关系,进而预测葡萄酒的品质。
灰色关联度模型则可以用来度量葡萄酒各个指标对品质的影响程度。
通过不断地调整模型和参数,我们可以得到更准确的葡萄酒评价结果,并为葡萄酒生产商提供有针对性的改进建议。
5. 葡萄酒评价系统设计为了方便葡萄酒评价和分析的实施,我们可以设计一个葡萄酒评价系统。
该系统可以包括数据输入、数据处理、指标评价、模型计算等功能模块。
数据输入模块用于将葡萄酒相关数据录入系统。
A题:葡萄酒的评价摘要本文主要进行了葡萄酒感官评价的可信度比较、酿酒葡萄评价分级、酿酒葡萄与葡萄酒的理化指标之间的联系、评价结果统计分析等方面的研究。
通过方差分析、层次分析等方法建立模型,解决了葡萄酒的评价问题。
问题一:利用方差分析法对评酒员评价数据进行分析,并用Excel画出图表(见正文),直观地观察出两组评价数据范围接近,第二组评价数据波动不大,评价数据更可信。
问题二:要求根据酿酒葡萄的理化指标和葡萄酒的质量,对这些酿酒葡萄进行分级,我们认为影响酿酒葡萄品质的因素较多,酿酒葡萄各理化指标之间的关系又是极其复杂的,对其的评价是一个多指标、多属性的问题。
采用系统工程学的层次分析法(AHP)来确定影响葡萄品质的各因素的权重,应用综合评判法,对酿酒葡萄进行了评价和分级。
各等级下葡萄样品数如下表:问题三:利用逐步回归法得到酿酒葡萄与葡萄酒的理化指标之间的关系,并用神经网络进行比较验证。
问题四:通过聚类分析与神经网络相结合,分析酿酒葡萄与葡萄酒的理化指标和葡萄酒质量间的联系。
通过理化指标得到葡萄酒质量评价分数,并与第二组评酒员评价出的葡萄酒质量评价分数对比分析,可知现阶段还不能用酿酒葡萄与葡萄酒的理化指标来评价酒的质量。
本文的建模过程中,对于每个问题都充分考虑了影响因素,一定程度上体现了模型的可靠性,具有较强的适用性和普遍性。
关键词:方差分析Excel逐步回归分析Bp神经网络聚类分析MatlabDPS数据处理系统一、问题重述通过聘请一些有资质的评酒员品尝葡萄酒,根据他们反馈意见来确定葡萄酒的质量。
酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。
已知某一年份一些葡萄酒的评价结果,及该年份这些葡萄酒的和酿酒葡萄的成分数据。
根据上述条件建立数学模型解决以下问题:1.分析两组评酒员的评价结果有无显着性差异,哪一组结果更可信。
2.根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。
葡萄酒的评价摘要本文主要运用统计分析方法,解决与所酿葡萄酒有关的问题。
对于问题一,,分别对白酒和红酒的两组数据进行差异性检验。
构建一个能反应葡萄酒本身质量的量,对两组数据分别进行相关性分析,得到第二组评酒员的结果更可信。
对于问题二,先做聚类分析,再做线性回归分析,得到白、红葡萄分为4级和3级。
对于问题三,利用问题二中聚类得到的7个主成分,把每种葡萄酒的理化指标与酿酒葡萄之间的7个主成分进行相关性分析,得到7个回归方程,即为酿酒葡萄与葡萄酒的理化指标之间的联系。
对于问题四,首先建立模型:12W=a *Y +b *Y 。
其中a,b 分别为酿酒葡萄和葡萄酒对葡萄酒质量的贡献率,1Y ,2Y 分别为两种因素的贡献值。
然后,通过确定芳香物质是否对葡萄酒的评分有影响来论证能否用葡萄和葡萄酒的理化指标评价葡萄酒的质量。
问题一中,本文运用excel 做两组数据的显著性差异检验,得到两组评酒员在评论白酒和红酒都存在显著性差异,且通过了F 检验。
接着本文通过确定各指标的权重,构建一个能反应各葡萄酒实际平分的量,把两组数据与之做相关性分析,发现第二组与之相关性更大,故第二组评酒员的结果更可信。
问题二中,本文通过SPSS 做理化指标的聚类分析,得到7个主成分;再做指标与评分的线性回归分析,得到白葡萄的分级结果为4级:一级:白酿酒葡萄14,22;二级:白酿酒葡萄4,5,9,19,23,25,26,28;三级:白酿酒葡萄24,27;四级:白酿酒葡萄1,2,3,6,7,8,10,11,12,13,15,16,17,18,20。
红葡萄酒为3级:一级:红酿酒葡萄2,9;二级:红酿酒葡萄3,4,10,22,24;三级:红酿酒葡萄1,5,6,7,8,11,12,13,14,15,16,17,18,19,20,21,23,25,26,27。
问题三中,本文运用excel 将葡萄酒的一级指标分别与7个主成分进行相关性分析然后对每种主要成分利用SPSS 进行线性回归分析得到以下7个回归方程:()()()()()r1134r21367r3137r4136r6137r71Y =-39.542+1.727+21.850+3.9463Y =4.044+0.026-0.156-0.005-0.1954Y =2.807+0.021-0.030-0.1895Y =2.700+0.024-0.169-0.0056Y =0.069+0.001-0.006-0.0077Y =70.028-0.188+x x x x x x x x x x x x x x x x x ()()2347r8123560.841+0.280-0.187+1.7048Y =58.545-0.021-1.028+1.666+27.045-0.0049x x x x x x x x x 即为每种酿酒葡萄与葡萄酒理化指标之间的联系。
2012高教社杯全国大学生数学建模竞赛葡萄酒的评价摘要本文以概率论与数理统计的相关知识为理论基础,综合运用正态分布和分级的原理,利用统计分析数据,研究了葡萄酒的评价指标体系,针对 葡萄酒的质量评价问题,建立合理的数学模型用以评价。
问题一:(1) 本问题的葡萄酒质量评价指标(即外观分析中的澄清度、色调,香气分析中的纯正度、浓度、质量,口感分析中的纯正度、浓度、持久度,平衡/整体分析),先对指标归类按顺序,统计并整理出相关的数据,再利用正态分布的思想,假设并验证质量评价指标为正态分布并进行差异性分析,对比找出附件1中两组评酒员的显著差异为:两组评酒员对红葡萄酒的评价结果有显著性差异的是外观分析中的色调、香气分析中的浓度,其他的无显著性差异;两组评酒员对白葡萄酒的评价结果有显著性差异的是口感分析中的纯正度、浓度,持久性、质量和平衡/整体评价,其他的无显著性差异。
(2)本问题要求分析附件1中哪组指标更可信,这就要在问题(1)基础上分析两组指标的可信性,建立可信性分析模型,利用matlab 软件编程计算得(程序见附件4): 1var =0.0735 ,2var =0.0398。
可见21var var ,因此第二组可信性高。
问题二:此问题我们的总体思路是这样的:先根据样品葡萄酒的得分高低对葡萄酒进行分级,并且假设葡萄酒得分越高,那么酿酒葡萄就越好,等级就越高,于是我们利用一些分类模型就可以得到相应酿酒葡萄的级别差。
根据这条思路,我们建立如下一些模型来讨论(见表6、7、8)。
为了充分利用文中的数据,我们把第一组第二组葡萄酒品尝得分合并,这样就得到了一个更大的样本,对结论会更有说服力。
为了能比较客观的对葡萄酒分划分合理的等级,我们需要一种能从总体上正确的反应葡萄酒的评分,这里我们利用已经单位化的综合了所有指标的葡萄酒品尝评分的所得分评价,它们的得分范围理论上包含在[0,1]区间上,实际计算红葡萄的单位化归一化后的评分。
2012年全国大学生数学建模竞赛A题葡萄酒评价分析葡萄酒是一种古老而神奇的饮品,它不仅有着悠久的历史,还拥有丰富的文化内涵和独特的口感。
在现代,葡萄酒已成为一种高品质、高雅的饮品,备受人们的青睐。
然而,如何准确地评价葡萄酒的品质,成为了学界和业界的一个共同难题。
本文将通过对2012年全国大学生数学建模竞赛A题的分析,探讨葡萄酒评价的数学建模方法。
1. 引言葡萄酒的评价一直以来是一项主观且复杂的任务。
传统的酒评方法主要依赖专业人士的经验和口感,但这种方法存在诸多不足。
为了解决这一问题,数学建模技术应运而生。
2012年的葡萄酒评价竞赛就是一个典型的例子。
2. 问题陈述2012年全国大学生数学建模竞赛A题要求参赛者基于给定的葡萄酒数据,利用数学模型对葡萄酒的品质进行评价。
竞赛提供的数据包括葡萄酒的理化指标、人工评分以及其他相关因素等。
3. 数据处理与分析为了对葡萄酒的品质进行准确评估,我们首先对提供的数据进行处理与分析。
通过统计学方法,我们可以计算出葡萄酒的平均评分、标准差等统计指标,从而评估数据的分布情况和变异程度。
此外,通过数据可视化技术,如散点图、箱线图等,我们可以观察数据的分布情况和异常值等。
4. 评价模型的建立基于提供的数据和问题要求,我们需要构建一个评价模型,来准确衡量葡萄酒的品质。
在建立模型时,我们可以考虑多个因素,如理化指标、人工评分等,并通过数学方法将这些因素进行权重分配、综合计算,从而得到一个综合评价指标。
例如,可以利用线性加权模型、层次分析法等来实现这一目的。
5. 模型求解与结果分析在完成评价模型的建立后,我们可以利用相应的数学算法对模型进行求解,并得到葡萄酒的评价结果。
通过分析结果,我们可以进一步了解葡萄酒品质的特点与变化趋势,为生产和消费提供科学依据和决策支持。
6. 模型的优化与改进为了提高评价模型的准确性和可靠性,我们可以进一步对模型进行优化和改进。
例如,引入更多的因素和数据,采用更复杂的数学方法,对模型进行验证和调整等。
葡萄酒的评价数学建模一、葡萄酒的成分分析葡萄酒的成分分析是评价葡萄酒质量的重要环节。
葡萄酒的成分包括酒精、糖分、酸度、单宁、色素等,这些成分的含量和比例都会影响葡萄酒的风味和品质。
通过对葡萄酒的成分进行分析,可以了解葡萄酒的基本特征和风格,为后续的质量评估和风格分类提供基础数据。
二、葡萄酒的感官评价感官评价是评价葡萄酒质量的重要手段。
感官评价主要包括视觉、嗅觉和味觉三个方面的评价。
视觉评价主要是观察葡萄酒的颜色、透明度、沉淀物等;嗅觉评价主要是闻葡萄酒的香气,判断其浓郁度、复杂度和持久度;味觉评价主要是品尝葡萄酒的口感,评价其酸度、甜度、单宁、酒精等成分的口感感受。
通过对葡萄酒的感官评价,可以全面了解其风味特征和品质状况。
三、葡萄酒的质量评估质量评估是评价葡萄酒的重要环节。
通过对葡萄酒的感官评价和成分分析结果的综合分析,可以对葡萄酒的质量进行评估。
质量评估主要包括以下几个方面:.产地质量:葡萄酒的产地对其品质有着重要影响。
产地环境包括气候、土壤、地理位置等,这些因素都会影响葡萄的生长和葡萄酒的品质。
.酿造工艺:酿造工艺对葡萄酒的品质也有重要影响。
酿造工艺包括葡萄采摘、发酵、陈酿、调配等环节,每个环节都会影响葡萄酒的成分和风味。
.口感质量:口感质量是评价葡萄酒质量的重要指标。
口感质量主要包括酸度、甜度、单宁、酒精等成分的口感感受,以及整体的口感平衡度和口感特点。
.风味质量:风味质量是评价葡萄酒质量的核心指标。
风味质量主要包括葡萄品种的特征、酿造工艺的特点、陈酿时间等,以及整体的复杂度、浓郁度和持久度。
通过对以上几个方面的综合分析,可以对葡萄酒的质量进行评估。
一般来说,优质的葡萄酒应该在以上几个方面都表现出色,而劣质的葡萄酒则会在其中一个或多个方面存在明显缺陷。
四、葡萄酒的风格分类风格分类是评价葡萄酒的重要手段。
通过对葡萄酒的风味特征进行分析,可以将其分为不同的风格类型。
常见的风格类型包括:.波尔多风格:以赤霞珠、美乐等葡萄品种为主,口感丰富、复杂,具有浓郁的果香和橡木桶陈酿的香气。
数学实验计算机科学与技术成员:xxx学号:xxxxxxxxxx葡萄酒的评价摘要本文主要研究的是如何对葡萄酒进行评价的问题。
通过对评酒员的评分与酿酒葡萄的理化指标和葡萄酒的理化指标等原始数据进行统计、分析和处理,我们得出了一个较为合理地评价葡萄酒质量优劣的模型。
在问题一中,我们采用T检验法,首先进行正态分布拟合检验,判断出它们服从正态分布。
之后,我们通过T检验法判断出了两组评酒员的评价结果具有显著性差异。
而对于如何判断哪一组评酒员的评价结果更可信,由于评酒员评分的客观性,我们通过计算评酒员评分均值的置信区间,利用置信区间的长短来判断评分的可信程度。
置信区间越窄,说明其越可信。
利用Matlab软件求出了第二组评酒员的评分均值的置信区间更窄,所以第二组评酒员的评价结果更可信。
在问题二中,我们采用主成分分析法,把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量再按照方差依次递减的顺序排列。
在数学变换中保持变量的总方差不变,使第一变量具有最大的方差。
第二变量的方差次大,并且和第一变量不相关。
由于变量较多,虽然每个变量都提供了一定的信息,但其重要性有所不同。
依次类推,最后我们将酿酒葡萄分为了四个等级:优质、次优、中等、下等。
在问题三中,我们通过多项式曲线拟合的方法,构造一个以葡萄酒的理化指标为自变量,酿酒葡萄的理化指标为因变量的函数,并利用Matlab软件进行曲线拟合,最后得出酿酒葡萄与葡萄酒的理化指标之间的关系为呈线性正相关。
在问题四中,我们用无交互作用的双因素试验的方差分析方法,通过对观测、比较、分析实验数据的结果,鉴别出了两个因素在水平发生变化时对实验结果产生显著性影响的大小程度。
最后,我们认为能用酿酒葡萄和葡萄酒的理化指标来评价葡萄酒的质量,且酿酒葡萄的理化指标对葡萄酒质量影响相对葡萄酒的理化指标更显著。
关键词:T检验法,Matlab,正态分布,主成分分析法,多项式曲线拟合,方差分析一.问题的重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。
葡萄酒评价数学建模matlab摘要:一、引言二、葡萄酒评价的数学模型三、数学建模在葡萄酒评价中的应用四、MATLAB 在葡萄酒评价数学模型中的实现五、结论正文:一、引言随着生活水平的提高,人们对葡萄酒的需求也逐渐增加。
葡萄酒的质量评价成为了一个重要的问题。
传统的葡萄酒评价方法通常依赖于评酒师的主观感受,这种主观性较强的评价方式存在着一定的局限性。
因此,借助数学模型对葡萄酒进行客观评价成为了研究的热点。
本文将介绍葡萄酒评价的数学模型,以及如何利用MATLAB 实现这些模型。
二、葡萄酒评价的数学模型葡萄酒评价的数学模型主要包括以下几种:1.基于理化指标的评价模型:通过分析葡萄酒的理化指标,如酒精度、酸度、单宁等,建立数学模型,从而对葡萄酒的质量进行评价。
2.基于多元统计分析的评价模型:利用多元统计分析方法,如主成分分析(PCA)、线性判别分析(LDA)等,对葡萄酒的感官指标进行降维处理,从而实现葡萄酒的客观评价。
3.基于人工神经网络的评价模型:通过训练神经网络,建立葡萄酒感官指标与质量之间的映射关系,实现对葡萄酒的评价。
三、数学建模在葡萄酒评价中的应用数学建模在葡萄酒评价中的应用主要体现在以下几个方面:1.提高评价的客观性:数学模型可以减少评价过程中主观因素的影响,提高评价的客观性。
2.提高评价的效率:利用计算机程序进行数学建模,可以大大提高评价的效率。
3.促进葡萄酒产业的发展:通过数学建模,可以对葡萄酒的质量进行更加精确的评价,有利于促进葡萄酒产业的发展。
四、MATLAB 在葡萄酒评价数学模型中的实现MATLAB 是一种广泛应用于科学计算和数据分析的软件,可以方便地实现葡萄酒评价数学模型。
以下是一个简单的示例,基于MATLAB 实现多元统计分析的葡萄酒评价模型:1.收集葡萄酒的感官指标数据,如香气、口感、色泽等。
2.利用MATLAB 中的PCA 函数对感官指标数据进行降维处理,得到主成分得分。
3.根据主成分得分,利用MATLAB 中的LDA 函数建立葡萄酒质量的分类模型。
威尔科克森符号秩检验:定义:威尔科克森符号秩检验是由威尔科克森(F·Wilcoxon)于1945年提出的。
该方法是在成对观测数据的符号检验基础上发展起来的,比传统的单独用正负号的检验更加有效。
Wilcoxon符号秩检验的步骤:正负符号检验和威尔科克森符号秩检验,都可看作是就成对观察值而进行的参数方式的T检验的代用品,非参数检验具有无需对总体分布作假定的优点,而就成对观察值作的参数方式的T检验,必须假定有关的差别总体服从正态分布。
该方法具体步骤如下:(1)对i=1,...,n,计算∣X i-M0∣,它们代表这些样本点到M0的距离。
(2)把上面的n个绝对值排序,并找出它们的n个秩,如果它们有相同的样本点,每个点取平均秩(如1,4,4,5的秩为1,2.5,2.5,4)。
(3)令W+等于X i-M0>0的∣X i-M0∣的秩的和,而W-等于X i-M0<0的∣X i-M0∣的秩的和。
(4)对双边检验H0:M=M0<=>H1:M≠M0,在零假设下,W+和W-应差不多。
因而,当其中之一很小时,应怀疑零假设。
在此,取检验统计量W=min(W+,W-(5)根据得到的W值,利用统计软件或查Wilcoxon符号秩检验的分布表以得到在零假设下的p值。
如果n很大要用正态近似:得到一个与W有关的正态随机变量Z的值,再用软件或查正态分布表得到p值。
(6)如果p值较小(比如小于或等于给定的显著性水平,譬如0.05)则可以拒绝零假设。
如果p值较大则没有充分的证据来拒绝零假设,但不意味着接受零假设。
[1]威尔科克森符号秩检验的应用举例下面是分别用高锰酸钾法和EDTA法对某生长期蛋鸡配合料钙含量进行的7次测定结果(湖北省饲料质量监督检验站2002年常规检测样品),比较两种方法测定结果差异是否显著。
首先按大小顺序对两对观测值之差di进行等级排序,并加上正负号,分别计算正负等级之和:T+=21,T-=-7。
葡萄酒的评价摘要葡萄拥有很高的营养价值,本文通过对葡萄酒的评价,以及酿酒葡萄和葡萄酒的理化指标之间的关系进行讨论分析,对不同的酿酒葡萄进行了分类,并更深入讨论两者的理化指标是否影响葡萄酒质量。
针对问题一,我们首先分别计算每类葡萄酒样品在两组组评酒师评价下的综合得分,以此作为每组评酒师的最终评价结果。
再运用统计学中的T 检验进行假设与检验,得出两组评价结果具有显著性差异。
最后通过计算各组评价员的评价结果的标准差,以此推算稳定性指标值P ,P 值较大的可信度较高,得出2p p <红1红与2P P <白1白,进而得出第二组的评价结果更加可信。
针对问题二,我们分别对两组葡萄进行分类。
在这里我们采用聚类分析法和主成分分析法,在matlab 中实现对酿酒葡萄的分类。
针对问题三,根据σμ-=x Z 对附件2中的数据进行标准化处理,排除单位不同的影响。
以酿酒葡萄的30个一级理化指标作为自变量X ,葡萄酒9个一级的理化指标作为因变量y,建立多元线性回归模型εβ+=X y ,得出酿酒葡萄的理化指标与葡萄酒的理化指标之间的联系即回归系数矩阵β。
针对问题四,用灰色关联度分析对两者的关系进行度量,求得理化指标对样品酒的的关联系数。
然后根据葡萄酒综合得分及指标的相关系数得出样品酒的综合指标,通过MATLAB 软件对综合指标与第二问中葡萄酒的分数进行指数拟合,拟合效果不佳,因此不能定量的用葡萄和葡萄酒的理化指标来评价葡萄酒的质量,只能根据图像大致猜测综合指标与葡萄酒的质量负相关。
关键词:T 检验 聚类分析法 主成分分析法 Z 分数 多元线性回归 一、问题重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。
每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。
酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。
附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。
请尝试建立数学模型讨论下列问题:1.分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?2.根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。
3.分析酿酒葡萄与葡萄酒的理化指标之间的联系。
4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?二、问题分析葡萄酒的评价是一个复杂的过程,需要综合考虑不同评价员的评分,而且葡萄酒和葡萄的组成成分非常复杂,它们也要影响葡萄酒的质量,对如此繁多的数据,我们就必须依靠计算机工具,运用数学统计学知识对它们进行处理,并找出各个含量之间的关系,联系生活实际,对葡萄酒作出有理有据的评价。
对于问题一:要想得到两组评价员的评价结果有无显著差异,并对它们的可靠性作出判断,我们首先就应该将两组评价员的对27组红葡萄酒和28组白葡萄酒的评价结果整理出来,求得葡萄酒的综合得分,再运用统计学中的T检验进行假设与检验,判断两组是否存在显著性差异,再通过计算各组评价员的评价结果的标准差和稳定性指标,进而判断谁的结果更加可信。
对于问题二:需要对葡萄进行分级,由于葡萄酒的质量与酿酒葡萄的好坏有直接关系,所以我们可以根据葡萄酒的质量对酿酒葡萄做一个简单的分级,之后,我们用主成分分析法算出每一组样本葡萄的哪些指标该葡萄的主成分,然后通过数据分析判断出这些成分哪些对葡萄酒的质量作出了贡献,筛选出主要成分后,对不同葡萄的成分做加权求和,以此作为葡萄分级的另一个依据。
对于问题三:要想得到葡萄与葡萄酒的指标间的联系,即得到它们之间的函数关系表达式,必须求出两者指标之间的相关系数。
但是,由于它们各自的指标太多,此处仅以一级指标作为相关因素进行分析。
令酿酒葡萄的30个一级指标作为自变量,葡萄酒的9个一级指标作为因变量,建立线性回归模型,通过最小二乘法计算出回归系数,即酿酒葡萄的指标与葡萄酒的指标间的相关性。
对于问题四:题中想要求出理化指标对质量的影响,即各理化指标与质量的线性或非线性关系,但是,由于理化指标太多,并且并非没个理化指标都会对葡萄酒的质量造成影响,所以首先必须进行数据的筛选,这里我们使用spss软件进行典型相关性分析,找出哪些指标与质量有较大的关系,然后将这些指标设为自变量,将质量设为因变量,对它们进行多元线性拟合,最后得到一个多元表达式以后,我们就可以通过这个方程来对葡萄酒的质量进行验证,如果验证的结果与评价员打分的结果基本吻合的话,就说明可以用葡萄与葡萄酒的理化指标来对葡萄酒的质量进行评价。
三、基本假设1、假设评酒员对每种葡萄酒的评价结果是大致符合正态分布的;2、假设酿酒葡萄与葡萄酒中的芳香物质主要成分是:低醇、酯类、苯等,其余成份忽略;3、假设酿酒葡萄与葡萄酒的理化指标中一级指标为主要影响。
4、假设酿酒葡萄中存在的而葡萄酒中不存在的理化指标也会影响葡萄酒的理化指标及质量;5、假设不考虑多种葡萄可制成一种酒,只考虑一种葡萄制成一种酒;6、假设只考虑红葡萄制成红葡萄酒,白葡萄制成白葡萄酒,忽略去皮红葡萄可酿制白葡萄酒;7、假设质量高的葡萄酒一定由质量好的酿酒葡萄制成,但是质量好的酿酒葡萄不一定能酿制成质量高的葡萄酒;8、ijA表示第i瓶酒的第j个指标无量纲化后的值9、ijB表示第i种酿酒葡萄的第j个指标无量纲化后的值10、iM表示第i瓶酒的综合指标四符号说明:T统计量T:khija第k组序号为h的样品第i个指标第j个品酒师的给分:khia序号为h的样品中第i个指标第k组10位品酒师给分的平均值:khiS第k组序号为h的样品第i个指标10位品酒师评分的标准差kib:第k组第i个指标所占权重:khx第k组序号为h的样品的稳定性指标k :p红第k组红葡萄酒的评分总平均稳定性指标k :P白第k组白葡萄酒的评分总平均稳定性指标ijX : 为第i个样品的第j个指标is : 第i个葡萄样品的总得分i: 第i个样品葡萄理化指标得分为其中:第一个指标指澄清度,第二个指标指色调,第三个指标指香气纯正度,第四个指标指香气浓度,第五个指标指香气质量,第六个指标指口感纯正度,第七个指标指口感浓度,第八个指标指持久性,第九个指标指口感质量,第十个指标指平衡/整体评价。
五模型建立与求解5. 1 问题一:葡萄酒评价结果的显著性差异及可信度分析5. 1. 1 葡萄酒评价结果数据预处理对附件1中数据通过Excel筛选观察时可发现某些数据错误,如:第一组红葡萄酒品尝评分中酒样品20号下4号品酒员对于外观分析的色调评价数据缺失;第一组白葡萄酒品尝评分中酒样品3号下7号品酒员对于口感分析的持久性评价数据为77,明显超过该项上限8;第一组白葡萄酒品尝评分中酒样品8号下9号品酒员对于口感分析的持久性评价数据为16,明显超过该项上限8等。
对这些异常数据为减少其对于总体评价结果的影响,采取预处理:取该酒样对应误差项目其余品酒员评价结果平均值替代该异常数据。
经过数据预处理可得出每一种类葡萄酒的综合得分,建立表1与表2。
表1 红葡萄酒总得分平均值图1表2 红葡萄酒总得分平均值图2根据图1、图2可初步简单看出两组评酒师的评价结果存在有显著性差异。
5.1.2 葡萄酒评价结果差异性分析与可信度分析模型建立与求解(1) t检验模型建立首先假定两个总体平均数间没有显著差异,即 210:μμ=H查T 值表,比较计算得到的T 值与理论T 值,推断发生概率(一般为95%)。
两个正态总体的均值检验模型假设 n X X X ,...,,21 是来自总体()211,σμN 的样本n Y Y Y ,...,,21 是来自总体()222,σμN 的样本,且两样本独立。
设1μ ,2μ和2221,σσ 均未知,其检验问题为 210:μμ=H .且()2t ~11)(2121321-++---n n n n S Y X μμ.当0H 为真时,统计量T 的计算公式()2~1121213-++-=n n t n n S YX T .式中,()()211212222113-+-+-=n n S n S n S .查T 值表,比较计算得到的T 值与理论T 值,推断发生概率(一般为95%),其中α 为显著性水平,05.010095-1==α因此当05.0< T 则认为0H 不成立,两组评酒员对红葡萄酒的评价结果有显著性差异。
(2)两组评酒员对红葡萄酒的评价结果比较:分别计算出 7.3426 S ,73.0556 ,2711===X n 05.00210.0<=T ,说明该两组评酒员对红葡萄酒的评价结果有显著性差异。
(3)两组评酒员对白葡萄酒的评价结果比较:分别计算出 4.8266 S ,73.9786 ,2811===X n 05.00129.0<=T ,说明该两组评酒员对白葡萄酒的评价结果有显著性差异。
5. 1. 3可信度分析模型建立与求解 :第k 组序号为h 的样品 第i 个指标10位品酒师给分的平均值 第k 组序号为h 的样品第i 个指标10位品酒师的标准差 算出第k 组序号为h 的样品的稳定性指标 第k 组红,白葡萄酒的评分总平均稳定性指标计算求得:比较红葡萄酒的两组总平均稳定性指标,因为2p p <红1红,所以第二组品酒师的评价结果更可信。
同样,比较白葡萄酒的总平均稳定性指标,因为2P P <白1白,所以第二组品酒师的评价结果可信度更高。
5.2问题二:根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。
问题二求根据酿酒葡萄的理化指标和葡萄酒的质量对酿酒葡萄进行分级,葡萄酒由酿酒葡萄酿制而成,则酿酒葡萄的质量与葡萄酒的质量有着直接的关系,则可以根据葡萄酒的质量对酿酒葡萄做一个简单的分级,在根据主成分分析从葡萄的理化指标中筛选出对葡萄质量产生影响的主要因素,根据所得各主要因素的贡献率给个因素加权作为系数,求出葡萄中主成分的含量,并进行排名,之后将此排名与之前根据葡萄酒质量所得出的排名综合,进而得出较准确的对酿酒葡萄的分级。
5.2.1 K 均值法聚类分析模型 k 均值法的基本步骤:(1)选择k 个葡萄酒样品作为初始凝聚点,或者将所有葡萄酒样品分成k 个初始 类,然后将这k 个类的重心(均值)作为初始凝聚点。
(2)对除凝聚点之外的所有葡萄酒样品逐个归类,将每个葡萄酒样品归入凝聚点离它最近的那个类(通常采用欧氏距离),该类的凝聚点更新为这一类目前的均值,直至所有葡萄酒样品都归了类。
(3)重复步骤(2),直至所有的葡萄酒样品都不能再分配为止。
最终的聚类结果在一定程度上依赖于初始凝聚点或初始分类的选择。