硫酸铝混凝剂处理图
- 格式:xlsx
- 大小:25.52 KB
- 文档页数:1
第33卷第10期辽宁化工Vol.33,No.10 2004年10月Liaoning Chemical Industry October,2004三废治理硫酸铝絮凝处理垃圾渗滤液的特性研究张东翔,陆英梅,黎汉生(北京理工大学化工与环境学院,北京100081)摘要:采用硫酸铝为絮凝剂对垃圾渗滤液进行了前期强化处理特性研究,探讨了絮凝剂用量、垃圾渗滤液的酸度以及温度对城市垃圾渗滤液絮凝效果的影响。
结果表明,在垃圾渗滤液絮凝处理过程中,硫酸铝用量约0.5%为宜;絮凝过程中酸度和温度对垃圾渗滤液的絮凝效果有很大的影响,对不同的垃圾渗滤液类型和附属资源选择适宜的酸度和温度可以降低后续处理过程的负荷与处理成本,在室温下,用硫酸铝絮凝垃圾渗滤液的处理过程中,在pH=6.5左右处理效果最好。
关键词:硫酸铝;化学絮凝;垃圾渗滤液中图分类号:TQ125.1+4文献标识码:A文章编号:10040935(2004)10060103随着我国经济的迅速发展,城镇居民生活水平日益提高,垃圾产生的总量逐年增大,种类也越来越多。
许多垃圾若不加以妥善处理,会对城市及周边地区的生态环境和人民生活造成巨大的危害,甚至会殃及子孙后代[1]。
目前,国内外常采用焚烧、堆肥、填埋和综合利用等方法对垃圾进行处理。
垃圾卫生填埋具有工艺简单、技术成熟、处理费用低、管理和运输方便等优点,因而被国内外广泛采用[2]。
垃圾在填埋腐化过程中将产生有机污染物含量很高的垃圾渗滤液,这是垃圾卫生填埋需考虑的关键问题之一[3]。
国内外对垃圾渗滤液的处理进行了大量的研究,并采用多种串联工艺进行了大量处理垃圾渗滤液的试验,但是由于垃圾渗滤液是一种成分复杂,水质水量变化大的高浓度有机废水,达到国家排放标准的处理成本仍不能令人满意[4~7]。
另外,垃圾焚烧站及焚烧发电站也会在运储过程中产生垃圾渗滤液,目前的处理办法是喷入锅炉焚烧,但是这种处理方法能耗较高,没有充分利用焚烧发电站的废热与电力资源。
沉淀实验实验报告篇一:自由沉淀实验报告六、实验数据记录与整理1、实验数据记录沉降柱直径水样来源柱高静置沉淀时间/min表面皿表面皿编号质量/g表面皿和悬浮物总质量/g水样中悬浮物质量/g水样体积/mL悬浮物沉降柱浓度/工作水(g/ml)深/mm颗粒沉沉淀效速/率/%(mm/s)残余颗粒百分比/%0 5 10 20 30 60 1200 1 2 3 4 5 679.0438 80.7412 1.6974 81.7603 83.2075 1.4472 64.1890 65.4972 1.3082 66.1162 67.3286 1.2124 73.7895 74.9385 1.1490 83.4782 84.6290 1.1508 75.0332 76.1573 1.124131.0 30.0 30.0 30.0 30.0 31.0 31.00.0548 0.0482 0.0436 0.0404 0.0383 0.0371 0.0363846.0 808.0 780.0 724.0 664.0 500.0 361.01.860 0.883 0.395 0.230 0.069 0.02111.40 20.44 26.28 30.11 32.30 33.76100 87.96 79.56 73.72 69.89 67.70 66.242、实验数据整理(2)绘制沉淀曲线:E-t 、E-u 、ui~pi曲线如下: 2-1、绘制去除率与沉淀时间的曲线如下:图2.2:沉淀时间t与沉淀效率E的关系曲线2-2、绘制去除率与沉淀速度的曲线如下:图2.2:颗粒沉速u与沉淀效率E的关系曲线2-3、绘制去除率与沉淀速度的曲线如下:图2.3:颗粒沉速u与残余颗粒百分比的关系曲线(1)选择t=60min 时刻:(大家注意哦!这部分手写的,不要直接打印!) 水样中悬浮物质量=表面皿和悬浮物总质量-表面皿质量,如表格所示。
原水悬浮物的浓度:C0?水样中悬浮物质量1.6974??0.0548g/ml水样体积31.0悬浮物的浓度:C5?水样中悬浮物质量1.1508??0.0371g/ml水样体积31.0沉淀速率:u?h?10(500-250)??0.069mm/sti?6060?60C0-C50.0548-0.0371?100%??100%?32.30 C00.0548C50.0371?100%??100%?67.70 C00.0548沉淀效率:E5?残余颗粒百分比P5?篇二:混凝沉淀实验报告实验名称:混凝沉淀实验一、实验目的1、通过实验观察混凝现象、加深对混凝沉淀理论的理解;2、掌握确定最佳投药量的方法,选择和确定最佳混凝工艺条件;3、了解影响混凝条件的相关因数。
给水处理厂课程设计计算书1.1 工艺流程方案水厂采用如图1所示的工艺流程。
通过对主要处理构筑物的分析比较,从中制定出水厂处理工艺流程如图2所示。
↓↑图1 水厂处理工艺流程↓↓↓↓↓↓↓↓图2 水厂处理工艺流程框图(构筑物)1.2水处理构筑物计算 1.2.1配水井设计计算 1. 设计参数配水井设计规模为4012.5m 3/h 。
2. 设计计算(1)配水井有效容积配水井水停留时间采用2~3min ,取 2.5min T =,则配水井有效容积为:34012.5 2.5/60167.19W QT m ==⨯=(2)进水管管径1D配水井进水管的设计流量为334012.5/ 1.11/Q m h m s ==,查水力计算表知,当进水管管径11100D mm =时, 1.179/v m s =(在1.0~1.2/m s 范围内)。
(3)矩形薄壁堰进水从配水井底中心进入,经等宽度堰流入2个水斗再由管道接入2座后续处理构筑物。
每个后续处理构筑物的分配水量为334012.5/22006.25/0.557/q m h m s ===。
配水采用矩形薄壁溢流堰至配水管。
① 堰上水头H因单个出水溢流堰的流量为30.557/557/q m s L s ==,一般大于100/L s 采用矩形堰,小于100/L s 采用三角堰,所以本设计采用矩形堰(堰高h 取0.5m )。
矩形堰的流量公式为:3/2q =式中q ——矩形堰的流量,3/m s ;m ——流量系数,初步设计时采用0.42m =;b ——堰宽,m ,取堰宽 6.28b m =;H ——堰上水头,m 。
已知30.557/q m s =,0.42m =, 5.71b m =,代入下式,有:2/32/30.14H m ===② 堰顶宽度B 根据有关试验资料,当0.67BH<时,属于矩形薄壁堰。
取0.05B m =,这时0.36BH=(在0~0.67范围内),所以,该堰属于矩形薄壁堰。
不同pH的硫酸铝混凝剂水处理效果对比夏添;薛松;别宏宇;夏萍【摘要】针对水厂原水水质情况,选择3种不同pH的硫酸铝混凝剂进行混凝效果对比试验,研究不同pH的硫酸铝混凝剂对pH、碱度、浊度、残铝的控制效果.结果表明,相同投加量下,pH为2.92、3.07和3.58这三种不同pH的硫酸铝混凝剂对混凝出水pH、残铝、浊度影响不大.【期刊名称】《净水技术》【年(卷),期】2016(000)0z2【总页数】3页(P19-21)【关键词】硫酸铝;混凝;效果;残铝【作者】夏添;薛松;别宏宇;夏萍【作者单位】上海城市水资源开发利用国家工程中心有限公司,上海200082;上海城投水务(集团)有限公司,上海200002;上海城市水资源开发利用国家工程中心有限公司,上海200082;上海城市水资源开发利用国家工程中心有限公司,上海200082【正文语种】中文【中图分类】TU991强化混凝环节是提高水处理系统除污染效率的关键,而选择适合处理原水水质的优质高效的混凝剂则是提高混凝效率的重要途径之一[1]。
在混凝设施水力条件一定的情况下,混凝剂种类的选定、混凝剂投加量的多少直接影响混凝效果及其后续处理,更是水厂制水成本的直接影响因素[2]。
利用水厂现有的混凝搅拌设备和实验室检测设备,根据水厂的原水水质,选用3种不同pH的硫酸铝混凝剂进行混凝效果对比研究,研究不同pH的硫酸铝混凝剂对pH、碱度、浊度、残铝的控制效果。
1.1 混凝剂试验所用三种不同pH硫酸铝混凝剂氧化铝含量均为7.8%,混凝剂硫酸铝A的pH为2.92,混凝剂硫酸铝B的pH为3.07,混凝剂硫酸铝C的pH为3.58。
使用液浓度为10 mg/mL(以折固硫酸铝为标准计算浓度)。
1.2 混凝试验参数搅拌试验设备为武汉恒岭科技有限公司制造的TA6-1程控混凝试验搅拌仪,试验参数设置为:①快速300 r/min,2 min;②200 r/min,3 min;③50 r/min,5 min;④静沉,15 min,取上清液进行测定。
聚合硫酸铁以及硫酸铝去除腐殖酸强化混凝效果研究梁聪邓慧萍苏宇李涵婷(同济大学污染控制与资源化研究国家重点实验室,上海 200092)[摘要] 通过烧杯实验,研究了聚合硫酸铁(PFS)以及硫酸铝(AS)的各自强化混凝条件,并通过ξ电位的测定解释了PFS和硫酸铝的混凝机理;经过沉淀性能对比实验得出PFS+PAM的絮体沉降性能远远好于硫酸铝的絮体沉降性能;通过PFS的正交优化实验确定了影响PFS的混凝性能的因素的主次顺序以及最佳因素水平。
1. 前言随着工业的发展,现在水体污染日益严重,水中的有毒有害有机物比以前大大增加,单靠常规工艺难以保证出水的安全性。
如果增加前后新的处理构筑物,又会大量提高成本。
这时简单易行,经济高效的强化混凝技术就受到了广泛关注。
所谓强化混凝就是指通过投加过量混凝剂,调节PH值或投加新型的混凝剂,助凝剂以达到大量去除水中天然有机物进而去除消毒副产物前质的效果[1]。
下面就以天然有机物的代表性物质-腐殖酸为研究对象,进行聚合硫酸铁和硫酸铝的强化混凝实验。
2.实验部分2.1 主要实验材料和药品高岭土,腐殖酸,氢氧化钠,盐酸,硫酸铝,聚合硫酸铁(PFS,含3价铁20%)。
其中PFS来源于同济大学环境实验重点实验室李风亭老师课题组。
实验前,现场配置混凝剂投加液,硫酸铝和聚合硫酸铁都配制为10mg/L的使用液投加。
Millipore公司提供的Amicon YM超滤膜,截留分子量为30k,10k,3k,1k道尔顿。
2.2 主要实验仪器DC-506六联搅拌机,Hach2100N浊度仪,UV755B紫外可见分光光度计,PHS-3C精密PH计,Zeta电位测试仪,TOC测试仪,SCM型杯式超滤器。
2.3 实验方法2.3.1 模拟水样配置腐殖酸储备液:将5g商品腐殖酸加入1L的0.1mol/L的氢氧化钠溶液中,边加热边搅拌直到全部溶解,冷却到室温,装入棕色瓶中待用。
实验时,在八升自来水中加入适量的腐殖酸储备液以及2g高岭土,配置成UV254为0.130-0.160cm-1,浊度60-70NTU,PH为7.2-7.5的实验配水。
混凝处理中最佳投药量和PH的确定实验设计混凝处理是水处理的基础处理工艺之一,被广泛应用于科研、生产和水处理中.分散在水中的胶体颗粒带有电荷,同时在布朗运动及其表面水化膜作用下,长期处于稳定分散状态,不能用自然沉淀法去除.故可以向水中投加混凝剂,使分散颗粒相互结合聚集增大,从水中分离出来.混凝剂的混凝效果不仅取决于混凝剂投加量,同时还取决于水的pH值、水流速度梯度等因素,本实验主要确定混凝剂投加量和水的PH对混凝效果的影响.一、实验目的1、学会求得某水样最佳混凝条件pH值、投药量的基本方法.2、了解混凝的现象及过程,观察矾花的形成及混凝沉淀效果.3、加深对混凝机理的理解.二、实验原理化学混凝法是用来去除水中无机和有机的胶体颗粒.胶粒之间的静电斥力、胶粒的布朗运动及胶粒表面的水化作用,使胶粒具有分散稳定性,使胶粒靠自然沉淀不能除去.混凝过程包括胶体的脱稳和颗粒增大的凝聚作用,随后这些大颗粒可用沉淀、气浮或过滤法去除.消除或降低胶体颗粒稳定因素的过程叫脱稳,脱稳是通过投加强的阳离子电解质如Al3+、Fe3+或阳离子高分子电解质来降低Zeta电位,或者是由于形成了带正电荷的含水氧化物而吸附胶体,或者是通过阴离子和阳离子高分子电解质的自然凝聚,或者是由于胶体被围在含水氧化物的矾花内等方式来完成的.混凝剂使胶体脱稳的主要作用是压缩双电层和吸附架桥.脱稳后的胶粒,在一定的水力条件下,能形成较大的絮凝体俗称矾花,该过程称为凝聚.从胶体颗粒变成较大的矾花是一连续过程,为了研究方便可划分为混合和反应两个阶段.混合阶段要求混凝剂和废水快速混合均匀,一般在几秒钟或一分钟内完成,该阶段只能产生肉眼难以看见的微絮凝体;反应阶段要求搅拌强度随矾花的增大而逐渐降低以免结大的矾花被打碎而影响混凝的效果,反应时间约15~30min,该阶段微絮凝体形成较密实的大粒径矾花.三、主要实验设备及药品1、搅拌器;2、浊度仪;3.、酸度计;4、1000mL和200mL烧杯、移液管、温度计、100mL注射器、1000mL量筒若干个;5、混凝剂如硫酸铝、三氯化铁、聚合氯化铝、聚丙烯酰胺等、NaOH、盐酸等.四、实验步骤混凝实验分为最佳投药量、最佳pH值两部分.在进行最佳投药量实验时,先选定一种搅拌速度变化方式和pH值,求出最佳投药量.然后按照最佳投药量求出混凝最佳pH值.实验所需药品及浓度如下:1、精制硫酸铝Al2SO43·18H2O,浓度10g/L2、三氯化铁FeCl3·6H2O,浓度10g/L3、聚合氯化铝A12OHmC16-m,浓度10g/L4、化学纯盐酸HCI,浓度1mol/L5、化学纯氢氧化钠NaOH,浓度1mol/L(一)最佳投药量实验步骤1、确定原水特征,即测定原水水样混浊度、pH值、温度.2、确定形成矾花所用的最小混凝剂量.方法是通过慢速搅拌100r/min或50r/min烧杯中200mL原水,并每次增加0.5mL或1mL混凝剂投加量,直至出现矾花为止,这时的混凝剂量作为形成矾花的最小投加量.3、用6个1000mL的烧杯,分别放入1000mL原水,置实验搅拌机平台上.4、确定实验时的混凝剂投加量.根据步骤2得出的形成矾花最小混凝剂投加量,取其1/3作为1号烧杯的混凝剂投加量,取其2/3作为2号烧杯的混凝剂投加量,依次增加1/3倍混凝剂投加量的方法加入3-6号烧杯中.5、启动搅拌机,转速约300~500r/min,把混凝剂分别加入1—6号烧杯中,快速搅拌半分钟、中速搅拌5分钟左右,转速约100r/min;慢速搅拌5~10分钟、转速约50~80r/min.如果用污水进行混凝实验,污水胶体颗粒比较脆弱,搅拌速度可适当放慢.6、关闭搅拌机、抬起搅拌桨、静止沉淀5~15分钟,用100mL注射针筒抽出烧杯中的上(二)最佳pH值实验步骤1、取6个1000mL烧杯分别放入1000mL原水,置于实验搅拌机平台上.2、确定原水特征,测定原水浑浊度、pH值,温度.本实验所用原水和最佳投药量实验时相同.3、调整原水pH值,用盐酸和氢氧化钠溶液将原水pH值分别调整为4、5、6、7、8、9.启动搅拌机,快速搅拌半分钟,转速约300r/min.随后从各烧杯中分别取出50mL水样放入锥形瓶,用pH仪测定各水样pH值记入表2-2中.测定后将水样倒回烧杯.4、启动搅拌机,转速约300~500r/min,把最佳投药量的混凝剂分别加入1—6号烧杯中,快速搅拌半分钟、中速搅拌5分钟左右,转速约100r/min;慢速搅拌5~10分钟、转速约50~80r/min.5、关闭搅拌机,静置5~15分钟,用100mL注射针筒抽出烧杯中的上清液共抽两次次约100mL放入200mL烧杯中,立即用浊度仪测定浊度每杯水样测三次求平均值,记入表2-2中.五、实验数据整理原水温度:原水浊度:原水PH:混凝剂:混凝剂浓度:最小混凝剂量mL:表1最佳混凝剂投加量表2最佳pH投药量:ml六、思考题1、混凝对水力条件有何要求2、简述高分子混凝剂的作用.3、为什么最大加药量时,混凝效果并不是最好,过量的混凝剂可以使混凝效果更好吗。