10kV小电阻接地系统特殊问题研究
- 格式:doc
- 大小:375.50 KB
- 文档页数:9
电力系统10kV配电网接地方式探讨摘要:在电力系统中,10kV配电网中性点接地是一个综合性的问题,它涉及到的范围非常之广,而且在电力系统的设计与运行中,扮演着非常重要的角色。
目前,我国主要采用三种中性点接地方式:中性点不接地、经消弧线圈接地、经小电阻接地。
关键词:电力系统;10kV;配电网;接地方式引言中性点不接地方式的主要特点是结构简单、投资较少。
发生单相接地故障时,故障相电压降为零,非故障相电压升高1.732倍,流经故障点的电流是全系统对地电容电流。
系统对地电容较小时,故障电流较小,系统可继续运行1~2h。
中性点不接地系统的根本弱点在于中性点绝缘,电网对地电容储存的能量没有释放通道,弧光接地时易产生间歇性电弧过电压,对绝缘危害很大,同时容易引发铁磁谐振。
因此该方式不能适应配电网发展,已逐渐被经消弧线圈接地和经小电阻接地方式取代。
经消弧线圈接地方式需要通过接地变压器提供中性点。
为避免出现谐振过电压,消弧线圈一般运行在过补偿状态。
发生单相接地故障时,故障电流仅为补偿后的残余电流,可抑制电弧重燃,减少间歇性电弧过电压出现概率。
故障后可持续运行一段时间,但在接地期间绝缘薄弱环节可能被击穿。
目前,我国大部分地区10kV配电网均采用经消弧线圈接地方式。
1经消弧线圈接地系统中的主要问题在市区供电公司10kV配电网中,约有80%为中性点经消弧线圈接地系统,20%为中性点不接地系统,未来将全部改造为中性点经消弧线圈接地系统。
在经消弧线圈接地系统的运行维护中,主要面临以下几方面的问题:第一,少数变电站10kV母线电容电流过大,超过100A,消弧线圈长期欠补偿运行,发生线路单相接地后消弧线圈容量无法完全补偿电容电流;第二,部分10kV母线全部为电缆出线或以电缆出线为主,且电缆沟运行环境普遍恶劣,电缆绝缘水平降低。
线路单相接地后系统中性点电压升高,容易引起电缆沟内电缆绝缘击穿,甚至演变成同沟多起电缆事故,扩大事故范围;第三,部分变电站接地选线装置应用效果不理想,仍然要依靠线路轮切查找接地线路。
10kV小电阻接地系统配电网的接地故障分析摘要:以电缆为主体的10kV城市电网,由于电缆线路的对地电容较大,随着线路长度的增加,单相接地电容电流也会增大。
现行经消弧线圈接地的配电网中,为补偿越来越大的接地电容电流,消弧线圈增容改造成本逐渐增大,加上消弧线圈小电流选线困难、过电压水平高等缺点,为保障人身和设备安全,供电局城市配电网开始逐步推广使用小电阻接地系统,其相比于消弧线圈接地系统更加适用。
关键词:小电阻;接地系统;运行方式1中性点接地方式对比分析1.1经消弧线圈接地变电站主变压器10kV侧多为三角形接线方式,当10kV配电网发生单相接地故障时,由于不构成回路,流过故障点的是线路对地电容形成的容性电流,每相对中性点电压及相间的线电压保持不变,整个系统带故障维持运行2h。
系统中性点消弧线圈通过产生电感电流补偿对地的电容电流的方式,使流经故障点的电流保持在10A以下,起到消除接地点电弧的作用,有效提高瞬时接地故障时的供电可靠性。
1.2经小电阻接地系统中性点经小电阻接地,发生单相接地故障时,中性点接地电阻与对地电容会构成并联回路,流经故障线路零序电流很大,通过线路自身零序保护就能快速动作切除故障,不存在选线问题。
由于能快速隔离故障,故障线路相电压升高的时间很短,减少了人身触电风险,绝缘要求也有所下降。
小电阻接地方式中,10kV出线的零序电流互感器只需接入自身线路保护,依靠线路保护自身配置的零序过流或限时速断保护就对线路接地故障有较好的灵敏度,不用配置额外的选线控制器及连接回路。
同时电阻为耗能元件,也是电容电荷释放元件和谐振的阻压元件,可有效消除由于各种原因引起的谐振过电压和间歇性接地电弧过电压。
但需要注意的是,中性点采用小电阻接地方式时,故障点的接地电流十分大,故障点附近的跨步电压高达几千伏,如果保护装置没有快速切除故障,容易击穿接地点附近设备的绝缘,引起相间故障或人身事故。
同时,对于瞬时性或永久性的单相接地故障,线路保护均会动作跳闸,跳闸次数会增多,从而影响用户的正常供电。
Telecom Power Technology设计应用小电阻接地系统单相接地故障分析及应对措施郝会锋(广东电网汕头濠江供电局,广东汕头随着我国配电网自动化水平不断提高,配电网故障的快速预防和处理技术应用变得越来越普遍。
由于我国的配电网覆盖面广,所以配电网故障率也相应较高,其中80%以上都为单相接地故障。
随着城市电缆配网规模的日益扩大,中性点经小电阻接地方式因其可以有效抑制过电压而变得越来越普遍。
但在这种接地方式下,金属性接地短路可能将产生较大的零序电流,从而会导致断路器跳闸,这严重影响了电力系统的安全稳定运行。
为研究小电阻接地系统电缆线路发生单相金属性接地短路的基本规律,介绍了某供电企业电缆小电阻接地方式下的两起金属性单相接地故障,分析了故障发生后的处理过程和可能导致故障产生的原因,最后给出预防性建议,从而加强了配电电缆线路;配电网;短路故障分析;单相短路;金属性接地Analysis of Single Phase Ground Fault in 10 kV Low-resistance GroundingSystem and CountermeasuresHAO Hui-fengShantou Haojiang Power Supply Bureau of Guangdong Power GridTelecom Power Technology经小电阻接地,此举的目的是保证中性点电压不发生偏移,所以当发生单相接地故障时,非故障相电压不倍相电压,从而降低了系统的绝缘设备而对于电缆线路而言,由于电缆线路的电抗小于架空线路,所以其载流容量较大,且电缆线路的最,因此,电倍额定电压的情况下稳定可靠工作。
因此,为了保证电缆线路的安全性,我国部分10 kV 配电网电缆线路也会采用大电流接地的方式。
本文所电缆线路对应母线在中性点不接地系统方式下,单相接地故障的后各电气分量变化情况。
具体分析如下。
图意图。
健全线路的三相对地分布电容;障线路的三相对地分布电容;为母线。
10kv 配电系统中性点经小电阻接地方式初探摘要: 10kv 配电网中性点通常可分为不接地系统、经电阻接地系统和经消弧线圈接地系统。
本文主要介绍10kv 配电系统中性点经小电阻接地方式的构成、保护方式和计量方式。
关键词: 10kv 配电网中性点接地方式小电阻接地1引言10kv 配电网中性点通常可分为不接地系统、经电阻接地系统和经消弧线圈接地系统。
由于选择接地方式是一个涉及线路和设备的绝缘水平、通讯干扰、继电保护和供电网络安全可靠等因素的综合性问题, 所以我国配电网和大型工矿企业的供电系统做法各异。
以前, 10kv 架空电力线路大都采用中性点不接地和经消弧线圈接地的运行方式。
近年来随着10kv 系统规模的扩大和电缆应用的普及, 一些城市电网大力推广电阻接地的运行方式, 使得10kv 系统的中性点接地方式、中性点选择、计量方式、继电保护配置与10kv绝缘系统有了很大区别。
2配电网中性点接地方式运用现状一般架空线路的小电网, 网络电容电流小, 可选用中性点不接地系统。
架空线路的大电网, 网络电容电流较大, 可选用中性点经消弧线圈接地系统。
城市电缆配电网, 网络结构较好, 可选用中性点经中值或低值电阻器接地系统。
若要求补偿网络电容电流限制接地故障入地电流, 还可选用中性点经中值电阻器与消弧线圈并联的接地方式。
3中性点经电阻接地方式定义及阻值选择( 1) 定义: 电力系统中性点通过一电阻接地, 其单相接地时的电阻电流被限制到等于或略大于系统总电容充电电流值。
此种接线方式属于中性点有效接地系统,即大电流接地系统。
和消弧线圈接地方式相比, 改变了接地电流相位, 加速泄放回路中的残余负荷, 促使接地电弧自熄, 降低弧光过电压, 同时提供足够的零序电流和零序电压, 加速切除故障线路。
( 2) 中性点电阻值的选择根据有关文献资料, 从降低内部过电压考虑, 根据计算机模拟计算, 选择原则为rn ≦1/ ( 3c) 。
浅谈10kV配网中性点小电阻接地技术与应用摘要:基于城区10kV配网中电缆线路的增加,导致电容电流增大,补偿困难,尤其是接地电流的有功分量扩大,导致消弧线圈难以使接地点电流小到可以自动熄弧,此时,相比中性点不接地或经消弧线圈接地方式,中性点经小电阻接地方式有更大的优越性。
本文主要对10kv配电网中性点经小电阻接地原理进行了分析,对它的优点和存在的不足进行探讨,以便更好地推广10KV配网中性点小电阻接地技术应用。
关键词:配网;小电阻;技术;应用一、10KV中性点小电阻的优势配电网中性点小电阻接地方式由接地变、小电阻构成。
因主变10kV 侧为三角接线,需通过接地变提供系统中性点。
接地变压器容量的选择应与中性点电阻的选择相配套,中性点接地电阻接入接地变压器中性点。
接地变一般采用Z 型接地变,即将三相铁心每个芯柱上的绕组平均分为两段,两段绕组极性相反,三相绕组按Z形连接法接成星型接线。
其最大的特点在于,变电站中性点接地电阻系统由接地变、接地电阻、零序互感器(有的配有中性点接地电阻器监测装置)等组成。
1、10KV中性点小电阻系统可及时调节电压。
在配电网的整个接地电容电流中,含有5次谐波电流,所占比例高达5%~15%,消弧线圈在电网50Hz的工作环境下,对于5%~15%的接地点的谐波电流值受到影响,低于这个数值,不能正常运行。
而通过小电阻的接地方式却能保持谐波电流值数值不变,保障电力系统输出的设备有效运转。
2、及时消除安全隐患。
在配电网中,当接地电流量增加的时候电压不稳,或者发生短路等线路故障以后,小电阻系统会自动启动保护程序,立即切断故障线路,消除由于单相接地可能造成的人身安全隐患,同时也能够让电力工作人员快速排查线路故障问题,及时恢复供电。
3、增加供电的可靠性。
目前,我们国家的电缆材质主要由铜芯,铝芯,当电缆线路接地时,接地残流大,电弧不容易自行熄灭,所以电缆配电网的单相接受地故障难以消除的。
中性点经消弧线圈接地的系统为小电流接地系统,当发生单相接地永久性故障后,接地故障点的查找困难,单相接地故障点所在线路的检出,一般采用试拉接地手段。
10kV配电网小电阻接地系统运行方式探讨摘要:目前,在10 kV配电系统中,电缆线所占比例很高,而城市中的架空线又存在着很大的容量和容量问题。
10 kV配电网的小阻抗接地体系更适用于城市10 kV配电网,与以往采用的中性点经消弧线圈接地、中性点绝缘接地等方法相比,该体系可以有效地改善系统的稳定性、安全性,为人民群众提供一个安全可靠的用电环境。
关键词:10kV配电网;小电阻接地;系统运行1.110kV配电网小电阻接地系统概述在城市供电系统中,110(35)kV变电站的主变二次侧10kV绕组通常为三角形联结结构,没有中心点,为实现接地需在主变二次侧安装一个Z型接地变压器引出中性点。
10kV配电网小电阻接地系统通常由接地变和小电阻两部分组成,通过接地变为主变10kV接线提供系统中性点,接地变压器容量要和系统中性点电阻相匹配。
接地变广泛采用Z型接法,即把三相铁芯各个芯柱上的绕组划分成长度基本相同、极性不同的两段,使三相绕组通过Z型接法形成星形接线。
小电阻接地系统对正、负序电流展现出高阻抗,在绕组中流过的激磁电流较小;小电阻接地系统对零序电流展现出低阻抗,绕组中的电压比较小。
2.10kV配电网小电阻接地系统的优势2.1.降低过电压电阻既是耗能元件,又是阻尼元件,可以对谐振过电压、间歇性电弧过电压产生一定影响。
应用小电阻接地系统,使中性点和线路形成回路,可以更好地释放电容电荷。
在线路单相接地故障中,中性点经过小电阻接地,中性点电位小于相电压,可以抑制非故障部分的工频电压升高。
在接地电弧熄弧后,经过中性点电阻通路,零序残荷能够及时释放,在下一次燃弧过程中,过电压赋值和日常单相接地电压相同,不会发生中性点不接地的状况,过电压幅值能够得到有效控制。
2.2.快速切除故障在系统单相接地后,接地点和曲折变中性点会产生电流通路,继电保护装置会根据零序电流精准判断和及时处理故障问题,单相故障发生概率比较小,能够减少拉路查找中由于操作不规范而造成的过电压问题。
摘要:提出了10 kV小电阻接地系统的系统模型和节点电压方程,根据该模型分析了该系统线路对地电容参数不对称所引起的流过接地变压器中性点的零序电流的变化规律。
分析了高压侧出现单相接地故障对低压侧的影响情况,分析了变电所接地网接地不良所产生的接地变压器中性点零序电压升高的情况,并通过仿真算例证实了参数不对称和接地不良可能导致接地变压器零序电流保护误动的结论。
关键词:小电阻接地;接地网;参数不对称;零序电流保护;节点电位法
1引言
近年来,随着城市建设和供电业务的迅速发展,一些大城市新发展的10 kV配电网主要采用地下电缆,使对地电容电流大大增加。
如果采用消弧线圈接地,则需要较大的补偿容量,而且要配置多台。
10kV配电网线路在运行中操作较多,消弧线圈的分接头及时调整有困难,容易出现谐振过电压现象。
因此我国许多大城市10 kV配电网采用了中性点经小电阻接地方式来解决这一问题。
10 kV中性点小电阻接地方式在我国投入运行时间不长,许多问题尚未进行深入研究。
本文就小电阻接地系统运行中可能出现的电缆对地电容参数不对称及变电所接地网不良所带来的问题进行了研究。
210 kV小电阻接地系统线路参数不对称产生的问题
2.1系统模型
目前,由于10 kV中性点小电阻接地系统主变压器10 kV侧一般采用三角形接线,中性点须采用一台接地变压器来实现,故建立10 kV小电阻接地系统电网模型如图1所示。
其中,出线对地等效三相电容阻抗值,型接地变压器三相等值阻抗;为系统等值三相电势源,Z ab、Z bc、Z ca分别为其三相
电源等效内阻,R为接地电阻。
2.2节点电压方程
对以上建立的10kV小电阻接地系统的网络模型,采用节点电位法进行分析,选择节点
5作为参考节点,节点方程为:
根据U4的表达式,对各种不对称情况作如下分析。
(1)当,即Z型变压器三相阻抗对称,且10 kV出线三相等效对地电容对称,等效电源内阻相等。
此时有:Y14=Y34=-Y24,因此可得:U R=U4=0,即无论三角形接法的电源侧出现何种不对称情况,均不会导致小电阻流过零序电流。
(2)当Z型变压器三相阻抗、10 kV出线三相等效对地电容、等效电源内阻中有一个参数不对称时,U4≠0,小电阻上将产生零序电流。
因电缆线路某相绝缘发生老化(但未击穿),与其他两相产生不对称,或在施工过程中,由于施工人员没有严格按照规程操作,将杂质混入电缆接头处,这同样也会给电缆参数不对称造成隐患,故线路参数不对称的可能性最大,下面以线路参数不对称为例进行分析。
设A相对地电容参数不对称,不对称系数为K,定义K为:
其中Z a为对称时A相的标准参数;Z″a为不对称时A相的实际参数。
很显然,K的取值越大,不对称程度越厉害。
其中:I R为流过接地变压器中性点的零序电流,K′为系统阻抗参数及不对称系数K的函数。
由式(4)、(6)和(7)可以推出下列结论:
1)|K′|为K的单调递增函数,随着K的增大而增大。
当K=1时,即发生单相接地故障时,|K′|达到最大值;当K=0时即三相对称时|K′|为零。
也就是说不对称度越大,|K′|值越大。
因而由上述I R的表达式可知,不对称度越大,小电阻上零序电流越大。
2)线路对地电容参数不对称时,将导致接地变压器中性点出现零序电压。
不对称越严重,零序电压越高。
3)当高压侧正常对称运行时:|ΔE|=|E ab-,高压侧出现单相接地故障时:|ΔE|=(取决于高压侧哪一相故障)[1]。
即:|ΔE′|≤|ΔE|,所以,线路参数不对称情况下高压侧接地故障不会导致低压侧零序电流的进一步增加。
4)对于其他各种参数不对称的情况,均可得到与以上分析相类似的结论。
2.3参数不对称产生的问题
由于参数不对称会使小电阻上产生零序电流,且零序电流随着不对称度的增大而增大,所以当不对称度增大到一定程度的时候,达到接地变压器零序电流保护的整定值,将导致接地变压器零序电流保护误动。
3接地网接地不良产生的问题
10 kV小电阻接地系统变压器高压侧中性点一般直接接地,当接地网接地不良时,高压侧任何形式的接地短路故障都会引起地电网电位的升高,从而影响10 kV侧的正常电压。
特别是10 kV小电阻接地系统线路参数不对称时,由于相电压的升高,将进一步增大小电阻上的零序电流。
下面结合实例来分析。
如图2所示,主变压器高压侧110 kV中性点直接接地,低压侧10 kV中性点经电阻接地,它们都与变电站的地网相连。
接地网接地电阻为R j。
当110kV侧单相接地时,通过接地网的短路电流I d使地网电位升高至U j:
U j作用于10 kV侧回路,使10 kV侧电网相对理想地的电压升高,即加在对地电容上的电压升高。
此时如果线路参数不对称,小电阻上将有零序电流产生,相电压的升高进一步增大小电阻上的零序电流。
如2.3所述,此时接地变压器零序电流保护误动的几率将会加大。
4现场数据仿真
某变电站110 kV中性点直接接地,10 kV侧经接地变压器中性点串小电阻接地,接地电阻为16Ω,接地变压器零序阻抗为4.4Ω,10 kV侧线路对地电容阻抗为101Ω,接地变压器零序电流保护整定值为55 A。
根据实际参数,取不同的不对称系数K的值,得出线路参数不对称时产生的流经中性点的电流I R随自变量K变化的曲线,如图3所示。
考虑接地网接地不良时,接地网电阻取为0.5Ω,根据不同的高压侧短路电流及K值得到一组流经中性点的电流I R的曲线,如图4所示。
图中均为接地变压器零序电流保护整定值。
从以上仿真曲线可以看出,随着不对称系数的增加,接地变压器中性点电流增加。
仅仅线路对地电容阻抗不对称时,当不对称系数K达到0.55左右时,接地变压器零序电流达到保护整定值,接地变压器零序电流保护将误动。
如果变电所接地网不好,线路对地电容阻抗又不对称,接地变压器零序电流达到保护整定值时的不对称系数K明显减小,且高压侧短路电流越大,K值越小。
仿真结果很好地验证了前面的分析。
5结语
10 kV中性点小电阻接地方式在我国投入运行时间不长,许多问题尚未进行深入研究。
线路参数不对称会产生流过接地变压器中性点的零序电流,变电所接地网接地不良会导致接地变压器中性点零序电压加大。
线路参数不对称达到一定的程度或两个因素的同时存在
将引起接地变压器零序电流保护误动。
因此对电缆线路参数的对称性及变电所接地网接地的完好性进行监测是保证小电阻接地系统安全运行的重要措施。
参考文献
[1]刘万顺.电力系统故障分析[M].北京:水利电力出版社,1986.
[2]张隆兴,周裕厚.10 kV及以下电力电缆实用技术[M].北京:中国物资出版社,
1998.
[3]Paul Dev,Venugopalan SI.Low-resistance grounding methodfor mediumvolt age power systems.1991 IEEEIndustry Ap-plication Society Annual Meeting 1991,Sponsored by IEEE Industry Application Soc.1571-1578.
[4]Yu,Luke;Henriks,Rolf L.Selection of system neutralgrounding resistor and ground fault protection for industrial power systems.38th AnnualPetroleumand Che micalIndustry Conference 1991,Sponsored by IEEEIndustry Applications。