比例的应用练习题
- 格式:docx
- 大小:62.32 KB
- 文档页数:4
1、修一条路,如果每天修120米,8天可以修完;如果每天修150米,几天可以修完(用比例方法解)2、同学们做操,每行站20人,正好站18行。
如果每行站24人,可以站多少行(用比例方法解)3、飞机每小时飞行480千米,汽车每小时行60千米。
飞机行4小时的路程,汽车要行多少小时(用比例方法解)4、修一条公路,每天修千米,36天完成。
如果每天修千米,多少天可修完(用比例方法解)5、一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐(用比例方法解答)6、一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台(用比例方法解)7、生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成(用比例方法解)8、小明买4本同样的练习本用了元,元可以买多少本这样的练习本9、配制一种农药,药粉和水的比是1:500(1) 现有水6000千克,配制这种农药需要药粉多少千克(2) 现有药粉千克,配制这种农药需要水多少千克10、.两个底面积相等的长方体,第一个长方体与第二个长方体高的比是7:11,第二个长方体的体积是144立方分米,第一个长方体的体积是多一、填空题。
1.判断两个比能不能组成比例,要看()。
2.18:6=24:()=()÷3=()%。
3.甲数是乙数的倍,用最简单的整数比表示():()。
4.在一个比例中,两个内项的积是最小的合数,一个外项是,另一个外项是()。
5.在一个比例里,两个外项互为倒数,其中一个内项是,另一个内项是()。
6.在一个比例中,两个外项的积是最大的两位数,其中一个内项是33,另一个内项是()。
7.在比例3:12=6:24中,如果将第一个比的后项加6,第二个比的前项应(),比例才能成立。
8.在比例尺是1:2000000的地图上,量得甲地到乙地的距离是7厘米,实际距离是()千米。
二、判断题。
比例练习题带答案十道1、张大妈家上个月用了8吨水,水费是12.8元。
李奶奶家用了10吨水,李奶奶家的水费是多少钱?2、有一批书,这批书如果每包20本,要捆18包。
如果每包30本,要捆多少包?3、一根木料,锯3段需要9分钟,如果锯6段,需要多少分钟?4、一辆汽车2小时行了140km,照这样的速度,甲地到乙地的距离是400km,需要行驶多少小时?5、“万达”修路队修筑一条公路,原计划每天修400m,15天可以修完。
结果12天就完成了任务,实际每天修多少米?6、学校用同样的方砖铺地,铺5㎡需要方砖120块,照这样计算,再铺32㎡,一共需要这种方砖多少块?7、发电厂运来一批煤,计划每天用30吨,12天用完,实际每天节约5吨煤,实际比计划多用了多少天?8、装修一间客厅,用边长5dm的方砖铺地,需要80块,用边长4dm的方砖铺地,需要多少块?需要X块5*5:4*4=X:8016X=2000X=2000/16X=125需要125块9、制作一批零件,甲单独完成要8小时,已知甲、乙的工作效率比是4:3,那么乙单独完成要多长时间?已知甲单独完成需要8小时,可以设甲的效率为每小时完成1/8批零件。
甲乙效率比4:3,。
设乙的效率为x。
则:x=4:3可求得x=*3/4=3/32则乙单独工作需要时间为2/3小时也就是10小时40分钟10、王明在100m赛跑冲到终点时领先李明10m,领先王亮15m。
如果李明和王亮按原来的速度继续冲向终点,那么当李明到达终点时,王亮还差多少米到达终点?X5=1200-150x=304x=1201200/120=10比和比例练习题一、填空: 1.甲乙两数的比是11:9,甲数占甲、乙两数和的,乙数占甲、乙两数和的。
甲、乙两数的比。
是3:2,甲数是乙数的倍,乙数是甲数的2. 某班男生人数与女生人数的比是34,女生人数与男生人数的比是,男生人数和女生人数的比是。
女生人数是总人数的比是。
.一本书,小明计划每天看27,这本书计划看完。
比例尺的应用练习题
1、在一幅比例尺是30:1的图纸上,一个零件的长度是
12厘米,它的实际长度是多少厘米?
2、在一幅地图上,测得甲、乙两地的图上距离是13厘米,
已知甲、乙两地的实际距离是780千米。
(1)、求这幅图的比例尺。
(2)、在这幅地图上量得A、B两城的图上距离是5厘米,求A、B两城的实际距离。
3、有一块铜、锌合金,铜和锌的重量比为2:3,如果再
加入锌6克,则新合金的重量为36克,求新合金中铜和锌
的重量比。
4、一只猎狗追一只野兔,猎狗与野兔的速度比为35:24。
野兔跑出550米后,猎狗才开始追,猎狗跑出多少米才能
追上野兔?
5、在比例尺是1:12000000的地图
上,量得济南到青岛的距离是4
厘米。
在比例尺是1:18000000
的地图上,济南到青岛的距离是多少厘米?
6、甲、乙、丙三种商品的总价值为5800元,按数量,甲与乙的比是1:2,乙与丙的比是1:2.5;按单价,甲与乙的比是3:2,乙与丙的比是4:3.三种商品各值多少元?
7、月球的半径是1700千米,地球的半径是6400千米。
在一张教学挂图上把地球画成半径是6.4厘米的圆,月球相应地应画成多大直径的圆?
8、在比例尺是1:30000的图纸上量得长是5厘米的一条公路,由甲和乙两个队共同修需要6天完成。
甲、乙两队的工作效率之比是2:3,如果共同修5天,乙队要比甲队多修多少米?。
比的应用练习题及答案一、选择题1. 一个班级有40名学生,其中女生占总人数的60%,那么这个班级有多少名女生?A. 20B. 24C. 30D. 362. 某工厂生产了一批零件,其中合格率为95%,如果生产了500个零件,那么不合格的零件有多少个?A. 25B. 26C. 27D. 283. 某水果店的苹果和梨的比例是3:2,如果今天卖出了60个苹果,那么卖出了多少个梨?A. 40B. 50C. 60D. 70二、填空题4. 一个班级有50名学生,其中男生占总人数的40%,那么这个班级有________名男生。
5. 某公司员工总数为200人,其中管理人员占20%,技术人员占30%,其他人员占50%。
如果公司要招聘10名管理人员,那么管理人员的总数将变为________人。
6. 某农场种植了小麦和玉米,小麦的种植面积占总面积的60%,玉米的种植面积占总面积的40%。
如果农场总面积是100公顷,那么玉米的种植面积是________公顷。
三、计算题7. 某工厂生产了一批零件,其中不合格率为5%,已知不合格的零件有50个,求这批零件的总数。
8. 某班级有学生总数为100人,其中女生人数是男生人数的2/3,求这个班级男生和女生各有多少人。
9. 某公司在两个不同的市场销售产品,A市场占总销售额的70%,B市场占总销售额的30%。
如果A市场销售额为21万元,求B市场销售额。
四、应用题10. 某学校有学生总数为800人,其中一年级学生占总人数的20%,二年级学生占总人数的30%,三年级学生占总人数的50%。
如果学校要进行一次全校性的活动,需要按照年级比例分配活动物资,求每个年级应分配到的活动物资数量。
11. 某工厂有员工总数为300人,其中技术部门员工占总员工数的40%,生产部门员工占总员工数的50%,管理部门员工占总员工数的10%。
如果工厂计划进行一次技能培训,需要按照部门比例分配培训名额,求每个部门应分配到的培训名额数量。
按比例分配应用题练习一1、甲、乙两人每天共做56个机器零件,如果甲、乙工作效率的比是3:5,甲、乙两人每天各做多少个零件?2、石灰水是用石灰和水按1:100配成的,要配制4545千克的石灰水,需石灰多少千克?3、体育室有60根跳绳,按人数分配给甲、乙两班,甲班有42人,乙班有48人,两个班各分得跳绳多少根?4、一个分数,它的分子和分母的和是80,分子和分母的比是3:7,求这个分数?5、一块长方形地,周长400米,长和宽的比是3:2,这块地的面积是多少平方米6、甲、乙两个车间的平均人数是36人,如果两个车间人数的比是5:7,这两个车间各有多少人?7、建筑工人用水泥、沙子、石子按2:3:5配制成96吨的混凝土,需要水泥、沙子、石子各多少吨?8、一种药水是用药物和水按3:400配制成的。
(1)要配制这种药水1612千克,需要药粉多少千克?(2)用水60千克,需要药粉多少千克?(3)用48千克药粉,可配制成多少千克的药水?9、某班男生人数与女生人数的比是4:3,已知女生有24人,这个班级有学生多少人?10、商店运来一批电冰箱,卖了18台,卖出的台数与剩下的台数比是3:2,求运来电冰箱多少台?11、三角形的三个角的比是2:3:4这个三角形三个角各是多少度?它是什么三角形?12、六(1)班原有学生52人,后来又调进女生4人,这时女生人数是男生人数的43 ,六(1)班原来有女生多少人?13、一块长方形试验田的周长是120米,已知长与宽的比是2:1,这块试验 田的面积是多少平方米?14、用一根60厘米长的铁丝围一个长方体,已知长宽高的比是5:3:2,这个长方体体积是多少平方米?15、纸箱里有红绿黄三色球,红色球的个数是绿色球的43,绿色球的个数与黄色球个数的比是4:5,已知绿色球与黄色球共81个,问三色球各有多少个?16、甲箱有桔子100个,乙箱有桔子80个,从甲箱取出多少个桔子放到乙箱后,甲、乙两箱桔子的比是7:11?17、客货两车分别从甲乙两地同时相对开出,相遇时客车的行程与货车行程的比是5:3,已知客车比货车多行了122千米,甲乙两地相距多少千米?18、客货两车分别从甲乙两地同时相对开出,在离中点12千米处相遇,已知此时客车的行程与货车行程的比是3:2,甲乙两地相距多少千米?19、某班男生人数与女生人数的比是4:3,已知女生有24人,这个班级有学生多少人?20、某班男生人数与女生人数的比是4:3,已知男生有24人,这个班级有学生多少人?21、某班男生人数与女生人数的比是4:3,已知女生比男生少8人,这个班级有学生多少人?22、小明、小红、小芳三家住在老式的平房里,三家合用一个电表,本月三家共用电费240元,具体情况如下表:如果你负责收电费,每家应收多少元电费?23、某车间有140名职工,分成三个生产小组,已知第一组和第二组人数比为2:3,第二组和第三组人数比为4:5,这三个小组名有多少人?24、下图是个直角梯形,上底﹕高﹕下底=2﹕3﹕4,请小朋友动手把它分成面积比是1﹕2﹕3的三部分。
比例的应用题六年级一、按比例分配问题。
1. 学校把栽70棵树的任务,按照六年级三个班的人数分配给各班,一班有46人,二班有44人,三班有50人。
三个班各应栽树多少棵?- 解析:首先求出三个班的总人数:46 + 44+50=140(人)。
然后计算各班人数占总人数的比例,一班:(46)/(140),二班:(44)/(140),三班:(50)/(140)。
最后用树的总数乘以各班所占比例得到各班应栽树的棵数。
- 一班应栽树:70×(46)/(140) = 23(棵);- 二班应栽树:70×(44)/(140)=22(棵);- 三班应栽树:70×(50)/(140)=25(棵)。
2. 一种混凝土是由水泥、沙子和石子按2:3:5的比例混合而成的。
如果要配制20吨这种混凝土,需要水泥、沙子和石子各多少吨?- 解析:首先求出总份数:2 + 3+5 = 10份。
然后计算每份的重量:20÷10 = 2吨。
最后根据各自的份数求出水泥、沙子和石子的重量。
- 水泥:2×2 = 4吨;- 沙子:2×3 = 6吨;- 石子:2×5 = 10吨。
3. 某工厂有三个车间,第一车间、第二车间、第三车间的人数比是8:12:21,第一车间比第二车间少80人,三个车间共有多少人?- 解析:设第一车间有8x人,第二车间有12x人。
根据第一车间比第二车间少80人,可列方程12x-8x = 80,解得x = 20。
则三个车间总人数为(8 +12+21)×20=41×20 = 820人。
二、比例尺问题。
4. 在比例尺是1:6000000的地图上,量得A、B两地的距离是5厘米。
一辆汽车以每小时75千米的速度从A地开往B地,需要多少小时?- 解析:根据比例尺公式,实际距离=图上距离÷比例尺,所以A、B两地的实际距离为5÷(1)/(6000000)=5×6000000 = 30000000厘米=300千米。
解比例应用题1、一幅地图,图上的4 厘米,表示实际距离200 千米,这幅图的比例尺是多少?2、甲、乙两地相距240 千米,画在比例尺是1 ∶3000000 的地图上,长度是多少厘米?3、在一幅地图上,用 3 厘米的线段表示实际距离600 千米。
量得甲、乙两地的距离是4.5 厘米,甲、乙两地的实际距离是多少千米?4、运来一批纸装订成练习本,每本36 页,可订 40 本,若每本 30 页,可订多少本?5、在一幅比例尺是1: 30000 的地图上,量得东、西两村的距离是12.3 厘米,东、西两村的实际距离是多少米?6、甲地到乙地的实际距离是120 千米,在一幅比例尺是1:6000000 的地图上,应画多少厘米?7、一幅地图,图上的4 厘米,表示实际距离200 千米,这幅图的比例尺是多少?8、在一幅比例尺是1 :4000 的平面图上,量得一块三角形的菜地的底是12 厘米,高是 8 厘米,这块菜地的实际面积是多少公顷?9、一辆汽车2 小时行驶 130 千米。
照这样的速度,从甲地到乙地共行驶5 小时。
甲、乙两地相距多少千米?(用比例解)10、一辆汽车从甲地开往乙地,每小时行 64 千米, 5 小时到达。
如果要 4 小时到达,每小时需行驶多少千米?(用比例解)11、修一条公路,原计划每天修360 米,30 天可以修完。
如果要提前5 天修完,每天要修多少米?(用比例解)12、修一条路,如果每天修120 米,8 天可以修完;如果每天修150 米,可以提前几天可以修完?(用比例方法解)13、修一条公路,总长12 千米,开工 3 天修了 1.5 千米。
照这样计算,修完这条路还要多少天?(用比例解答)14、修一条路,如果每天修120 米,8 天可以修完;如果每天多修30 米,几天可以修完?(用比例方法解)15、小明买4 本同样的练习本用了 4.8 元,138 元可以买多少本这样的练习本 ?(用比例解答)16、工厂有一批煤,计划每天烧2.4 吨,42 天可以烧完。
比的应用专项练习150题(有答案)1.五年级(1)班的男女生人数比是3:5,其中男生比女生少12人,五级(1)班共有学生多少人?2.我们中华人民共和国国旗的长与宽的比为3:2.如果国旗的宽为80厘米,那么它的长是多少厘米?3.一种消毒水是把消毒液和水按2:5的比例配成的,180克的消毒水中放入了多少克的水?4.某手机超市门口放着一个按20:1的比例制作的手机模型,已知手机模型的高度是180cm,手机的实际高度是多少?5.果园里桃树棵数与梨树棵数的比是5:7,桃树比梨树少18棵.桃树与梨树各多少棵?6.食堂有面粉450千克,面粉和大米的重量比是5:3,大米和面粉各有多少千克?7.一种农药是用药液和水按1:1500配制而成.现在有6千克药液,可以配制这种农药几千克?8.某工厂的男职工与全长职工人数的比是4:7,全厂有职工364人,这个厂男、女职工各有多少人?9.甲、乙两数的平均数是56,甲与乙的比是4:3,甲、乙各是多少?10.甲、乙两车同时从A、B两地相对开出,在离中点60千米处相遇.相遇时,甲车与乙车行驶的路程比是3:5,A、B两地相距多少千米?11.修路队修一条路,已修长度和未修长度的比是2:3,再修50千米刚好到达中点,这条路全长多少千米?12.红布比蓝布多18m,红布与蓝布的比是7:5,两种布各有多少米?13.有甲、乙两个同学,甲同学积蓄了27元钱,两人各为灾区人民捐款15元后,甲、乙两个同学剩下的钱的数量比是3:4,乙同学原来有积蓄多少元?14.某班学生人数在40和50之间,男、女生人数的比是6:5,这个班男生比女生多多少人?15.加工一批零件,第一天完成的个数与未完成的个数的比是1:2,如果再加工120个,就可以完成这批零件的一半,这批零件共有几个?16.学校买来315本科普读物,按3:4的比借给五、六年级的同学,那么五年级比六年级少借多少本?17.新光村1989年旱田与水田的比是5:3,去年将2800公亩旱田改成水田后,旱田与水田的比是1:2,新光村共有水旱田多少公亩?18.修路工人修一条路,已修和未修的长度比是5:10,如果再修390米,已修和未修的长度比是2:3,这条路有多长?19.一种农药,纯药液与水重量比是1:800,20克纯药液要加水多少克?如果加水560千克,需要多少千克纯药液?20.六(1)班女生与男生人数的比是2:3,后来又转来4名女生,这时女生与全班人数的比是5:11,六(1)班现有女生多少人?21.某校五(2)班共有学生49人,男女生人数的比是3:4,这个班的男生有多少人?22.六(1)班在回收废电池活动中,共收集了84节废电池,六(1)班和六(2)班收集废电池的个数比是7:5,求六(2)班收集废电池多少节?23.鞋厂生产皮鞋,十月份生产双数与九月份的比是5:4.十月份生产2000双,九月份生产多少双?24.某校参加数学竞赛的男生与女生的人数比是6:5,后来又增加了5名女生,这时女生人数是男生人数的.原来参加数学竞赛的女生有多少人?25.甲乙两仓库水泥袋数的比是3:4,乙仓库比甲仓库多150袋,乙仓库有水泥多少袋?26.月饼馅是用豆沙和白糖合成的,豆沙和白糖的比是2:1,现在白糖450克,需要豆沙多少千克?27.苏宁电器有电视机460台,第一天卖出100台,剩下的两天卖完,已知第二天卖出的台数和第三天卖出的台数比是5:4,第二天比第三天多卖出多少台?28.在城乡小学生“手拉手活动”中,建国小学共捐出图书1620本,其中故事书和连环画数量的比是5:4.两种书各是多少本?29.小明读一本书,已经读了全书的,如果再读15页,则读过的页数与未读的页数的比是2:3,这本书有多少页?30.甲、乙两个仓库存储粮食的质量比是8:7,如果从甲仓库运出存粮的,乙仓库运进8吨,这时乙仓库比甲仓库存粮多15吨,那么原来甲、乙两仓库各存粮多少吨?31.学校食堂2010年前两个月用煤吨数比是3:5,如果一月份用煤吨,二月份用煤多少吨?32.汽车以每小时45千米的速度从甲地开往乙地,40分钟后,已知已行的路程与余下的路程比是1:2,问甲、乙两地相距多少千米?33.皮球和足球一共有91个,皮球和足球的比是2:5,皮球比足球少多少个?34.学校有大、小两个会议室,面积分别为150m2和100m2.六(1)班按会议室面积的比来分配打扫任务,打扫小会议室的人有14人,打扫大会议室的有多少人?35.城关中学共有学生1323人,已知男生人数与女生人数的比是25:24,男女生各有多少人?36.货车和客车分别同时从甲乙两地相向而行,在距中点6千米处相遇.已知货车和客车行的路程比是2:3.甲乙两地相距多少千米?37.王大伯计划640平方米的塑料大棚内种黄瓜和西红柿,种植面积的比是5:3,两种蔬菜各种了多少平方米?38.甲乙两个建筑队原有水泥的重量比是3:2,当甲队给乙队54吨水泥后,甲乙两队水泥的重量相等.甲队原来有多少吨水泥?39.甲、乙两根绳子,甲比乙长35米,已知乙与甲的绳长比为3:8.这两根绳子各有多少米?40.小华看一本书,已经看的与总页数的比是1:3,再看15页,则正好看完全书的.这本书共有多少页?41.工程队修一条路,上半月修好的米数与全长的比是1:5.如果再修360米,就正好修了这条路的一半.这条路全长多少米?42.甲、乙两班共有学生104人,如果两班各转走2人,则甲、乙两班学生人数比是11:9.原来两班各有学生多少人?43.甲乙两数的和是120,把甲的给乙,甲、乙的比是2:3,求原来的甲是多少?44.有一批水泥,第一天运走40吨,第二天运走42吨,这时剩下的水泥和运走的水泥的比是3:2,这批水泥共有多少吨?45.学校举办运动会,参加赛跑的人数和参加跳远的人数的比是8:3.参加跳远的人数比赛跑人数少30人,参加赛跑的有多少人?46.表比钟每小时快30秒,钟每小时比标准时慢30秒.问表是快还是慢?一昼夜相差多少秒?47.甲、乙、丙三位同学共有图书108本.乙比甲多18本,乙与丙的图书数之比是5:4.求甲、乙、丙三人所有的图书数之比.48.一本故事书有126页,已看页数与未看页数的比是4:5,这本故事书还剩多少页没看?49.一批儿童读物,按6:8分给甲、乙两个班.分完后发现,乙班比甲班多分得30本.这批儿童读物有多少本?50.小伟和小英给希望工程捐款的钱数比是7:8,两人共捐款75元.小伟和小英各捐款多少元?51.甲、乙两个长方形周长之比为5:12,甲的长与宽的比是3:2,乙的长与宽的比是7:5,求甲与乙的面积比?52.希望小学参加植树活动,把任务按2:3:4分配给四、五、六三个年级,已知六年级比四年级多植树84棵,这次任务三个年级共植树多少棵?53.小雅读一本名著,第一天读了一部分后,已读的页数与未读页数的比是5:7,第二天又读了92页,这时已读的页数是未读页数的4倍.第一天读了多少页?54.一条路,修了4天后,已修部分与剩下部分的比是2:3,如果再修75米,就能到达终点,这条路全长多少米?55.童乐幼儿园共有150本图书,其中的40%分给大班,剩下的图书按4:5分给小班和中班,小班和中班各分到多少本?56.两个车轮滚过同一段距离,甲车轮转了60圈,乙车轮转的圈数是甲车轮的,已知甲车轮的直径是50cm,那么乙车轮的直径是多少厘米?57.甲乙两个仓库共有水泥84吨.如果从甲仓库运出16吨水泥放入乙仓库,那么甲仓库和乙仓库的水泥数量比是4:3.甲仓库原来有水泥多少吨?58.甲、乙两车分别从A、B两站同时相对开出,甲车与乙车的速度比是3:2.甲车行驶6小时到达B站,乙车行驶多少小时可以到A站?59.甲厂有工人910人,乙厂有工人790人.从这两个厂抽调同样多的工人去参加植树活动,两个厂剩下的人数比是17:14.这两个厂被调去植树的工人分别有多少人?60.有两桶水:一桶8升,一桶13升,往两个桶中加进同样多的水后,两桶中水量之比是5:7,那麽往每个桶中加进去的水量是多少升?61.小明家果园里有三种树共319棵,其中杏树和苹果树的比是2:3,梨树是苹果树的,求出这三种树各有多少棵?62.一块合金内,铜和锌的比是2:3,现在再加入6克锌,共得新合金36克.求新合金中锌的重量.63.有甲乙两堆货.已知甲堆比乙堆多18吨,如果乙堆运走它的90%,就和甲堆运走的数量相等.这时乙堆和甲堆的货的数量比是1:3,两堆各运走货多少吨?64.已知一个直角三角形的两个锐角的度数比是1﹕4,这个三角形中最小的那个角是多少度?65.修一条路,已修米数是未修米数的,如果再修50米,这时已修米数与未修米数的比是7:3,这条路全长多少米?66.生产一批零件,师傅独做要10小时完成,徒弟每小时可以做40个.现在师徒二人一起做,完成任务时,师徒两人生产零件数量的比是3:2.这批零件一共有多少个?67.六年一班的男生与女生的人数比是8:7,又转来2名男生后,男生与女生的人数比是9:7.六年一班原来有多少人?68.在一次植树活动中,六年级与五年级植树棵数的比是8:5,已知五年级比六年级少植树21棵,两个年级一共植树多少棵?69.甲、乙两个班人数的比为6:5,甲班给乙班3人,乙班仍然比甲班少1人,求甲班有多少人?70.有一块长方形菜地,长比宽多60米,长与宽的比是5:3;菜地里的芹菜、萝卜和白菜的占地面积比是2:3:4.芹菜占地多少平方米,萝卜占地多少平方米,白菜占地多少平方米?71.把一批化肥分给甲、乙、丙三个村子,甲村分得总数的,其余按2:3的比例分给乙、丙两村,已知丙村分得18吨.这批化肥有多少吨?72.在一道减法算式中,被减数、减数、差的和是280,减数与差的比是5:2,求减数是多少?73.一块长方形地,量得它的周长是48米,长和宽的比是5:3.这块长方形地的面积是多少平方米?74.李师傅加工一批零件,第一天完成的个数与零件总数的比是1:4,如果再加工20个,就可以完成这批零件的一半,这批零件共有多少个?75.一批零件,已加工的个数与未加工的个数比是1:3,再加工150个,这时,已加工的与未加工的个数比是1:2,这批零件有多少个?76.小明买钢笔用去总钱数的,买书用去6元,这时用去的钱数和剩下钱数的比是5﹕4,他还剩多少钱?77.甲、乙两袋糖的质量比是4:1,从甲袋中取出13千克糖放入乙袋,这时两袋糖的质量比是7:5.求两袋糖的质量之和?78.黄明和张亮都积攒了一些零用钱,他们所积攒的钱数的比是9:5,在献爱心活动中,黄明捐了48元钱,张亮捐了20元钱,这时他们的剩余钱数相等,黄明原来有多少钱?79.学校合唱组有80人,美术组的人数是与合唱组的比是3:5,科技组的人数与美术组的2:3.科技组有多少人?80.某工程队俢一段路,第一天俢完全程的,第二天比第一天多修60米,这时已修的路程与剩下的路程的比是3:2,这段路共多少米?81.小林和小宁进行长跑比赛,两人同时从起点出发,当小林到达终点时,小宁离终点还有400米,已知小宁和小林的速度的比是4:5,两人进行的是多少米的比赛?82.小明看一本故事书,已看的页数与未看页数的比是4:5,再看15页,就看了这本书的一半.这本书一共多少页?83.一个长方形的周长是64分米,长是宽的,这个长方形长和宽分别是多少分米?84.植树的同学共有720人,已知六年级与五年级人数的比是3:2,六年级比四年级多80人,三个年级参加植树的各有多少人?85.在一次考试中,小强的语文和数学的平均分是90分,语文、数学两科分数的比是8:7,小强语文和数学各考了多少分?86.甲乙两个仓库存粮吨数的比为4:3,从甲仓库取出45吨运往乙仓库后,甲乙两仓库存粮吨数的比是7:9,那么原来两仓库各存粮多少吨?87.一个商场总营业额11.5万元,甲乙柜营业额比为3:2,乙丙柜营业额比为3:4,求甲柜营业额.88.两块重量相等的锡铁合金,一块合金中锡与铁的比是1:5,另一块合金中锡与铁的比是2:7,如果把两块合金融成一块,那么新融成的合金中锡与铁的比是多少?89.灰太狼和喜羊羊相隔10米,灰太狼每跑三步的距离等于喜羊羊跑四步的距离.喜羊羊跑五步的时间和灰太狼跑四步的时间相等.问跑多少米后灰太狼会追上喜羊羊.90.甲乙两个工程队的人数之比为5:2,从甲队跳出4人给乙队,此时甲队人数是乙队的两倍,问甲队有多少人?121.淘气做口算题,做完最后一题时做对的题数与做错的题数的比是4:1,经过检查修改后,有3道题被淘气改对了,这时淘气做对了总题数的,淘气还有几道题做错了?122.甲、乙两个瓶子装的酒精溶液体积的比是2:5,甲瓶中酒精与水的体积比是3:1,乙瓶中酒精与水的体积比是4:1,现在把两瓶溶液倒入一大瓶子混合,这时酒精与水的体积比是多少?123.学前班有几十位小朋友,老师买来176个苹果,216块饼干,324粒糖,并将它们尽可能多的平均分给每位小朋友,余下的苹果、饼干、糖的数量之比是1:2:3.问:学前班有多少位小朋友?124.小明看一本书,第一天读了一部分,已读的和未读的页数比是2:7,第二天读了68页,已读的和未读的页数比是4:5.这本书共有多少页?125.学校把植树任务按3:5分配给四、五两个年级.五年级栽了108棵,超过了原分配任务的,四年级原来要植树多少棵?126.甲、乙、丙三种物品共重450千克,甲与乙的质量比是5:4,乙与丙的质量比是2:3,甲物品重多少千克?127.甲袋中有红球120个、蓝球40个,乙袋中有红球360个、蓝球80个,要使两袋中红球所占的百分数一样,应从甲袋中取多少个蓝球与乙袋中的红球进行等量交换?128.甲、乙、丙三人共有钱2280元,甲、乙两人钱数的比是2:7,乙、丙两人钱数的比是3:7.三人各有钱多少元?129.一杯80克的盐水中,有盐4克,现在要使这杯盐水中盐与水的比变为1:9,需加多少克盐或蒸发多少克水?130.甲乙两人原有存款钱数的比是5:3,如果甲拿出1200元给乙,那么甲乙两人存款钱数的比就是3:2.原来甲有存款多少元?131.元旦将至,学校举行大合唱比赛,六年级参加大合唱比赛的人数要求在40﹣50人之间,男、女生人数的比是4:5,请你确定参加比赛的男生、女生人数各多少人?132.某车间原有男工人数是女工的,后来又调入2名女工,现在女工人数与男工人数的比是5:6,这个车间原有男工多少人?133.甲、乙、丙3人原有彩球数的比是9:4:2,甲给了丙24个彩球,乙也给了丙几个彩球,现在甲、乙、丙3人彩球数的比变为2:1:1.乙给了丙多少个彩球?135.六一班男生人数与女生人数比是4:5,已知女生比男生多3人,男女生各多少人?136.两个书架共有书260本,甲书架借出的本数与剩下的本数比为1:3,乙书架借出的本数与剩下的本数比是2:3,已知两个书架借出的本数一样多,原来两个书架各有书多少本?137.某化工厂第一、二、三车间人数的比为8:12:21,第一车间人数比第二车间人数少80人,三个车间各有多少人?138.水池里立着两根木桩,它们露出水面部分的长度比是10:1,当水面下降20厘米后,露出水面部分的长度比变成了5:2,求较短的一根木桩原来露出水面的部分是多少厘米?139.一个工厂有三个车间,第一车间与第二车间人数的比是2:3,第三车间与全厂职工总人数的比是1:3,已知第一车间比第二车间少200人,这个工厂一共有多少人?140.甲、乙两人身上的钱数的比量4:3,甲给乙10元后,这时乙人的钱占两人总钱的,现在乙人有多少钱.141.合唱团男、女生人数之比为5:3,如果男、女生各增加40名,则人数之比为5:4,原各有多少名?142.甲、乙两车同时从相距324千米的两地相对开出,3.6小时相遇.甲、乙两车速度的比是4:5,求乙车的速度.143.三种动物赛跑,已知兔子的速度是狐狸的2分之3倍,松鼠的速度与兔子的比是1:2,松鼠每分钟比狐狸每分钟少跑15米.狐狸每分跑多少米?144.开学初,六(1)班和六(2)班学生人数比是8:7,后来从六(1)班调出3名同学到六(2)班,这时两个班学生人数正好相等.开学初两个班各有多少人?145.甲乙两个学生放学回家,甲要比乙多走的路,而乙走的时间比甲少,甲、乙两个学生回家的速度比是多少?146.甲、乙两班学生在3月份做好事的件数比是7:5,已知甲班学生比乙班学生多做好事98件,问甲、乙两班学生在3月份共做好事多少件?148.用192厘米的铁丝做一个长方体的框架.长、宽、高的比是7:5:4.这个长方体框架的体积是多少?149.张家和李家本月的收入之比为8:5,本月开支的钱数比为8:3,月底张家结余240元,李家结余270元,问本月每家各收入多少元?150.数学奥林匹克学校某次入学考试,参加考试的男生与女生的人数之比为4:3,结果录取了91人,其中男生与女生的人数之比为8:5,在没有录取的学生中,男生与女生的人数之比为3:4,那么参加考试的学生共有多少人?参考答案:1.12÷(5﹣3)×(5+3),=12÷2×8=48(人).答:五级(1)班共有学生48人2.因为国旗的长与宽的比为3:2,所以国旗的长是宽的,国旗的长是:80×=120(厘米),答:它的长是120厘米3.180×=(克);答:180克的消毒水中放入了克的水.4.180÷20=9(cm);答:手机的实际高度是9cm5.一份是:18÷(7﹣5)=18÷2=9(棵),桃树的棵数:9×5=45(棵),梨树的棵数:9×7=63(棵),答:桃树有45棵,梨树有63棵6.一份数的千克数:450÷5=90(千克),大米的千克数:90×3=270(千克).答:大米有270千克,面粉有450千克7.6×(1+1500),=6×1501,=9006(千克);答:可以配制这种农药9006千克.8.(1)364×=208(人),(2)364﹣208=156(人),答:这个厂男职工有208人,女职工有156人9.甲数:56×2÷(4+3)×4,=112÷7×4,=16×4,=64,乙数:56×2÷(3+4)×3,=112÷7×3,=16×3,=48,答:甲是64,乙是4810.(60×2)÷(5﹣3)×(5+3),=120÷2×8,=480(千米);答:A、B两地相距480千米11.50÷(﹣),=50÷,=500(千米),答:这条路全长500米12.一份是:18÷(7﹣5),=18÷2,=9(米),红布:9×7=63(米),蓝布:9×5=45(米),答:红布有63米,蓝布有45米13.(27﹣15)÷+15,=12÷+15,=12×+15,=16+15,=31(元),答:乙同学原来有积蓄31元14.解:男女生比例为6:5,所以班内人数总数一定为5+6=11的倍数,而40到50之间11的倍数只有44,所以班里有44人.男生有:44×=24(人);女生有:44﹣24=20(人),24﹣20=4(人).答:这个班男生比女生多4人15.解:120÷(﹣),=120÷=720(个);答:这批零件共有720个16.315÷(3+4)×(4﹣3),=315÷7×1 =45(本);答:五年级比六年级少借45本17.解:2800÷(﹣),=2800÷,=9600(公亩),答:新光村共有水旱田9600公亩.18.解:390÷(﹣),=390÷(﹣),=390÷=390×15=5850(米);答:这条路有5850米长19.(1)设需要加水x克.1:800=20:x,x=800×20,x=16000,(2)设需要用y千克药液.1:800=y:560,800y=560,800y÷800=560÷800,y=0.7.答:20克药液要加水16000克.如果用560千克水,需要用0.7千克药液20.解:设原来六(1)班的总人数为x人,x=(1﹣)×(x+4),x=×(x+4),x=x+,x ﹣x=,x=,x=40;40×+4,=16+4,=20(人);答:六(1)班现有女生20人21.全班总份数:4+3=7(份);男生人数:49÷7×3=21(人)答:这个班男生有21人.22.84÷7×5,=12×5,=60(节);答:六(2)班收集废电池60节.23.解:2000×=1600(双);答:九月份生产1600双24.解:原来男生有:5÷()=5=90(人);女生人数:90×=75(人)答:原来参加数学竞赛的女生有75人25.150÷(4﹣3)×4=60026.解:设需要豆沙x千克,则x:450=2:1,x=450×2,x=900;答:需要豆沙900千克27.(460﹣100)÷(5+4)×(5﹣4),=360÷9×1,=40(台),答:第二天比第三天多卖出40台28.故事书有:1620×=900(本);连环画有:1620﹣900=720(本);答:故事书有900本,连环画有720本.29.15÷(),=15,=100(页);答:这本书有100页30.×=,=,﹣=,(15﹣8)÷=105(吨);105×=56(吨),105×=49(吨);答:原来甲仓库存粮56吨,乙仓库存粮49吨31.÷3×5=×5,=(吨);答:二月份用煤吨32.40分钟=小时,45×=30(千米),30=30×3=90(千米),答:甲、乙两地相距90千米33.91÷(2+5)×(5﹣2),=91÷7×3,=13×3,=39(个);答:皮球比足球少39个34.设打扫大会议室的有x人,100:14=150:x,100x=14×150,x=,x=21,答:打扫大会议室的有21人35.一份是:1323÷(25+24),=1323÷49,=27(人);男生的人数:27×25=675(人),女生的人数:27×24=648(人),答:男生有675人,女生有648人36.全程路程份数:2+3=6,货车行的路程占全程的:2÷5=,甲乙两地相距:6÷(﹣),=6÷,=60(千米);答:甲乙两地相距60千米37.黄瓜的面积:640×=400(平方米);西红柿的面积:640×=240(平方米).答:黄瓜种了400平方米,西红柿种了240平方米38.54×2÷(3﹣2)×3,=108÷1×3,=324(吨);答:甲队原来有324吨水泥39.35÷(8﹣3),=35÷5,=7(米);8×7=56(米),3×7=21(米);答:甲绳子长56米,乙绳子长21米40.10÷(﹣),=10,=60(页),答:这本书共有60页41.360÷(﹣),=360×,=1200(米);答:这条路全长1200米.42.(104﹣2×2)=100(人),100×=55(人),100×=45(人),甲班:55+2=57(人),乙班:45+2=47(人);答:原来甲班有57人,原来乙班有47人43.设原来的甲是x,(1﹣)x:(120﹣x)+x=2:3,x×3=(120﹣x)×2,2x=240﹣x,2x+x=240,x=240,x=72;答:原来的甲是7244.(40+42)÷,=82÷,=82×,=205(吨);答:这批水泥共有205吨45.8+3=11,30÷()×,=30÷,=30××,=48(人);或:30÷(8﹣3)×8,=30÷5×8,=6×8,=48(人);答:参加赛跑的有48人46.(1)钟一昼夜走了:30×24=720(秒),720秒=0.2小时,24﹣0.2=23.8(小时).(2)表23.8小时多走:30×23.8=714(秒).在24小时内,钟比标准时间慢了720秒,表比钟快了714秒,所以表慢了.一昼夜相差:720﹣714=6(秒)答:表慢了,一昼夜相差6秒47.设乙有5x本书,则甲有5x﹣18本书,丙有4x本书,则有5x+5x﹣18+4x=108,14x=108+18,14x=126,x=9;甲有图书:5×9﹣18=27(本),已有图书:5×9=45(本),丙有图书:4×9=36(本);所以图书数量比为:27:45:36=3:5:4;答:甲、乙、丙三人所有的图书数之比3:5:4 48.126×=70(页),答:这本故事书还剩70页没看49.30÷(﹣),=30,=210(本);答:这批儿童读物有210本50.75×=35(元),75×=40(元),答:小伟捐款35元,小英捐款40元.51.假设甲的长和宽分别为6厘米和4厘米,乙的长和宽分别为14厘米和10厘米,则甲的面积为:6×4=24(平方厘米),乙的面积是:14×10=140(平方厘米),所以甲的面积:乙的面积=24:140=6:35,答:甲与乙的面积比是6:3552.84÷(4﹣2)×(2+3+4)=42×9=378(棵);答:这次任务三个年级共植树378棵.53.92÷(﹣)×,=92÷×,=192(页);答:第一天读了192页.54.75=75=125(米).答:这条路全长125米55.设小班分到4x本,则中班分到5x本,根据题意可得:4x+5x=150×(1﹣40%),x=10,4x=4×10=40,5x=5×10=50,答:小班分到40本,中班分到50本56.60×=50(圈),3.14×50×60÷(3.14×50),=942÷157,=60(cm);答:乙车轮的直径是60厘米57.84×,=84×,=48(吨),48+16=64(吨);答:甲仓库原来有水泥64吨58.6÷2×3=9(小时);答:乙车行驶9小时可以到A站59.设抽调x工人去参加植树活动,(910﹣x):(790﹣x)=17:14,(910﹣x)×14=(790﹣x)×17,910×14﹣14x=790×17﹣17x,12740﹣14x=13430﹣17x,12740﹣14x﹣12740+17x=13430﹣17x﹣12740+17x,17x﹣14x=13430﹣12740,3x=690,x=230;答:甲厂被调去植树的工人有230人,乙厂被调去植树的工人有230人60.设加进去的水量为x升,则会有(8+x):(13+x)=5:7,(8+x)×7=(13+x)×5,56+7x=65+5x,2x=9,x=4.5;答:加进去的水量为4.5升61.设苹果树有x 棵,杏树有x 棵,梨树的棵数是x 棵,x+x+x=319,x=319,x=319,x=319×,x=132,杏树:x=×132=88(棵),梨树:x=×132=99(棵),答:苹果树有132棵;杏树有88棵;梨树有99棵62.36﹣6=30(克),2+3=5(份),其中锌占总份数的,30×=18(克),18+6=24(克).答:新合金中锌的重量是24克63.设乙原有x吨,则甲有x+18吨,(1﹣90%)x:(x+18﹣90%x)=1:3,0.1x+18=0.3x,0.2x=18,x=90,90×90%=81(吨)答:两堆各运走81吨货物64.90×=18(度)答:这个三角形中最小的那个角是18度65.÷(1+)=,50÷(﹣)=300(米);答:全长300米66.因为,师徒两人生产零件数量的比是3:2.所以师徒两人生产效率的比是3:2,即单独生产一批零件,师徒两人时间比是2:3,那么师傅独做要10小时完成,徒弟完成要用的时间是:10×=15(小时),这批零件一共有:15×40=600(个),答:这批零件一共有600个67.女生的人数:2÷(﹣),=2,=14(人),六年一班原来有的人数:14÷7×(8+7),=2×15,=30(人),答:六年一班原来有30人68.21÷=21÷=91(棵);答:两个年级一共植树91棵69.(3×2+1)÷(6﹣5)×6,=7÷1×6,=42(人),答:甲班有42人70.60÷(5﹣3)=30(米),长:30×5=150(米),宽:30×3=90(米),面积:150×90=13500(平方米),芹菜占地面积:13500×=3000(平方米),萝卜占地面积:13500×=4500(平方米),白菜占地面积:13500×=6000(平方米),答:芹菜占地3000平方米,萝卜占地4500平方米,白菜占地6000平方米71.18÷3×(2+3)÷(1﹣),=30×,=40(吨);答:这批化肥有40吨72.被减数(差加减数)是:280÷2=140,减数与差的总份数:5+2=7份,减数:140×=100;答:减数是10073.长+宽为:48÷2=24(米);长为:24×=15(米);宽为:24×=9(米);面积为:15×9=135(平方米);答:这块长方形地的面积是135平方米74.20÷(﹣),=20÷,=80(个)75.150÷(﹣),=150÷,=1800(个),答:这批零件有1800个76.6÷(﹣),=6÷,=6×,=27(元);27×=12(元);答:他还剩12元钱77.13÷(),=13÷(),=13×,=60(千克);答:两袋糖的质量之和是60千克78.设每一份为x元,由题意得,9x﹣48=5x﹣20,4x=28,x=7;黄明原来的钱数:9×7=63(元).答:黄明原来有63元钱79.解:80÷5×3×,=16×3×,=32(人);答:科技组有32人80.3+2=5(份),60÷(﹣﹣),=60÷,=60×10,=600(米);答;这段路共600米81.400÷(1﹣),=400÷,=2000(米);答:两人进行的是2000米的比赛.82.15÷(﹣)=15÷=270(页);答:这本书一共270页83.64÷2=32(分米),5+3=8,32×=20(分米),32×=12(分米);答:这个长方形长和宽分别是20分米和12分米84.设四年级的人数为x,则六年级的人数为(x+80),五年级的人数为(x+80)×,x+x+80+(x+80)×=720,2x+80+x+=720,2x+x=720﹣80﹣,x=,x=220;220+80=300(人),300×=200(人);答:四年级参加植树的有220人,五年级有200人,六年级有300人85.90×2=180(分),8+7=15,180×=96(分),180×=84(分);答:小强语文考了96分,数学考了84分86.45÷(﹣),=45÷,=336(吨);答:两个仓库原来共存粮336吨87.甲:乙=3:2=9:6,乙:丙=3:4=6:8,则甲:乙:丙=9:6:8,则甲柜营业额:11.5×=11.5×=4.5(万元);答:甲柜营业额为4.5万元.88.(+):(+),=:,=7:29;答:新融成的合金中锡与铁的比是7:2989.根据题目条件有,灰太狼每跑3步的距离=喜羊羊跑4步的距离,所以灰太狼每跑1步的距离=喜羊羊跑步的距离.因为喜羊羊跑5步的时间=灰太狼跑4步的时间,知道灰太狼跑1步的时间=喜洋洋跑步的时间,由此可以求出灰太狼的速度:喜洋洋的速度=:=,设跑x上米后灰太狼会追上喜羊羊,x:(x﹣10)=16:15,16x﹣160=15x,x=160,答:跑160米后灰太狼会追上喜羊羊90.4÷(﹣)×,=4÷×,=60(人).答:甲队有60人91.12÷(﹣25%),=12÷(﹣),=12÷,=80(页);答:这本漫画预计80页92.360÷3=120(千米),乙车的速度占甲、乙速度和的几分之几:5÷(7+5)=,120×=50(千米);答:乙车的速度是50千米93.60×(1﹣)×,=60××,=15(人),60×(1﹣)×,=60××,=20(人),答:一年级有15人,二年级有20人94.120÷(﹣),=120÷,=800(页).答:这本书有800页95.52:48:50,=26:24:25;300÷(26+24+25)×26,=4×26,=104(本);。
比例尺应用题60题(有答案过程)比例尺应用题专项练习60题(有答案)1.一幅地图的比例尺是1:800000,在一幅地图上量得甲乙两地的距离是2.5厘米,,则甲乙两地的实际距离是多少千米?2.在比例尺是的地图上,测得甲乙两地的距离是8厘米,在另一幅1:4000000的地图上,甲乙两地相距多少厘米?3.在一幅地图上量得北京到沈阳的铁路长5厘米,地图的比例尺是1:7000000,北京到沈阳的铁路实际有多少千米?4.在比例尺是1:100的图纸上,量得一个正方形花坛的边长是10厘米这个花坛的实际面积是多少平方米?5.在比例尺是1:5000的图纸上,量得一个长方形花园的长是10cm,宽是8cm,这个花园的实际面积是多少平方米?6.在比例尺的地图上,量得A、B两地的距离长12厘米,甲乙两车同时从AB两地相对开出,经过4小时两车相遇,已知甲乙两车的速度比是3:2,甲乙两车的速度各是多少千米?7.某县人民政府门前的广场是一个长方形,长180米,宽100米.请你选择一个合适的比例尺,在下边的图纸内画出广场的平面图,并在图上注明长和宽.我设计的比例尺是_________.8.在比例尺是的地图上,有一段长是40厘米的道路.一辆时速是50千米的汽车走完这段路需要多少分钟?9.北京到上海大约相距1050千米,在比例尺为1:30000000的一幅地图上,量得两地相距多少厘米?10.在一张比例尺是1:5000000的地图上,小明量得北京到上海的距离是28.8cm,已知火车每小时行120千米,姥姥四月三十日晚7:00上车,小明应最晚在什么时候去接站?11.在如图中量出所需的数据(取整厘米数),再计算.A、B两地相距80千米,A、C两地相距多少千米呢?12.在标有比例尺的地图上,量得两地间相距12厘米,一列客车和一列货车从两地同时相向而行,4小时相遇,已知客车与货车的速度比是3:2,客车每小时行驶多少千米.13.在比例尺为1:6000000的中国地图上,量得两地间的距离是10厘米,甲、乙两列火车同时从两地相对开出,6小时相遇.甲车每小时行55千米,乙车每小时行多少千米?14.金牛与武汉的距离为120km,画在比例尺为1:600000的地图上长度为dm?15.在一幅比例尺是1:2000000的地图上,量得甲、乙两地相距10厘米,一辆汽车从甲地开往乙地,每小时行60 千米,行驶2.5小时后,离乙地还有多远?16.一个零件长0.02厘米,在一幅比例尺是150:1的地图上应画多少厘米?17.在比例尺是1:1000的地图上,量得一块长方形的菜地长5cm,宽6cm,如果在这块菜地的实际面积的上种上菠菜,剩下的按1:5种白菜和萝卜,白菜和萝卜各能种多少平方米?18.用60厘米长的铁丝围成一个直角三角形,三角形三条边的比是3:4:5.求该三角形的面积?19.在比例尺是的地图上,量的A、B相距25.5cm,一辆汽车由A地去B地,每小时行80km,需要多少小时才能到达?20.一块三角形菜地,底长80m,高60m,画在比例尺是1:500的地图上,面积是多少cm2?21.在一幅比例尺是1:6000000的地图上,量得A、B两地间距离是8厘米.一列火车上午9时开始以每小时120 千米的速度从A地开往B地,则下午几时到达B地?22.有一块草地(如图)测出主要数据,标在图上,若这幅图的比例尺是1:1000,算出这块地的实际面积.23.在一幅地图上量得甲乙两地相距1.2厘米.一辆汽车从甲地开往乙地,每小时行45千米,4小时到达,求这幅24.在比例尺1:30000的地图上,量得一条公路长5厘米,由甲乙两队合修需要6天完成.甲乙两队的工作效率比是2:3,求甲队的工作效率?25.看图填空⒈量一量辛庄小学平面图的长是_________厘米,宽是_________厘米,这所小学实际占地面积是_________平方米.⒉如果操场的长约是60米,宽约是40米.绕操场一圈大约是_________米.⒊教学楼的面积大约占学校总面积的_________%.26.在比例尺是1:5000000的地图上,量得甲地到乙地的距离是3.4厘米.甲地到乙地的实际距离是多少千米?27.育才小学的操场是一个长方形,画在比例尺是1:4000的平面图上,长6厘米,宽3厘米.操场的实际面积是多少平方米?28.学校要挖一个长方体水池,在比例尺1:200的设计图上,水池的长为12厘米,宽为10厘米,深为2厘米.(1)按图施工,这个水池的实际占地面积是多少平方米?(2)如果要在内壁和底面都要贴上瓷砖,贴瓷砖的面积最多是多少平方米?(3)如果往这个水池注入48立方米的水,请你求出这时水池的水深?29.小明家在百货商场的北偏西40°方向2500米处,图书馆在农业银行东偏南40°方向,农业银行到百货商场与到图书馆的距离相等.下面是小明坐出租车从家去图书馆的路线图(粗实线部分).已知出租车在3千米以内(含3千米)按起步价9元计算,以后每增加1千米车费就增加2元.请你按图中提供的信息先用刻度尺测一测,再算一算小明一共要花多少出租车费?30.在比例尺是的图纸上量得一块长方形试验田的长是4厘米,宽是3厘米,这块试验田的实际面积是多少平方米?如果每平方米试验田大约可以收稻谷1.5千克,这块试验田大约可以收稻谷多少千克?31.在比例尺是的地图上,量得一个圆柱形水池底面直径是4cm,高是5cm.(1)如果在这个水池的底面和四周抺上水泥,抺水泥面积是多少平方米?(2)这个水池最多能蓄水多少立方米?32.在比例尺为1:30000000的地图上,量得上海至北京的距离是4厘米.一架飞机从上海出发,每小时飞行500 千米,几小时可以到达北京?33.小明家距体育场有多远?(取整厘米数)34.在一张地图上量得AB两点间的距离是1.2厘米,AB两地的实际距离是60千米,又在图上量得CD间的距离是1.8厘米,CD间的实际距离是多少千米?35.在一幅比例尺是1:2000000的地图上量得甲乙两地相距30cm,如果在另一幅地图上量得甲乙两地相距10cm,则另一幅地图的比例尺是多少?36.一个长方形操场,长150米,宽120米,把它画在比例尺是的图纸上,长和宽各应画多少厘米?37.在比例尺是1:10000000的地图上,量得A、B两地的距离是2.4厘米.甲乙两车同时从两地出发,相向而行,已知甲车的速度是每小时48千米,两车的速度比是3:2.两车几小时后相遇?38.在地图上,测得甲乙两地的距离是12厘米.已知甲乙两地的实际距离是960千米.(1)求这幅图的比例尺?(2)在这幅地图上,量得A到B的图上距离是5厘米.A到B的实际距离是多少千米?39.一张照片长10厘米,宽6厘米.如果要使放大后照片的宽是30厘米,那么放大后照片的长应是多少厘米?40.如图的比例尺是求这块梯形地的实际面积.41.如图是一个长方形花坛以1:500的比例尺画出的,(量时取整厘米)请你求出这个花坛的实际面积是多少平方米?如果种每平方米的花草要35元,想用花草种满这个花坛,一万元够吗?42.用90厘米长的铁丝做成长与宽之比为3:2的长方形,如果把它画在比例尺是1:9的图纸上,那么这个长方形在图纸上的面积是多少?43.一个半径长是4毫米的圆形零件,画在一幅比例尺是25:1的图纸上,它的图上半径是多少厘米?44.在一张地图上量A地到B地的距离是5厘米,已知这张图纸的比例尺是1:3000000,A地到B地的实际距离是多少千米?45.一块长方形地,长与宽的比是6:5.按1:1000的比例尺画在图上,其周长是22厘米,计划在这块地上盖一幢楼,占地面积是这块地的50%,这幢楼的占地面积大约是多少平方米?46.在一幅1:500000 的地图上,量得北京一号地铁线长约是10cm,它的实际长度大约是多少?47.从A城到B城,图上距离为6.3厘米,比例尺是1:50000000.一架飞机每小时飞行600千米,如果从早上8时起飞,中途休息1小时30分,到达目的地是什么时间?48.下面是用1:4000的比例尺画出的一块水稻试验田的平面图.请你:(1)量一量:它的上底是_________厘米,下底是_________厘米.(取整厘米数)(2)算一算:它的实际面积是_________公顷.(3)画一画:以上图的高为直径画一个圆.(4)算一算:你画的这个圆的面积是_________平方厘米.49.张庄和王村相距960千米,要在两村间修筑一条笔直的马路,画在设计图上的距离是,这幅设计图的比例尺是多少?50.量一量算一算:(1)医院到商场的距离.(2)学校到少儿活动中心的距离.(3)学校到医院的距离.(4)还可以求什么距离?比例尺:51.一个蔬菜大棚,长40米,宽20米,将这个大棚画在比例尺是1:1000的图纸上.(1)长和宽应该画多少厘米?(2)请你画出这个蔬菜大棚的平面图.52.北京到天津的实际距离是120千米,在比例尺的地图上,两地距离是多少厘米?53.把一块长方形土地用1:500的比例尺画在平面图上,长是10厘米,宽与长的比是4:5,这块地的实际面积是多少平方米?54.在一块大草坪中间有一间边长3米的正方形房屋,在房屋的一角,用6米长的绳子拴着一只山羊,请画出山羊能吃到草的地方.按比例尺1:200画图.55.在一幅比例尺为1:2500000的地图上,量得南京与扬州之间的距离是3.8厘米.南京与扬州之间的实际距离大约是多少千米?56.根据右边的路线图,完成下表.路线方向路程小刺猬家→小猪家南偏东45°1500小猪家→小白兔家小白兔家→小猪家小猪家→小刺猬家57.在比例尺为1:6000000的铁路运行图上,量得甲、乙两城的铁路长7.2厘米.如果一列客车从甲城开往乙城要用4.5小时,这列客车平均每小时的速度是多少千米?58.小聪准备放假到北京去玩,但他不知道深圳和北京相距多远.联系到最近学习的比例知识后,他很快找来一张地图,但不巧的是这张地图上印有比例尺的一角不小心撕掉了.用这张地图小聪能知道深圳到北京有多远吗?聪想出了什么办法吗?59.一幅地图上,量得甲、乙两地相距3厘米,乙丙两地相距5厘米,已知甲、乙两地的实际距离是60千米,乙、丙两地的实际距离是多少千米?60.在比例尺是1:50000的图上,量得某村的平面图,长5cm,宽4cm,这个村实际占地面积是多少平方米?参考答案:1.解:2.5÷=2000000(厘米)=20(千米);2.解:8÷=40000000(厘米);40000000×=10(厘米);3.解:5÷=35000000(厘米),=350千米;4.解:10÷=1000(厘米)=10(米),10×10=100(平方米);5.解:10÷=50000(厘米)=500(米),8÷=40000(厘米)=400(米),500×400=200000(平方米);6.解:A、B两地的距离:12×20=240(千米),240÷4=60(千米/小时)60×=36(千米/小时),60﹣36=24(千米/小时);答:甲车的速度是36千米/小时,乙车的速度是24千米/小时.7.解:因为180米=18000厘米,100米=10000厘米,所以可以选用1:10000的比例尺;又因18000×=1.8厘米,10000×=1厘米,所以可以画出如下所示的广场的平面图:故答案为:1:10000.8.解:40÷=100000(厘米)=1(千米);1÷50=0.02(小时)=1.2(分钟);答:一辆时速是50千米的汽车走完这段路需要1.2分钟.9.解:因为1050千米=105000000厘米,答:量得两地相距3.5厘米.10.解:28.8=28.8×5000000=144000000(厘米),144000000厘米=1440千米,1440÷120=12(小时),因为从四月三十日晚7:00上车,经过12小时是五月一日的早晨7:00;答:小明应最晚在五月一日的早晨7:00去接站.11.解:如图所示,量出AB、AC的图上距离分别为1厘米和2厘米,又因A、B两地相距80千米,即图上距离1厘米表示实际距离80千米,则A、C两地的实际距离为80×2=160千米,答:A、C两地相距160千米.12.解:由线段比例尺可知1厘米代表40千米,两地的路程:40×12=480(千米),速度和:480÷4=120(千米),客车速度:120×=72(千米),答:客车每小时行驶72千米.13.解:①设两地间的距离是x厘米,得x=60000000.60000000厘米=600千米.②(600﹣55×6)÷6=270÷6=45(千米).答:乙车每小时行45千米.14.解:因为120千米=1200000(分米),则1200000×=2(分米);答:金牛与武汉的图上距离为2分米.15.解:10÷=20000000(厘米)=200(千米);200﹣(60×2.5)=200﹣150,=50(千米);答:离乙地还有50千米.16.解:0.02×=3(厘米);答:应画3厘米17.解:菜地的长:5÷=5000(厘米)=50(米),菜地的宽:6÷=6000(厘米)=60(米),菜地的面积:50×60=3000(平方米),剩下的面积:3000×(1﹣)=3000×=1800(平方米);种白菜的面积:1800×=300(平方米),种萝卜的面积:1800﹣300=1500(平方米);答:白菜种300平方米,萝卜种1500平方米.18.解:60×=15(厘米),15×20×=150(平方厘米);答:这个三角形的面积是150平方厘米.19.解:25.5×20÷80=510÷80=6.375(小时);答:需要6.375小时才能到达20.解:80米=8000厘米,60米=6000厘米,(8000×)×(6000×)=16×12=192(平方厘米);答:这块菜地的图上面积是192平方厘米;21.解:8÷=8×6000000=48000000(厘米),48000000厘米=480千米;480÷120=4(小时),9+4=13(时)(即下午1时);答:下午1时到达B地;22.解:量得这个图形的底为3厘米,高为2厘米,则3÷=3000(厘米)=30(米),2÷=2000(厘米)=20(米),30×20=600(平方米);答:这块地的实际面积是600平方米.23.解:45×4=180(千米),180千米=18000000厘米,1.2厘米:18000000厘米=1:15000000;答:这幅地图的比例尺是1:15000000.24.解:公路的长度:5÷=150000(厘米)=1.5(千米);工作效率之和:1.5÷6=0.25(千米/天);甲队的工作效率:0.25×=0.1(千米/天);答:甲队的工作效率是0.1千米/天.25.解:(1)量出平面图的长和宽的图上距离分别为8厘米和5厘米,则8÷=16000(厘米)=160(米),5÷=10000(厘米)=100(米),160×100=16000(平方米);答:这所小学实际占地面积是16000平方米.(2)(60+40)×2=100×2=200(米);答:绕操场一圈大约是200米.(3)2090÷16000≈13%;答:教学楼的面积大约占学校总面积的13%.故答案为:8,5,16000;200;13.26. 解:3.4÷÷100000=3.4×5000000÷100000=17000000÷100000=170(千米);答:甲地到乙地的距离是170千米.答:操场的实际面积是28800平方米.28.解:水池实际的长:12÷=2400(厘米)=24(米),水池实际的宽:10÷=2000(厘米)=20(米),水池实际的深度:2÷=400(厘米)=4(米),(1)24×20=480(平方米);答:这个水池的实际占地面积是480平方米.(2)(24×20+20×4+4×24)×2﹣24×20=(480+80+96)×2﹣480=656×2﹣480=1312﹣480=832(平方米);答:贴瓷砖的面积最多是832平方米.(3)48÷(24×20)=48÷480=0.1(米);答:这时水池的水深0.1米.29.解:因为图上距离1厘米表示实际距离500米,则小明家到图书馆的实际距离是:500×11=5500(米)=5.5(千米);9+(5.5﹣3)×2=9+5=14(元);答:小明一共要花14元出租车费.30. (1)试验田实际长是:4÷=8000(厘米)=80(米),试验田实际宽是:3÷=6000(厘米)=60(米),这块试验田的实际面积是:80×60=4800(平方米).答:这块试验田的实际面积是4800平方米;(2)这块试验田大约可以收稻谷:1.5×4800=7200(千克);答:这块试验田的实际面积是4800平方米,这块试验田大约可以收稻谷7200千克.31.解:(1)4×200=800(分米)=80(米),5×200=1000(分米)=100(米),水池的侧面积:3.14×20×100=6280(平方米),水池的底面积:3.14×(80÷2)2=5024(平方米),抹水泥的面积:6280+5024=11304(平方米);(2)水池的容积:3.14×(80÷2)2×100=5024×100=502400(立方米);答:抹水泥的面积是11304平方米,这个水池最多能蓄水502400立方米.32.解:4÷=120000000(厘米)=1200(千米),1200÷500=2.4(小时);答:2.4小时可以到达北京.33.解:量出小明家与体育场的图上距离2厘米,则2÷=200000(厘米)=2(千米);答:小明家距体育场有2千米.34.解:因为60千米=6000000厘米,则1.2厘米:6000000厘米=1:5000000;所以1.8÷=9000000(厘米)=90(千米);答:CD间的实际距离是90千米.35.解:甲、乙两地的实际距离:2000000×30=60000000(cm),另一幅地图的比例尺是:10:60000000=1:6000000;36. 解:(1)150×=0.15(米);0.15米=15厘米;(2)120×=0.12(米);0.12米=12厘米;答:长应画15厘米,宽应画12厘米.37. 解:2.4×=24000000(厘米)=240(千米),48÷2×3=72(千米/小时),240÷(48+72)=240÷120=2(小时);答:两车2小时后相遇.38.解:(1)因为960千米=96000000厘米,则12厘米:96000000厘米=1:8000000;答:这幅图的比例尺是1:8000000.(2)5÷=40000000(厘米)=400(千米);答:A到B的实际距离是400千米.39.解:设放大后照片的长应是x厘米,10:x=6:30,6x=300,x=50;答:放大后照片的长应是50厘米.40.解答:解:因为此图的比例尺是:1:100,梯形的上底是:100×5=500(厘米),500厘米=5米,梯形的下底是,2.5×100=250(厘米),250厘米=2.5米,高是:3×100=300(厘米)300厘米=3米,这块梯形地的实际面积:(5+2.5)×3×=11.25(平方米),答:这块梯形地的实际面积是11.25平方米.41.解:量得长方形的长宽高分别为3厘米和2厘米,则3÷=1500(厘米)=15(米),2÷=1000(厘米)=10(米),花坛的实际面积为:15×10=150(平方米);花坛需要的钱数:150×35=5250(元),5250<10000,答:这个花坛的实际面积是150平方米,想用花草种满这个花坛,一万元够.42. 解:90÷2=45(厘米),45×=27(厘米),45﹣27=18(厘米);27×=3(厘米),18×=2(厘米);3×2=6(平方厘米);答:这个长方形在图纸上的面积是6平方厘米.43.解:4毫米=0.4厘米,0.4×=10(厘米);答:它的图上半径是10厘米.44.解:5÷=15000000(厘米),15000000厘米=150千米;答:A地到B地的实际距离是150千米.45.解:长和宽的和:22÷2=11(厘米),长方形的长:11×=6(厘米),长方形的宽:11﹣6=5(厘米);长方形的长的实际长度:6÷=6000(厘米)=60(米),长方形的宽的实际长度:5÷=5000(厘米)=50(米);这块地的实际面积:60×50=3000(平方米),这幢楼的占地面积:3000×50%=1500(平方米);答:这幢楼的占地面积大约是1500平方米.46.解:10÷=5000000(厘米)=50(千米);答:它的实际长度是50千米.47.解:(1)6.3÷=315000000(厘米)=3150(千米);(2)3150÷600=5.25(小时),5.25时=5小时15分,8时+1小时30分+5小时15分=14时45分,答:到达目的地是14:45.48.(1)量一量:它的上底是2厘米,下底是4厘米.(取整厘米数)(2)算一算:它的实际面积是0.01512公顷.(4)算一算:你画的这个圆的面积是8.0384平方厘米.解:(2)2÷=800(厘米),4÷=1600(厘米),3.2÷=1260(厘米),(800+16000)×1260÷2=1512000(平方厘米),1512000平方厘米=0.01512公顷;(3)3.2÷2=1.6(厘米),如图,比列尺1:400,(4)r=1.6(厘米),3.14×1.62=8.0384(平方厘米).49.解:960千米=96000000厘米, 4.8:96000000=1:20000000;答:这幅设计图的比例尺是1:20000000.50.解:200米=20000厘米,1厘米:20000厘米=;(1)3.5÷=3.5×20000=70000(厘米),70000厘米=700米;答:医院到商场的距离是700米.(2)图上距离是1.5厘米,实际距离=1.5÷=1.5×20000=30000(厘米),30000厘米=300米;答:学校到少儿活动中心的距离是300米.(3)图上距离是2厘米,实际距离=2÷=2×20000=40000(厘米);,40000厘米=400米;答:学校到医院的距离是400米.(4)还可以求学校到商场的距离:图上距离是2.5厘米,实际距离=2.5÷=2.5×20000=50000(厘米),50000厘米=500米;答:学校到商场的距离是500米.51. 解:(1)40米=4000厘米,20米=2000厘米,4000×=4(厘米),2000×=2(厘米);答:这个大棚的图上长是4厘米,宽是2厘米;(2)以长为4厘米,宽为2厘米画出一个长方形即是这个蔬菜大棚的平面图52. 解:120千米=12000000(厘米);12000000×=2.4(厘米);答:两地距离是2.4厘米.53.解:10÷=18(厘米)18﹣10=8(厘米),10÷=5000(厘米)=50(米),8÷=8×500=4000(厘米)=40(米),50×40=2000(平方米),答:这块地的实际路面是2000平方米;故答案为:2000平方米54.解:因为3米=300厘米,6米=600厘米,则300×=1.5(厘米),600×=3(厘米),如图所示,羊所能吃到草的区域为蓝色部分,A为半径为3厘米的圆的面积的,B和C都是半径为1.5厘米的圆.55.解:3.8÷=3.8×2500000=9500000(厘米),9500000(厘米)=95千米;答:南京与扬州之间的实际距离大约是95千米.56.解:(1)求小刺猬家到小猪家的方向和路程.方向:南偏东45°;路程:图上1厘米的距离代表实际距离500米,小刺猬家到小猪家的图上距离是3厘米,所以实际路程是500×3=1500(米)(2)求小猪家到小白兔家方向:东偏北45°;路程:图上距离是4厘米,所以实际路程是500×4=2000(米)(3)小白兔到小猪家的方向和路程.方向:南偏西45°;路程是500×4=2000(米).(4)小猪家到小刺猬家的方向和路程.方向:西偏北45°;路程是500×3=1500(米).故答案为:南偏东45°,1500米. 东偏北45°,2000米.南偏西45°,2000米.西偏北45°,1500米.57.解:7.2=7.2×6000000=43200000(厘米)=432千米;432÷4.5=96(千米);答:这列客车平均每小时的速度是96千米.58.解:(1)这幅地图的比例尺不知道,则无法计算深圳到北京的实际距离.(2)小聪可以先量出深圳到广州的图上距离,实际距离已知,依据“比例尺=图上距离:实际距离”求出这幅地图的比例尺,再量出深圳到北京的图上距离,依据“图上距离÷比例尺”=实际距离即可求出深圳到北京的实际距离59.解:60千米=6000000厘米,比例尺:3:60000000=1:2000000,乙、丙两地的实际距离:5÷=10000000(厘米)=100(千米);答:甲、乙两地的实际距离100千米.60.解:5÷=250000(厘米)=2500(米),4÷=200000(厘米)=2000(米),2500×2000=5000000(平方米);答:这个村实际占地面积是5000000平方米.。
比例的应用练习题1、一种农药和水按1:200配成药水防治病虫害,现在要配制8040千克,需要药和水各多少千克?2、、一种农药,用药液和水按照1:1500配制而成。
(1)要配制这种农药750.5千克,需要药液和水各多少千克?(2)现在有540千克的水,要配制这种农药,需要多少千克药液?(3)如果现在只有3千克的药液,能配制这种农药多少千克?3、、要配制一种药水,药粉和水的质量比是1:500(1)现在有水2000千克,需要药粉多少千克?(2)要配制这种药水2004千克,需要药粉和水各多少千克?4、一辆汽车3小时行108千米,以同样的速度,5小时行多少千米?5、生产一批零件,每天做72个,15天完成任务。
如果12天完成,每天应多少个零件?6、50千克花生可出油16千克,照这样计算,80吨花生可出油多少千克?7、修一条路,每天修240米,10天完成,如果每天修200米,几天可以完成?8、要运4000吨货物,4天运了400吨。
照这样计算,剩下的还有多少天才运完?9、装订一批书,计划每天装订1800本,40天完成。
实际每天比计划多装订200本,实际几天完成?10、用同样的砖铺地,铺18平方米要用618块砖。
如果铺24平方米,要用多少块砖?11、一间房子要用方砖铺地,用面积9平方分米的方砖,需要96块。
如果改用面积是4平方分米的方砖,需要多少块?12、用边长是15厘米的方砖铺地,需要2000块。
如果改用边长25厘米的方砖来铺,需要多少块?13、一种农药和水按1:200配制成药水,现在要配制8040千克药水,需要农药多少千克?14、在比例尺是1 ∶6000000的地图上,量得南京到北京的距离是15厘米.南京到北京的实际距离是多少千米?15、一个机器零件长3厘米,画在一张比例尺为20:1的图纸上,应画多长?16、一个长方形操场,长240米,宽160米。
把它画在比例尺是1:800的图纸上,长和宽各应画多少厘米?并画出平面图。
第二单元应用题①学校___________ 班别___________ 姓名_____________ 分数_____________1、一个圆锥形稻谷堆,底面半径4米,高20米,已知每立方米稻谷重750千克,这堆稻谷重多少千克?2、小明的身高1.5m,她的影子长是2.4m。
如果同一时间,同一地点测得一棵树的影子长4m,这棵树有多高?3、在比例尺是1:5000000的地图上,量得A 、B 两地铁路距离7厘米,客、货两列火车同时从A 、 B 两地相对开出,2小时后相遇,已知客车与货车速度比为.2:3,求客车、货车每小时各行多少千米?4、一个圆柱长20厘米,被截去6厘米一段后,圆柱表面积减少了75.36厘米2,求截去的圆柱体积。
5、淘气、笑笑、乐乐同时折150只同样的千纸鹤,当淘气折完时,笑笑折了120只,乐乐折了100只,照这样的速度,笑笑折完时,乐乐还有多少只没有折?(用比例解)第二单元应用题②学校___________ 班别___________ 姓名_____________ 分数_____________1、2022年北京冬奥会,"圈粉"无数的是在奥运村各司其职的智能机器人。
它们身上有一种精密零件,其实际长度是0.3毫米,画在设计图纸上的长度是9厘米,这张图纸的比例尺是多少?2、学校有一块三角形的劳动实践基地,在比例尺为1:200的学校平面图上,量得它的底是5cm,高是3.5cm,这块地的实际面积是多少平方米?3、设计师按1:300的比例制作大楼模型,大楼的实际高度是81米,模型的高度是多少米?外模没枝型的高度为大线。
4、A 、 B 两地画在比例尺为1:30000000的地图上长度为3cm,把它画在比例尺为1:45000000的地图。
图上长度是多少?5、在比例尺是1:4000000的地图上量得甲、乙两地相距9cm,一列货车和一列客车分别从甲,乙两地同时开出,相向而行,2小时相遇,已知客车与货车的速度比是5:4,客车的速度是多少?6、将一个长25米,宽15米的长方形按1:500的比例尺画在图纸上,该长方形在图纸上的面积是多少平方厘米?。
1、汽车5小时行200千米,照这样计算,3小时行多少千米?2、一批零件,原计划生产120个,8天可以完成;实际每天比计划多生产40个,可以提前几天完成?3、两个互相咬合的齿轮,大齿轮有100个齿,小齿轮有40个齿。
如果大齿轮每分钟转90转,小齿轮每分钟转多少转?4、甲乙两数的比是3:5/1/3,已知甲数为84,乙数为多少?5、5台抽水机3小时能抽水600立方米,照这样计算,4台抽水机4小时能抽水多少立方米?6、一本书原有416页,每页30行每行25字,现在把它重排,重排后每页32行,每行26字,重排后有多少页?7、一批粮食,计划3600人吃15天。
吃了3天后,又增加了1200人。
余下的粮食还可以吃几天?8、甲乙两个仓库,甲仓存粮120吨,比乙仓的存粮数少1/3,乙仓存粮多少吨?1 正小兰身高1.5米她的影长2.4米如果同一时间同一地点测得一棵树的影子长4米这棵树有多高?2 正我国发射的科学实验人造地球卫星在空中绕地球运行6周要10.6小时运行14周要用多少小时?3 正一个晒盐场100克海水可以晒出3克盐如果一块盐田一次放入585000吨海水可以晒出多少吨盐?4 反一辆车去时每小时行60千米6.5小时到达目的地回来时每小时行78千米多长时间能够返回出发点?5 反修一条水渠每天工作6小时12天可以完成如果工作效率不变每天工作8小时多少天可以完成任务?解设x天可以完成任务12*6=8x x=96 反学校举行团体操表演如果每列25人要排24列如果每列20人要排多少列?解设要排X列25*24=20x x=307 正张大妈上个月用8吨水水费12.8元李奶奶用水10吨上个月李奶奶水费多少元?8 反一批书每包20本要捆18包如果每包30本要捆多少包?9 正小明买4支圆珠笔用6元买3支笔要多少?10 反学校小商店有两种圆珠笔小明带的钱刚好可以买4这单价是1.5元的如果买单价是2元的可以买多少支?1.一栋楼房东西方向长40m,在图纸上的长度是50m。
小学数学比例应用题〔共6篇〕篇1:六年级数学比例应用题练习题六年级数学比例应用题练习题(1)水果店一天运进苹果、香蕉、梨共390千克,苹果的重量是梨的1.5倍,香蕉的重量是梨的3/4,三种水果各运进多少千克?(2)一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?(3)有一快棱长20厘米的正方体木料,刨成一个底面直径的圆柱体,刨去木料的体积是多少?(4)一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?(5)两个小组装配收音机,甲组每天装配50台,第一天完成了总任务的10%,这时乙组才开场装配,每天装配40台,完成这批任务时,甲组做了多少天?(6)修筑一条公路,完成了全长的2/3后,离中点16。
5千米,这条公路全长多少千米?(7)师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?(8)两队修一条公路,甲队每天修全长的1/5,乙队独做7.5天修好。
假如两队合修2天后,其余由乙队独修,还要几天完成?(9)仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?(10)前轮在720米的间隔里比后轮多转40周,假如后轮的周长是2米,求前轮的周长。
11、为创立海华公司,张、王、李三人分别投资100万元、120万元和80万元。
在他们三人的共同努力下,到年末,公司共盈利60万元,你认为该如何合理分配这笔钱,每人分别得多少?12、甲乙两地相距360千米,一辆汽车从甲地到乙地方案7小时行完全程,汽车的速度如下表,问能否在规定的时间内行完全程?(计算后简要说明)13、在比例尺是的地图上,量得甲乙两地的间隔为4.5厘米,假如一辆客车和货车同时从甲乙两地相对开出,经过3小时相遇。
客车每小时行65千米,那么这辆货车每小时行多少千米?14、在比例尺是1:3000000的地图上,量得A、B两城之间的间隔是2.4厘米。
比例应用综合练习题比例应用综合练习题比例是数学中一个重要的概念,广泛应用于各个领域。
在现实生活中,我们经常会遇到需要用到比例的问题,比如购物打折、食谱调配、地图的比例尺等等。
通过练习比例应用题,不仅可以巩固对比例的理解,还能提高解决实际问题的能力。
本文将通过一些综合练习题,帮助读者更好地掌握比例的运用。
1. 打折购物小明在商场看中了一件原价为200元的衣服,商场正在打折,打8折。
请问小明购买这件衣服需要支付多少钱?解答:打8折意味着原价的80%,即200 * 80% = 160元。
所以小明购买这件衣服需要支付160元。
2. 食谱调配某食谱需要用到2杯面粉和1杯牛奶,小明想要做一半的分量,请问他需要用多少杯面粉和牛奶?解答:做一半的分量意味着原来的50%,所以小明需要用到2 * 50% = 1杯面粉和1 * 50% = 0.5杯牛奶。
3. 比例尺某地图的比例尺是1:50000,实际距离是4千米,那么在地图上的距离是多少?解答:比例尺1:50000表示实际距离与地图上的距离的比例是1:50000。
所以在地图上的距离是4千米 * 50000 = 200000米。
通过以上练习题,我们可以看到比例的应用非常广泛。
在实际生活中,我们经常会遇到需要用到比例的问题,因此掌握比例的运用是非常重要的。
除了上述的练习题,比例还可以应用于其他许多领域。
比如在建筑设计中,比例被用来确定建筑物的尺寸和比例关系,从而保证建筑物的美观和合理性。
在经济学中,比例被用来计算物价指数、通货膨胀率等重要经济指标。
在化学实验中,比例被用来确定化学物质的配比,从而保证实验的准确性和可重复性。
在解决比例应用题时,我们需要注意一些常见的问题。
首先,要明确比例的含义,比例是指两个量之间的相对关系。
其次,要注意单位的转换,有时候我们需要将不同单位的量进行转换才能进行比较。
另外,要注意比例的缩放,有时候我们需要根据给定的比例进行放大或缩小。
总之,比例是数学中一个重要的概念,广泛应用于各个领域。
比例的应用练习题一、买菜比例题小明去市场买菜,他买了500克的土豆,花费了5元。
如果按照同样的价格,他要买1千克土豆,需要花费多少元?解析:设小明要花费的金额为x元。
根据比例关系,500克土豆所需金额与1千克土豆所需金额的比例为500:1000,即5:x。
根据比例的性质,比例两边乘以相同的数得到的比例仍然相等,因此有5/500=x/1000,通过交叉相乘得到x=10。
所以,小明要花费10元才能买到1千克的土豆。
二、图书阅读比例题某图书馆共有5000本图书,其中小说类书籍占总数的40%,科学类书籍占总数的25%,其他类书籍占总数的35%。
求小说类书籍的数量。
解析:设小说类书籍的数量为x本。
根据比例关系,小说类书籍的数量与总图书数量5000的比例为x:5000,即40:100。
同样根据比例的性质,可得到40/100=x/5000,通过交叉相乘得到x=2000。
所以,小说类书籍的数量为2000本。
三、地图比例问题地图上的一个城市与实际大小的比例为1:5000,如果在地图上距离两个城市之间的直线距离是8厘米,那么两个城市之间的实际距离是多少?解析:设实际距离为x千米。
根据比例关系,地图上的距离与实际距离的比例为8:5000,即8/5000=x/1。
通过交叉相乘可得到x=0.016。
所以,两个城市之间的实际距离是0.016千米。
四、工作时间比例问题某公司工人A和B同时从事一项工作,工作时间比例为2:3,A工作8小时后完成任务,那么B需要工作多少小时才能完成同样的任务?解析:设B工作的小时数为x小时。
根据比例关系,A和B两人的工作时间比例为2:3,A工作8小时后完成任务,相应地,B工作x小时才能完成任务。
根据比例的性质,可以得到2/8=3/x,通过交叉相乘可得到x=12。
所以,B需要工作12小时才能完成同样的任务。
五、面积比例问题一个正方形花坛的面积是36平方米,如果将花坛的边长缩小为原来的一半,那么新花坛的面积是多少平方米?解析:设新花坛的面积为x平方米。
关于比例的数学应用题(精选50题)比例的数学应用题11、学校买来一批书,共1000本,把这批书按3:4:5分给四、五、六三个年级,每个年级各分到多少本?2、(1)果园里梨树与桃树的比是3:5,这个果园里共有果树40棵,梨树与桃树各多少棵?(2)果园里梨树与桃树的比是3:5,已知桃树有40棵。
这个果园共有果树多少棵?(3)果园里梨树与桃树的比是3:5,已知梨树比桃树少40棵,这个果园共有果树多少棵?3、一个长方形的周长是40分米,它的长与宽的`比是3:2,这个长方形的面积是多少?4、小明在期末考试中数文、数学、英语的均分为75分,它的三门学科成绩的比为8:8:9,它的三门成绩分别是多少?5、把一段长96厘米的铁丝做一个长方体框架,长方体的长宽高的比是5:4:3,这个长方体的长、宽、高分别是多少?6、加工一批零件,王师傅每小时加工48个,与李师傅每小时加工个数的比是4:5。
两个共同加工3小时,可以加工多少个零件?7、工厂买来120吨生产原料,其中的分给一车间,其余的按3:5分给甲乙两个车间,甲乙两个车间各分到多少吨?8、一种药水是用药粉和水按3:100配成的。
(1)要配制这种药水515千克,需要药粉多少千克?(2)有水60千克,需要药粉多少千克?(3)用90千克的药粉,可配成多少千克的药水?9、一杯盐水,盐与盐水的比为1:5,再加上16克盐后,盐与盐水的比为1:4,原来盐水有多少千克?10、甲乙两地相距600千米,两车分别从两地相向同时出发,3小时后两车相遇,已知快车与慢车的速度比为11:9,快车与慢车的速度分别是多少?11、某车间有140名职工,分成三个生产小组,已知第一组和第二组人数比为2:3,第二组和第三组人数比为4:5,这三个小组名有多少人?12、一班和二班的人数比为8:7,如果将一班的8名同学调到二班去,那么一班和二班的人数的比为4:5,求原来两班各有多少人?13、一批书如果每包20本,要捆18包,如果每包30本,要捆多少包?14、张大妈上个月用了8吨水,水费是12、8元,李奶奶家用了10吨水,李奶奶家上个月的水费是多少元?15、一台拖拉机2小时耕地1、25公顷,照这样计算,8小时可以耕地多少公顷?比例的数学应用题2正比例∶(1) 珍珍看50页的故事书要花35分钟,看250页需要几分钟?(2) 牛牛超级市场促销苦瓜汽水,3瓶特价25元。
比例的应用练习题 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】
比例的应用
班别:姓名:
一、判断下面两个量是否成正比例或反比例,说明理由。
1、每箱木瓜的个数一定,运来木瓜的箱数和木瓜的总个数。
2、看一本书,每天看的页数和所看的天数。
3、房间的面积一定,铺地砖的块数与每块地砖的面积。
4、每块地砖的面积一定,铺地面积与所需地砖的块数。
二、用比例尺知识解决问题。
1、一条跑道全长200米,在图纸上的长度是10厘米。
这幅图的比例尺是多
少?
2、一个零件的实际长度是8毫米,在设计图上用4厘米表示,这幅图的比例尺
是多少?
3、在一幅比例尺是1:4500000的地图上,量得甲乙两地之间的距离是20厘
米,甲乙两地的实际距离是多少千米?
4、在一张图纸上,量得学校操场的长是12厘米,宽是8厘米。
这张图纸的比
例尺是1:200,这个操场的实际面积是多少平方米?
5、甲乙两地的实际距离是300千米,在一幅地图上量得两地之间的距离是6厘
米。
在这一幅地图上,又量得甲丙之间的距离是4厘米,甲丙的实际距离是多少千米?
三、用正反比例解决问题。
1、光辉服装厂4天加工服装160套,照这样计算,生产360套服装,需要多少天?
2、化肥厂有一批煤,每天用12吨,可用40天。
如果这批煤要用60天,每天只能用多少吨?
3、修路队3天修路150米,照这样的速度,再修10天,又修多少米?
4、一辆汽车从甲城开往乙城,每小时行45千米,5小时到达。
返回时,每小时行驶50千米,几小时回到甲城?
5、一间房子,用面积是16平方分米的方砖铺地,需要54块。
如果改用面积是9平方分米的方砖,需要多少块?
6、用同样的砖铺地,铺18平方米要用砖618块。
如果铺24平方米,要用砖多
少块?。