矩阵可逆的几种判断方法
- 格式:pdf
- 大小:236.79 KB
- 文档页数:1
二阶矩阵的可逆矩阵
摘要:
一、可逆矩阵的定义
二、二阶矩阵的可逆矩阵判定方法
三、二阶矩阵可逆性的几何解释
四、可逆矩阵的性质与应用
正文:
二阶矩阵的可逆矩阵
矩阵是一种特殊的数学工具,广泛应用于各种领域。
在矩阵的研究中,可逆矩阵是一个重要的概念。
本文将重点介绍二阶矩阵的可逆矩阵及其相关性质。
一、可逆矩阵的定义
一个n阶方阵A,如果存在一个非奇异矩阵P,使得A和P的乘积AP是一个n阶单位矩阵,那么我们就称矩阵A是可逆的,P是A的可逆矩阵。
二、二阶矩阵的可逆矩阵判定方法
对于二阶矩阵,我们可以通过行列式来判断其是否可逆。
具体来说,如果二阶矩阵A的行列式|A|不等于0,那么矩阵A就是可逆的。
三、二阶矩阵可逆性的几何解释
从几何角度看,一个二阶矩阵可逆,意味着它能够将一个平面上的二维向量变换为另一个平面上的二维向量,且变换前后两个平面上的向量场是平行的。
四、可逆矩阵的性质与应用
可逆矩阵有许多重要的性质,如能逆矩阵一定能进行行列变换,能进行逆变换的矩阵一定是可逆矩阵等。
在实际应用中,可逆矩阵被广泛应用于线性方程组的求解,矩阵的对角化等问题中。
以上就是关于二阶矩阵的可逆矩阵的介绍。
求矩阵的逆矩阵的方法矩阵的逆是一个在线性代数中非常重要的概念。
逆矩阵是一个方阵(A)的伴随矩阵(ad(A))除以该方阵的行列式(det(A))的结果,即逆矩阵(A-1) = ad(A) / det(A)。
要找到一个矩阵的逆矩阵,首先需要确保矩阵是可逆的。
矩阵可逆的充分必要条件是矩阵的行列式不等于零,即det(A) ≠0。
只有当行列式不等于零时,才能找到逆矩阵。
如果行列式等于零,该矩阵就被称为奇异矩阵,它没有逆矩阵。
接下来,我将详细介绍两种常见的方法来计算矩阵的逆。
方法一:伴随矩阵法伴随矩阵法是一种直接计算矩阵的逆矩阵的方法。
首先,我们计算出原始矩阵的伴随矩阵,然后再除以矩阵的行列式即可得到逆矩阵。
步骤如下:1. 计算原始矩阵的伴随矩阵(ad(A))。
伴随矩阵的每个元素(ad(A)ij)等于原始矩阵(A)的代数余子式(Aij)的代数余子式(Aij)。
其中,代数余子式(Aij)是矩阵中去掉第i行和第j列的部分矩阵的行列式(det(Aij))乘以(-1)^(i+j)。
2. 计算原始矩阵的行列式(det(A))。
3. 计算逆矩阵(A-1)。
逆矩阵的每个元素(A-1)ij等于伴随矩阵(ad(A))的每个元素(ad(A)ij)除以原始矩阵的行列式(det(A))。
伴随矩阵法的优点是直接,可以一步得到逆矩阵。
然而,该方法在求解大型矩阵时计算量较大。
方法二:初等行变换法初等行变换法是通过一系列的初等行变换来得到一个单位矩阵,然后通过对单位矩阵进行相同的初等行变换得到逆矩阵。
步骤如下:1. 将原始矩阵(A)写在左侧,单位矩阵(I)写在右侧,构成一个增广矩阵[A I]。
2. 通过一系列的行变换,将左侧矩阵变成单位矩阵。
在每一步行变换时,同样地对右侧的单位矩阵做相同的变换。
3. 当左侧的矩阵完全变成单位矩阵时,右侧的矩阵就是原始矩阵的逆矩阵。
初等行变换法的优点是对于大型矩阵来说,计算量较小。
然而,该方法需要一定的手工计算和整数运算,可能会产生较大的误差。
矩阵可逆的若干判别方法学院:数学与数量经济学院 班级:数学与应用数学1班 姓名:黄新菊 学号:1250411025 内容摘要:学了这么久高等代数,从学了矩阵之后,几乎每节都离不开矩阵。
矩阵是一个主要研究对象和重要工具,其中在这期间,可逆矩阵是贯穿其中出现的最频繁的词语。
可逆矩阵是矩阵运算理论的整体不可或缺的一部分。
例如,分块矩阵的运算、二次型化为标准型再化为规范型、线性子空间、同构、矩阵线性变换、特征值与特征向量、对角矩阵等,都有用到可逆矩阵,矩阵可逆的性质,可以解决很多数学问题,是解决实际问题比较常用的工具之一。
并且还可以物理、经济等各种问题。
有重要的理论和实践意义。
所以,研究、学习矩阵可逆的若干判别方法,还是很有必要的,有重要的意义。
关键词:矩阵、可逆矩阵、线性方程组、特征值与特征向量、初等变换、线性变换、线性子空间、判别方法。
导言:高等代数已经学了差不多两个学期。
自从开始学了矩阵,矩阵在高等代数中就起到了不可或缺的作用。
前面学的多项式、行列式、线性方程组原来也是为了学习矩阵奠定了基础。
而矩阵的可逆性在其中起到了非常大的作用。
突然发现,在矩阵的乘法运算中,可逆矩阵就像有理数的倒数一样,可逆矩阵是构成矩阵运算体系中非常重要的部分。
为了更加深入了解、学习、解决处理矩阵计算体系的各种题目,我决定用“矩阵可逆的若干判别方法”为题目作为论文的题目。
我在图书馆查了很长时间的资料,并且还上网百度浏览了很多有关的网页。
希望可以由此更加深入理解矩阵的逆的性质、定义、判别方法等。
整理了所有资料,总结了以下的矩阵的逆的判别方法。
正文矩阵可逆的若干判别方法首先介绍一些下面要用性质及定义。
有关矩阵的逆的定义:定义1:n 级方阵A 称为可逆的,如果有n 级方阵B ,使得AB=BA=E ,这里E 是级单位矩阵. 即称A 可逆,B 为A 的逆。
(AB 1-=)定义2:设 矩阵⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤=a aa aa a a aa Ann n n n n............ (2)12222111211 中元素a ij 的代数余子式,矩阵⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤=A AA A A A A AA A nnn n n n ... (2)12222111211* 称为A 的伴随矩阵。
矩阵可逆的等价判定
无论是线性代数的本科课程,还是研究生课程,学习矩阵的可逆性的判定总是一个重要的内容.矩阵的可逆性通常可以通过行列式的值来判断,这是最常用的方法.然而,学习这些内容时,有时学生可能会陷入困惑:既要判断矩阵的可逆性,又要掌握其等价的定义,学习负荷就会变得比较大.
在学习矩阵的可逆性的判定时,学生需要知道的一个重要的知识是矩阵的可逆性可以用等价的定义来表示.在这里,可以看到,矩阵的可逆性与它的逆矩阵是等价的.即,一个矩阵A可逆,当且仅当它有一个逆矩阵B,使得AB=BA=I(其中I为单位矩阵),或者A的伴随矩阵S 可以使得SA=AS=I(其中S为A的伴随矩阵).
既然矩阵的可逆性可以由它的逆矩阵或者伴随矩阵来表示,那么就可以不用计算矩阵的行列式来判断它的可逆性.例如,当矩阵A的逆矩阵或伴随矩阵可以计算出来时,就可以用它们来判断矩阵A的可逆性而不用计算A的行列式.
此外,如果矩阵A的行数和列数相等,则可以检查它的秩,从而得出它是否可逆的结论.这是因为,只有当矩阵A的秩等于它的行数时,它才是满秩矩阵,也就是说,它才可能是可逆的.
总而言之,在学习矩阵的可逆性的判定时,学生首先要掌握它的等价定义,即矩阵A可逆,当且仅当它有一个逆矩阵B,使得AB=BA=I,或者A的伴随矩阵S可以使得SA=AS=I.其次,如果矩阵A的行数和列数相等,则可以检查它的秩,从而得出它是否可逆的结论.最后,如果
矩阵的逆矩阵或伴随矩阵可以计算出来,则可以用它们来判断矩阵A 的可逆性而不用计算A的行列式.。
求矩阵逆矩阵的常用方法求矩阵逆矩阵是线性代数中的一个重要问题。
在实际应用中,常常需要对矩阵进行逆矩阵的计算,以便进行某些后续操作。
以下是几种常见的求矩阵逆矩阵的方法:1. 伴随矩阵法:如果矩阵 A 可逆,则其伴随矩阵 A^(-1) 也是存在的。
实际上,A^(-1) = A^(-T),其中 A^(-T) 表示 A 的逆矩阵的转置矩阵。
伴随矩阵法简单易行,但是要求矩阵 A 必须可逆。
2. 初等行变换法:对于任意矩阵 A,可以通过初等行变换将其化为行简化梯矩阵的形式。
如果左边子块是单位矩阵 E,则矩阵 A 可逆,且其逆矩阵为 A^(-1) = (A^(-T))[E - (A^T)A]。
这里,(A^(-T))[E - (A^T)A] 表示将 A 的逆矩阵插入到单位矩阵 E 和 A 的伴随矩阵A 之间的矩阵。
初等行变换法适用于大多数矩阵,但是需要对矩阵进行多次行变换,因此计算效率较低。
3. 列主元消元法:对于矩阵 A,可以通过列主元消元法将其化为行阶梯形式。
如果矩阵 A 的行主元不为 0,则其逆矩阵为 A^(-1) = (A^(-T))[(A^T)A - EE^T]。
这里,EE^T 表示矩阵 A 的列主元部分,(A^(-T))[(A^T)A - EE^T] 表示将矩阵 A 的逆矩阵插入到行阶梯形式的矩阵 A 的列主元和主元部分之间的矩阵。
列主元消元法适用于矩阵 A 为非方阵的情况,但是要求矩阵 A 的行主元不为 0。
以上是几种常见的求矩阵逆矩阵的方法。
不同的矩阵可以通过不同的方法来求其逆矩阵,选择适合该矩阵的方法可以有效地提高计算效率。
此外,对于一些特殊的矩阵,可能存在更高效的算法。
线性代数之可逆矩阵的求法方法总结线性代数是考研数学必考的一部分。
矩阵更是线性代数的基础,因此,掌握矩阵的知识点在整个线性代数的模块复习中占据十分重要的地位。
这几年经常考察初等变换和初等矩阵的题目。
(1)矩阵A可逆的充要条件是|A|不等于0
判断矩阵A为可逆矩阵的方法为:
判断矩阵A为可逆矩阵的方法
逆矩阵的运算性质:
逆矩阵的运算性质求逆矩阵的方法:
求逆矩阵的方法
题型一:求矩阵的逆矩阵
分析:求矩阵的逆矩阵可以通过伴随矩阵和用初等行(列)变换方法来求解。
例1:
分析:这是基础题,考场上虽不会有这种考题,但求逆必须要过硬,因为求逆会出现在矩阵方程、相似等题目。
解:本题应用初等变换变换的方法求解
题型二:已知矩阵方程求矩阵的逆
例2:设n阶矩阵A满足A^2+2A-3E=0,
(1)证明A,A+2E可逆,并求它们的逆;
(2)当A不等于E时,判断A+3E是否可逆,并说明理由。
解:。
山西师范大学本科毕业论文矩阵可逆的若干判别方法郭晓平姓名院系数学与计算机科学学院专业数学与应用数学0701班班级学号**********指导教师宋蔷薇答辩日期成绩矩阵可逆的若干判别方法内容摘要对线性代数和代数学而言,矩阵是一个主要研究对象和重要工具,其中可逆矩阵又是矩阵运算理论的整体不可或缺的一部分。
在矩阵理论,可逆矩阵所占的地位是不可替代的,在坐标轴旋转变换公式的矩阵表示、线性变换、线性方程组等理论研究中,它均有重要意义。
而且由于在许多有关数学、物理,经济的实际问题中,常常需要通过建立合适的数学模型化为线性代数和代数学等的问题,因此可逆矩阵也是解决实际问题比较常用的工具之一。
鉴于可逆矩阵具有重要的理论和实践意义,研究矩阵可逆的判别方法也就相当有必要了。
本文结合所学知识并查阅相关资料,系统地整理并归纳总结了十一种矩阵可逆的判别方法及其证明过程。
其中,可逆矩阵判别方法主要包括定义判别法、伴随矩阵判别法、初等变换判别法、线性方程组法、矩阵向量组的秩判别法等。
另外,本文还给出了十种特殊矩阵可逆性的相关结论,最后针对这些判别方法选取了典型的例题,以便我们更好的掌握矩阵可逆的判别方法。
【关键词】矩阵逆矩阵初等变换伴随矩阵线性方程组Some Methods for Judging Invertible MatrixAbstractThe matrix is a main research subject and an important tool in linear algebra and algebra. The invertible matrix, which plays the role of the invertible number in rational numbers, is an essential part of the matrix theory. The very important status ,which the invertible matrix holds in the matrix theory ,can not be replaced. It has the important meaning for solving linear equations, linear transformation theory problems, rotating coordinate transform formula of matrix representation theory. And In solving practical problems such as mathematics, physics, economic and other fields, it is often need to establish proper mathematical models into linear algebra and algebra issues. Therefore it also is a commonly used tool, which is widely applied in practical problem. In view of the fact that the invertible matrix has important significance in both theory and practice, the study of judging invertible matrix is quite necessary.Through combining with my knowledge, referring to the relevant materials, this paper systematically organizes and summarizes eleven kinds of methods for judging invertible matrix ,which contain definition method, the adjoin matrix method, elementary transformation method, linear equations method and so on ,and the proof process. This paper also gives ten special matrix invertible conclusions. Finally, this paper selects several typical examples aiming at these discriminate methods, so that we know the methods for judging invertible matrix.【Key Words】matrix inverse matrix elementary transformation adjoin matrix Linear equations目录一、引言 (01)二、预备知识 (01)(一)基本概念 (01)(二)可逆矩阵的性质 (01)三、矩阵可逆的若干判别方法 (02)(一)定义判别法 (02)(二)行列式判别法 (02)(三)秩判别法 (02)(四)伴随矩阵判别法 (02)(五)初等变换判别法 (02)(六)初等矩阵判别法 (02)(七)矩阵向量组的秩判别法法 (03)(八)线性方程组判别法 (03)(九)标准形判别法 (04)(十)多项式判别法 (04)(十一)特征值判别法 (05)四、十种常见矩阵的可逆性 (05)五、矩阵可逆判别方法的实例 (07)六、小结 (11)参考文献 (11)致谢 (12)矩阵可逆的若干判别方法学生姓名:郭晓平 指导老师:宋蔷薇一、引言在矩阵的乘法运算中,就像理数的倒数一样,可逆矩阵是构成矩阵运算理论体系不可或缺的一部分。
山西师范大学本科毕业论文矩阵可逆的若干判别方法郭晓平姓名院系数学与计算机科学学院专业数学与应用数学0701班班级学号0751010139指导教师宋蔷薇答辩日期成绩矩阵可逆的若干判别方法内容摘要对线性代数和代数学而言,矩阵是一个主要研究对象和重要工具,其中可逆矩阵又是矩阵运算理论的整体不可或缺的一部分。
在矩阵理论,可逆矩阵所占的地位是不可替代的,在坐标轴旋转变换公式的矩阵表示、线性变换、线性方程组等理论研究中,它均有重要意义。
而且由于在许多有关数学、物理,经济的实际问题中,常常需要通过建立合适的数学模型化为线性代数和代数学等的问题,因此可逆矩阵也是解决实际问题比较常用的工具之一。
鉴于可逆矩阵具有重要的理论和实践意义,研究矩阵可逆的判别方法也就相当有必要了。
本文结合所学知识并查阅相关资料,系统地整理并归纳总结了十一种矩阵可逆的判别方法及其证明过程。
其中,可逆矩阵判别方法主要包括定义判别法、伴随矩阵判别法、初等变换判别法、线性方程组法、矩阵向量组的秩判别法等。
另外,本文还给出了十种特殊矩阵可逆性的相关结论,最后针对这些判别方法选取了典型的例题,以便我们更好的掌握矩阵可逆的判别方法。
【关键词】矩阵逆矩阵初等变换伴随矩阵线性方程组Some Methods for Judging Invertible MatrixAbstractThe matrix is a main research subject and an important tool in linear algebra and algebra. The invertible matrix, which plays the role of the invertible number in rational numbers, is an essential part of the matrix theory. The very important status ,which the invertible matrix holds in the matrix theory ,can not be replaced. It has the important meaning for solving linear equations, linear transformation theory problems, rotating coordinate transform formula of matrix representation theory. And In solving practical problems such as mathematics, physics, economic and other fields, it is often need to establish proper mathematical models into linear algebra and algebra issues. Therefore it also is a commonly used tool, which is widely applied in practical problem. In view of the fact that the invertible matrix has important significance in both theory and practice, the study of judging invertible matrix is quite necessary.Through combining with my knowledge, referring to the relevant materials, this paper systematically organizes and summarizes eleven kinds of methods for judging invertible matrix ,which contain definition method, the adjoin matrix method, elementary transformation method, linear equations method and so on ,and the proof process. This paper also gives ten special matrix invertible conclusions. Finally, this paper selects several typical examples aiming at these discriminate methods, so that we know the methods for judging invertible matrix.【Key Words】matrix inverse matrix elementary transformation adjoin matrix Linear equations目录一、引言 (01)二、预备知识 (01)(一)基本概念 (01)(二)可逆矩阵的性质 (01)三、矩阵可逆的若干判别方法 (02)(一)定义判别法 (02)(二)行列式判别法 (02)(三)秩判别法 (02)(四)伴随矩阵判别法 (02)(五)初等变换判别法 (02)(六)初等矩阵判别法 (02)(七)矩阵向量组的秩判别法法 (03)(八)线性方程组判别法 (03)(九)标准形判别法 (04)(十)多项式判别法 (04)(十一)特征值判别法 (05)四、十种常见矩阵的可逆性 (05)五、矩阵可逆判别方法的实例 (07)六、小结 (11)参考文献 (11)致谢 (12)矩阵可逆的若干判别方法学生姓名:郭晓平 指导老师:宋蔷薇一、引言在矩阵的乘法运算中,就像理数的倒数一样,可逆矩阵是构成矩阵运算理论体系不可或缺的一部分。
二阶矩阵的可逆矩阵
摘要:
一、可逆矩阵的定义
二、二阶矩阵的可逆矩阵判定条件
三、可逆矩阵的性质
四、求解二阶矩阵的可逆矩阵方法
正文:
矩阵的可逆性是矩阵理论中的一个重要概念,特别是在二阶矩阵中,可逆矩阵的判定和性质有着非常直观的理解。
一、可逆矩阵的定义
一个可逆矩阵,也被称为非奇异矩阵,是指与其行列式值非零的矩阵,即如果一个n阶矩阵A的行列式|A|≠0,则称A为可逆矩阵。
二、二阶矩阵的可逆矩阵判定条件
对于二阶矩阵,我们可以通过行列式的值来判断其是否可逆。
具体来说,如果一个二阶矩阵A的行列式|A|≠0,则A是可逆矩阵。
这是因为,二阶矩阵的行列式可以表示为其主对角线元素之积减去副对角线元素之积,如果这个值非零,那么矩阵A就可以通过初等行变换进行逆矩阵的求解。
三、可逆矩阵的性质
可逆矩阵具有很多重要的性质,其中包括:可逆矩阵的逆矩阵存在且唯一,即对于任意可逆矩阵A,都存在唯一的逆矩阵A^-1,满足AA^-1=A^-1A=I,其中I是单位矩阵;可逆矩阵的行列式与其逆矩阵的行列式互为倒数,
即|A|·|A^-1|=1。
四、求解二阶矩阵的可逆矩阵方法
对于二阶矩阵,我们可以通过初等行变换来求解其可逆矩阵。
具体来说,设A=|a11 a12|,|a21 a22|,我们可以通过交换行或者用非零行的倍数替换行来得到单位矩阵,这样得到的矩阵就是原矩阵A的可逆矩阵。
可逆矩阵的充要条件
1.可逆矩阵的充要条件:
a. 矩阵的行列式不等于0 :可逆矩阵的行列式的值任何一个都不能为0,所以可以利用行列式来判断矩阵是否可逆,若行列式值不为0,即表示该矩阵可逆。
b. 零空间中只有0向量:只有矩阵的零空间中只有0向量,才能保证矩阵能准确的求逆,一旦矩阵空间中有非0向量,则表明该矩阵不能可逆。
c. 矩阵的列向量是线性无关的:任意的矩阵的列向量必须是线性无关的,这样列向量可以组成一个正交矩阵,即基底可逆,只有基底可逆时才能满足可逆矩阵的充要条件。
d. 可逆矩阵形式:一个可逆矩阵有一种特殊形式,它可以用有限多个特殊矩形,这些矩形是行列式值不为0、且零空间中只有0向量,且列向量基底可逆等条件组成的,这就是可逆矩阵的形式。
总之,要满足可逆矩阵的充要条件,需要矩阵行列式不等于0、零空间中只有0向量和列向量是线性无关的,此外,还要满足可逆矩阵的特殊形式,由以上条件共同构成可逆矩阵的充要条件。
九种方法判断矩阵可逆
1. 行列式不为0。
矩阵可逆的充分必要条件是其行列式不为0。
2. 秩等于矩阵维数。
一个n阶矩阵A可逆,当且仅当它秩等于n。
3. 列向量线性无关。
一个n阶矩阵A可逆,则它的列向量线性无关。
4. 行向量线性无关。
一个n阶矩阵A可逆,则它的行向量线性无关。
5. 线性映射单射。
一个n阶矩阵A可逆,则它表示的线性映射是单射。
6. 线性映射满射。
一个n阶矩阵A可逆,则它表示的线性映射是满射。
7. 齐次线性方程唯一解。
一个n阶矩阵A可逆,则对于任意非零向量b,线性方程组Ax=b有唯一解x=A^(-1)b。
8. 矩阵可对角化。
一个n阶矩阵A可逆,则它可对角化。
9. 列满秩。
一个n阶矩阵A可逆,则其列满秩。
简谈矩阵可逆的判别法与其运用内容摘要:逆矩阵的计算与证明是线性代数中关于矩阵这一条主线的重要知识点,逆矩阵的性质、矩阵可逆的充分必要条件以及逆矩阵的各类计算方法已成为学习高等代数的一大重点,许多同学在复习的过程中对逆矩阵的计算投入了许多时间去反复训练,而对证明却相对有所忽略,以致某些情况下对可逆性的证明无从下手,我就我学习高等代数以来对逆矩阵的思考和心得和大家分享分享。
首先,矩阵乘法有别于同学们之前接触过的乘法运算的一个最重要的不同点就是矩阵的乘法不满足交换律,与矩阵相交换有联系的主要是逆矩阵的定义式,这也是关于矩阵可逆性证明的一个重要突破点。
下面主要介绍几个可以证明矩阵可逆的判别方法。
关键词:可逆,矩阵,判别法,扩充,1.导言:矩阵与生活有着密不可分的联系,矩阵的逆矩阵也是矩阵的重中之重,很多同学只知道逆矩阵的求法,算法,却并不知道矩阵在什么情况下存在逆矩阵,书上只定义了两种判断矩阵是否可逆的方法,但在面对种类繁多的各种逆矩阵存在性证明的题时,尚显不足,本文从各个方面,各个角度讲了矩阵可逆的判别法。
2.预备知识:逆矩阵定义:n 级方阵A 称为可逆的,如果有n 级方阵B ,使得AB=BA=E ;这里E是单位矩阵。
记作B=1-A 。
判别法1:矩阵A 是可逆的充分必要条件是A 非退化。
判别法2:n 级矩阵A 为可逆的充分必要条件是它能表成一些初等矩阵的乘积。
引理3:如果齐次线性方程组AX=0的系数矩阵的行列式|A|≠0,那么它只有零解。
引理4:对矩阵A 进行初等行(列)变换得到矩阵B ,矩阵旳秩rank(A)=rank(B)。
引理5:设∂是数域P 上线性空间V 的一个线性变换,如果对于数域P 中一数0λ,存在一个非零向量ξ,使得ξλξ0=∂.那么0λ称为∂的一个特征值,而ξ称为∂的属于0λ的一个特征向量。
引理6:设的特征多项式为的特征矩阵,称为称A A E A A E P A n --∈⨯λλ,n且A E -λ=()()A S S nk n k kn n 1111-++-++--- λλλ,其中k S 为A 中一切k 阶主子式之和,由此可知A E -λ=0在P 中最多有n 个不同的解,但在P 中也可能没有一个解,但在复数域C 中,A 一定有n 个解(包括重根个数)。
a的逆矩阵怎么算a的逆矩阵怎么算a的逆矩阵公式:A^-1=(A__)/|A|。
设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得:AB=BA=E,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。
注:E为单位矩阵。
a的逆矩阵求法假设原矩阵是A,单位阵是E就是对角线上是1其余全为0的矩阵,构造的新的矩阵是(A,E)的时候,只进行初等行变换变为(E,B)则B就是他的逆。
1、b实施初等行变换,即,如果与a i进行完全相同的百干初等行变换,目标变为a,单位矩阵。
在A被变换为单位矩阵I的同时,B的右半边矩阵同时被变换为A的逆矩阵。
可逆矩阵一定是方阵。
如果矩阵A是可逆的,则逆矩阵是唯一的。
A的逆矩阵的逆矩阵还是A。
(a-1)-1=A。
可逆矩阵A的转置矩阵AT也是可逆的,(AT)-1=(a-1)T(转置的逆等于相反的转置)。
2、如果矩阵A是可逆的,则矩阵A满足消除律。
也就是说,ab=o(或ba=o)、b=o 在ab=ac(或ba=ca)中是b=c。
两个回答可逆矩阵的乘积仍然是可逆的。
只有当矩阵是可逆的并且它是全秩矩阵时。
3、后退在一n一楼,行列ian一楼和单位写着的nx2n的行列的b=[a|i]b小学行变换实施,对版即ai和完权的全部同样的若干的初等行变换,目标成为了a单位的行列。
以a为单位,与行列的i一起,与b的右半边矩阵一起成为a的逆行列。
逆矩阵的性质1、可逆矩阵A的逆矩阵A??的逆矩阵为A。
即(A??)??=A2、如果矩阵A可逆,那么(kA)??=A??/k3、如果矩阵A和B都是可逆矩阵,那么(AB)??=B??A??4、如果矩阵A可逆,那么(A?)??=(A??)?5、如果矩阵A可逆,那么(A?)??=(A??)?6、如果矩阵A是可逆矩阵,那么|A??|=|A|??可逆矩阵的定义及其证明方法可逆矩阵是线性代数中的一个矩阵,其定义为在线性代数中,给定一个n阶方阵A,若存在一n阶方阵B,使得AB=BA=In(或AB=In、BA=In任满足一个),其中In为n 阶单位矩阵,则称A是可逆的,且B是A的逆阵,记作A^(-1)。